Problems on Algebraic Fractions | Simplifying Algebraic Fractions

# Problems on Algebraic Fractions | Simplifying Algebraic Fractions

In this article, you will learn about simplifying algebraic fractions, reducing the fraction to its lowest term, performing arithmetical operations on algebraic fractions. Get the solved example questions on algebraic fractions to understand the concept better. Each and Every Problem is explained with Step by Step Solutions so that you can learn the Procedure on how to solve related problems easily.

### Solved Examples on Algebraic Fractions

Example 1.

Fill Out the Form for Expert Academic Guidance!

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)

Reduce the algebraic fractions to their lowest terms?

(i) (3x² – 6y²) / (6x – 12y)

(ii) (5x² – 5y²) / (25x² + 50xy + 25y²)

(iii) (3ab – 3a²) / (3a² – 6ab + 3b²)

Solution:

(i) (6x² – 6y²) / (12x – 12y)

Factorizing the numerator and denominator separately and cancel the common factors we get,

= (6 (x² – y²)) / ((12 (x – y))

= (x² – y²) / (2 (x – y))

= ((x – y) (x + y)) / (2 (x – y))

= (x + y) / 2

(ii) (5x² – 5y²) / (25x² + 50xy + 25y²)

Factorizing the numerator and denominator separately and cancel the common factors we get,

= (5 (x² – y²)) / (25 (x² + 2xy + y²))

= (x² – y²) / (5 (x² + 2xy + y²))

= [(x + y) (x – y)] / [5 (x² + xy + xy + y²)]

= [(x + y) (x – y)] / [5 (x( x + y) + y (x + y)]

= [(x + y) (x – y)] / [5 ((x + y) (x + y)]

= (x – y) / [5 (x + y)]

(iii) (3ab – 3a²) / (3a² – 6ab + 3b²)

Factorizing the numerator and denominator separately and cancel the common factors we get,

= [3a (b – a)] / [(3a² – 3ab – 3ab + 3b²)]

= [3a (b – a)] / [(3a(a – b) – 3b(a – b))]

= [3a (b – a)] / [(3a – 3b) (a – b)]

= [-3a (a – b)] / [(3a – 3b) (a – b)]

= -3a / 3(a – b)

= -a / (a – b)

Example 2.

Simplify the algebraic fractions?

(i) [1/x + 1/y] / [1/x² – 1/y²]

(ii) [(u + v) / 2u – 2v) + (v – u) / (2v + 2u) + 2v² / (u² – v²)] [1/v – 1/u]

(iii) [(a³ – ab² + b³) / (a – b)³ – b / (a – b)] [(a² – 2ab + 2b²) / (a² – ab + b²) – b/a]

Solution:

(i) [1/x + 1/y] / [1/x² – 1/y²]

Factorize the numerator

1/x + 1/y = (y + x) / (xy)

Factorize the denominator

1/x² – 1/y² = (y² – x²) / (x²y²)

= (y + x) (y – x) / x²y²

Simplification of the given expression after factorizing the numerator and the denominator:

[(y + x) / (xy)] / [(y + x) (y – x) / x²y²]

= [(y + x) * x²y²] / [(y + x) (y – x) * xy]

= xy / (y – x)

(ii) [(u + v) / 2u – 2v) + (v – u) / (2v + 2u) + 2v² / (u² – v²)] * [1/v – 1/u]

Factorize the denominators

2(u – v), 2 (u + v), (u +v) (u – v)

L.C.M of first expression is 2 (u + v) (u – v), second expression is uv

= [((u + v) * (u + v) / 2(u – v) (u + v)) + ((v – u) * (v – u) / 2 (u + v) (u – v)) + 2v² * 2 / 2 (u + v) (u – v)] * [u – v / vu]

= [(u + v)² / 2(u – v) (u + v) + (v – u)² / 2(u – v) (u + v) + 4v² / 2(u – v) (u + v)] * [u – v / vu]

= [((u + v)² + (v – u)² + 4v²) / 2(u – v) (u + v)] * [u – v / vu]

= [(u² + v² + 2uv + v² + u² – 2uv + 4v²) / 2(u – v) (u + v)] * [u – v / vu]

= [(2u² + 6v²) / 2(u – v) (u + v)] * [u – v / vu]

= [2u³ -2u²v + 6v²u + 6v³] / [2(u – v) (u + v)vu]

= 2u² (u – v) + 6v² (u + v) / [2(u – v) (u + v)vu]

= 2[u² (u – v) + 3v² (u + v)] / [2(u – v) (u + v)vu]

= [u² (u – v) + 3v² (u + v)] / [(u – v) (u + v)vu]

(iii) [(a³ – ab² + b³) / (a – b)³ – b / (a – b)] [(a² – 2ab + 2b²) / (a² – ab + b²) – b/a]

Factorize the denominators

(a – b)³, (a – b) and a² – ab + b², a

L.C.M of (a – b)³, (a – b) is (a – b)³, L.C.M of a² – ab + b², a is a (a² – ab + b²)

Express all fractions in terms of the lowest common denominator.

= [(a³ – ab² + b³) / (a – b)³ – (b (a – b)²) / (a – b)³] [(a (a² – 2ab + 2b²)) / a (a² – ab + b²) – b (a² – ab + b²) / a (a² – ab + b²)]

= [(a³ – ab² + b³) / (a – b)³ – (b (a² – 2ab + b²) / (a – b)³] * [(a³ – 2a²b + 2ab²)) / a (a² – ab + b²) – (a²b – ab² + b³) / a (a² – ab + b²)]

= [(a³ – ab² + b³) / (a – b)³ – (a²b – 2ab² + b³) / (a – b)³] * [(a³ – 2a²b + 2ab²) / a (a² – ab + b²) – (a²b – ab² + b³) / a (a² – ab + b²)]

= [(a³ – ab² + b³ – a²b + 2ab² – b³) / (a – b)³] * [(a³ – 2a²b + 2ab² – a²b + ab² – b³) / a (a² – ab + b²)]

= [(a³ + ab² – a²b) / (a – b)³] * [(a³ – 3a²b + 3ab² – b³) / a (a² – ab + b²)]

= [(a³ + ab² – a²b) / (a – b)³] * [(a – b)³ / a (a² – ab + b²)]

= [(a³ + ab² – a²b) (a – b)³] / [(a – b)³ a (a² – ab + b²)]

= [a (a² – ab + b²)] / [a (a² – ab + b²)]

= 1

Example 3.

Simplify the sum and difference of algebraic fractions?

(i) (2x – 3y) / x + (4x² – 5y²) / xy

(ii) x / ac – x / bc + x / ab

Solution:

(i) (2x – 3y) / x + (4x² – 5y²) / xy

L.C.M of denominators is xy.

Express all fractions in terms of the lowest common denominator.

= y(2x – 3y) / xy + (4x² – 5y²) / xy

= (2xy – 3y² + 4x² – 5y²) / xy

= (4x² + 2xy – 8y²) / xy

= 2(2x² + xy – 4y²) / xy

(ii) x / ac – x / bc + x / ab

L.C.M of all denominators is abc

Express all fractions in terms of the lowest common denominator.

= bx / abc – ax / abc + cx / abc

= (bx – ax + cx) / abc

= x(b – a + c) / abc

Example 4.

Simplify the product and quotient of algebraic fractions

(i) (3x² – 3y²) / (12x – 12y)

(ii) (x – y) : (1/x + 1/y)

Solution:

(i) (3x² – 3y²) / (12x – 12y)

Factorize numerators and denominators

= 3(x² – y²) / 12 (x – y)

= (x + y) (x – y) / 4 (x – y)

= (x + y) / 4

(ii) (x – y) : (1/x + 1/y)

= (x – y) : (y + x) / xy)

= xy (x – y) / (x + y)

## Related content

 Oscars 2023 Quiz: Check Oscar Awards List GK Quiz Questions and Answers Here Types of Computers – Uses & Functions | Questions of Different Types of Computers Important Questions for Class 12 Computer Science (C++) – Communication Technologies Biology MCQs for Class 12 with Answers Chapter 3 Human Reproduction Circumference of a Circle – Definition and Formula Bank Reconciliation Statement: definition, meaning, types, importance NCERT Books for Class 6 to 12 – Download Free PDF Updated for 2023-24 Right Angle – Definition, Formula, Examples, and FAQs Geometric Shapes – Explanation with Examples and List of Geometric Shapes Compound Interest – Definition, Formula, Calculation, Methods & Solved Examples

+91

Live ClassesBooksTest SeriesSelf Learning

Verify OTP Code (required)