The integral form of the exponential growth equation is

# The integral form of the exponential growth equation is

1. A

$\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{rN}$

2. B

$\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{rN}\left(\frac{\mathrm{K}-\mathrm{N}}{\mathrm{K}}\right)$

3. C

${\mathrm{N}}_{\mathrm{t}}={\mathrm{N}}_{0}{\mathrm{e}}^{\mathrm{rt}}$

4. D

${\mathrm{N}}_{\mathrm{t}+1}={\mathrm{N}}_{\mathrm{t}}+\left[\left(\mathrm{B}+\mathrm{I}\right)-\left(\mathrm{D}+\mathrm{E}\right)\right]$

Fill Out the Form for Expert Academic Guidance!l

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

### Solution:

Integral form of exponential growth equation is ${\mathrm{N}}_{\mathrm{t}}={\mathrm{N}}_{0}{\mathrm{e}}^{\mathrm{rt}}$
Growth rate of exponential growth is $\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{rN}$
Growth rate of logistic growth is $\frac{\mathrm{dN}}{\mathrm{dt}}=\mathrm{rN}\frac{\left(\mathrm{K}-\mathrm{N}\right)}{\mathrm{K}}$

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)