Learn

Chapter: Applications of integration

Exercise 8.1:

1. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis in the first quadrant.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the region bounded by the curve $y^{2}=x$, the lines $x=1, x=4$ and the $x-$ axis in the first quadrant.

Hence, the required area is $A=\int_{1}^{4} \sqrt{x} d x$

$$
\begin{aligned}
A & =\int_{1}^{4} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \quad \quad \int x^{n} d x=\frac{x^{n+1}}{n+1} ; n \neq-1 \\
& =\frac{2}{3}(8-1) \\
& =\frac{14}{3} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x - axis in the first quadrant is $\frac{14}{3}$ square units
2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the region bounded by the curve $y^{2}=9 x$, the lines $x=2, x=4$ and the x-axis in the first quadrant.
Hence, the required area is $A=\int_{2}^{4} 3 \sqrt{x} d x$

$$
\begin{aligned}
A & =3 \int_{2}^{4} \sqrt{x} d x \\
& =3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =3\left(\frac{2}{3}\right)\left(8-2^{\frac{3}{2}}\right) \\
& =(16-4 \sqrt{2}) \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y^{2}=9 x$ and the lines $x=1, x=4$ and the x - axis in the first quadrant is $(16-4 \sqrt{2})$ square units
3. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Solution: The required area of the region is the shaded region in the following figure

The area of the shaded region is the region bounded by the curve $x^{2}=4 y$, the lines $y=2, y=4$ and the y-axis in the first quadrant.
Hence, the required area is $A=\int_{2}^{4} 2 \sqrt{y} d y$

$$
\begin{aligned}
A & =2 \int_{2}^{4} \sqrt{y} d y \\
& =2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left(\frac{2}{3}\right)\left(8-2^{\frac{3}{2}}\right) \\
& =\frac{32-8 \sqrt{2}}{3} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $x^{2}=4 y$, the lines $y=2, y=4$ and the y - axis in the first quadrant is $\frac{32-8 \sqrt{2}}{3}$ square units
4. Find the area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The given equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ can be rewrite as below

$$
\begin{aligned}
\frac{y^{2}}{9} & =1-\frac{x^{2}}{16} \\
y^{2} & =9\left(1-\frac{x^{2}}{16}\right) \\
y & =\frac{3}{4} \sqrt{16-x^{2}}
\end{aligned}
$$

The area of the shaded region is 4 times the region bounded by the curve $y=\frac{3}{4} \sqrt{\left(16-x^{2}\right)}$, the lines $x=0, x=4$ and the $x-$ axis in the first quadrant.
Hence, the required area is $A=4\left(\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x\right)$

$$
\begin{aligned}
A & =3 \int_{0}^{4} \sqrt{16-x^{2}} d x \\
& =3\left\{\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right\}_{0}^{4} \\
& =3\left(8 \cdot \frac{\pi}{2}\right) \\
& =12 \pi
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is 12π square units
5. Find the area of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Solution: The required area of the region is the shaded region in the following figure

Learn

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The given equation $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ can be rewrite as below

$$
\begin{aligned}
\frac{y^{2}}{9} & =1-\frac{x^{2}}{4} \\
y^{2} & =9\left(1-\frac{x^{2}}{4}\right) \\
y & =\frac{3}{2} \sqrt{4-x^{2}}
\end{aligned}
$$

The area of the shaded region is 4 times the region bounded by the curve $y=\frac{3}{2} \sqrt{\left(4-x^{2}\right)}$, the lines $x=0, x=4$ and the x-axis in the first quadrant.
Hence, the required area is $A=4\left(\frac{3}{2} \int_{0}^{4} \sqrt{4-x^{2}} d x\right)$

$$
\begin{aligned}
A & =6 \int_{0}^{4} \sqrt{4-x^{2}} d x \\
& =6\left\{\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right\}_{0}^{2} \\
& =6\left(2 \cdot \frac{\pi}{2}\right) \\
& =6 \pi
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is 6π square units
6. Find the area of the region in the first quadrant enclosed by x - axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The area of the shaded region is sum of the following regions
(i) The area of the shaded region bounded by the line $x=\sqrt{3} y$, lines $x=0, x=\sqrt{3}$ and the x-axis in the first quadrant, and it is equal to $\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} x d x$

Learn
(ii) The area of the shaded region bounded by the curve $y=\sqrt{4-x^{2}}$, lines $x=\sqrt{3}, x=2$ and the $x-$ axis in the first quadrant, and it is equal to $\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
Hence, the required area is

$$
\begin{aligned}
& A=\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} x d x+\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{1}{\sqrt{3}}\left(\frac{x^{2}}{2}\right)_{0}^{\sqrt{3}}+\left(\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right)_{\sqrt{3}}^{2} \\
& =\frac{3}{2 \sqrt{3}}+2\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{2}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3}}{2}+\pi-\frac{\sqrt{3}}{2}-2\left(\frac{\pi}{3}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

Therefore, the area of the region in the first quadrant enclosed by x - axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$ is $\frac{\pi}{3}$ square units
7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The area of the shaded region is two times the area of the region bounded by the curve $y=\sqrt{a^{2}-x^{2}}$, the lines $x=\frac{a}{\sqrt{2}}, x=a$ and $x-$ axis in the first quadrant.
Hence, the required area is

$$
\begin{aligned}
& A=2 \int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =2\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right)_{\frac{a}{\sqrt{2}}}^{a} \\
& =2\left(\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-\frac{a^{2}}{2}-\frac{a^{2}}{2}\left(\frac{\pi}{4}\right)\right) \\
& =2\left(\left(\frac{\pi a^{2}}{8}\right)-\frac{a^{2}}{2}\right) \\
& =\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)
\end{aligned}
$$

Therefore, the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$ is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ square units
8. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$ then find the value of a

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
Suppose that the line $x=a$ divide the area between $x=y^{2}$ and $x=4$

Hence,

$$
\begin{aligned}
\int_{0}^{a} \sqrt{x} d x & =\frac{1}{2} \int_{0}^{4} \sqrt{x} d x \\
{\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a} } & =\frac{1}{2}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4} \\
\frac{2}{3} a^{\frac{3}{2}} & =\frac{1}{2}\left(\frac{2}{3}\right)(8) \\
a^{\frac{3}{2}} & =4 \\
a & =4^{\frac{2}{3}}
\end{aligned}
$$

Therefore, the value of a is $4^{\frac{2}{3}}$, such that the line $x=4^{\frac{2}{3}}$ divide the region into two equal parts of the region bounded by $x=y^{2}$, the line $x=4$
9. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$

Solution:
The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The area of the shaded region is two times the area of the region bounded by the curve $y=x^{2}$, the line $y=x$, the lines $x=0, x=1$ and x-axis in the first quadrant.

Hence, the required area is $A=2 \int_{0}^{1}\left(x-x^{2}\right) d x$

$$
\begin{aligned}
A & =2 \int\left(x-x^{2}\right) d x \\
& =2\left(\frac{x^{2}}{2}\right)-2\left(\frac{x^{3}}{3}\right)+C \\
& =\left(x^{2}-\frac{2 x^{3}}{3}\right)_{0}^{1} \\
& =1-\frac{2}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{2}$ and the lines $y=|x|$ is $\frac{1}{3}$ square units
10. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

Points of intersection of the curve $x^{2}=4 y$ and the line $x=4 y-2$

$$
\begin{aligned}
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
x^{2}-2 x+x-2 & =0 \\
x(x-2)+1(x-2) & =0 \\
(x+1)(x-2) & =0
\end{aligned}
$$

Hence, the points of intersection of both curve and the line are $x=-1, x=2$

The area of the shaded region is the area of the region bounded by the curve $x^{2}=4 y$, the line $x=4 y-2$, the lines $x=-1, x=2$ and x - axis in the first quadrant.

Hence, the required area is $A=\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x$

$$
\begin{aligned}
A & =\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x \\
& =\frac{1}{4} \int_{-1}^{2}\left(x+2-x^{2}\right) d x \\
& =\frac{1}{4}\left(\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right)_{-1}^{2} \\
& =\frac{1}{4}\left(2+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}\right) \\
& =\frac{1}{4}\left(\frac{9}{2}\right) \\
& =\frac{9}{8} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$ is $\frac{9}{8}$ square units
11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $x=f(y)$, the lines $y=a, y=b$ and $y-$ axis is $\left|\int_{a}^{b} f(y) d y\right|$.

Points of intersection of the curve $y^{2}=4 x$ and the line $x=3$

$$
y^{2}=12 \Rightarrow y= \pm 2 \sqrt{3}
$$

The area of the shaded region is the area of the region bounded by the curve $x=\frac{y^{2}}{4}$, the line $y=2 \sqrt{3}, y=-2 \sqrt{3}$ and y - axis.

Hence, the required area is $A=\int_{-2 \sqrt{3}}^{2 \sqrt{3}}\left(3-\frac{y^{2}}{4}\right) d x$

$$
\begin{aligned}
A & =\int_{-2 \sqrt{3}}^{2 \sqrt{3}}\left(3-\frac{y^{2}}{4}\right) d x \\
& =\left(3 y-\frac{y^{3}}{12}\right)_{-2 \sqrt{3}}^{2 \sqrt{3}} \\
& =6 \sqrt{3}-\frac{24 \sqrt{3}}{12}+6 \sqrt{3}-\frac{24 \sqrt{3}}{12} \\
& =12 \sqrt{3}-4 \sqrt{3} \\
& =8 \sqrt{3}
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$ is $8 \sqrt{3}$ square units
12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is in square units

1) π
2) $\frac{\pi}{2}$
3) $\frac{\pi}{3}$
4) $\frac{\pi}{4}$

Solution:

The required area of the region is the shaded region in the following figure

Learn

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the area of the region bounded by the curve $y=\sqrt{4-x^{2}}$, the line $x=0, x=2$ and $x-$ axis in the first quadrant.

Hence, the required area is $A=\int_{0}^{2} \sqrt{4-x^{2}} d x$

$$
\begin{aligned}
A & =\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\left(\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{2} \\
& =\left(2 \sin ^{-1}(1)\right) \\
& =2\left(\frac{\pi}{2}\right) \\
& =\pi
\end{aligned}
$$

Therefore, the option 1 is correct

Learn
13. Area of the region bounded by the curve $y^{2}=4 x, y$ - axis and the line $y=3$ in square units.

1) 2
2) $\frac{9}{4}$
3) $\frac{9}{3}$
4) $\frac{9}{2}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $x=f(y)$, the lines $y=a, y=b$ and $y-\operatorname{axis}$ is $\left|\int_{a}^{b} f(y) d y\right|$.

The area of the shaded region is the area of the region bounded by the curve $x=\frac{y^{2}}{4}$, the line $y=0, y=3$ and y-axis.

Hence, the required area is $A=\int_{0}^{3}\left(\frac{y^{2}}{4}\right) d x$

$$
\begin{aligned}
A & =\int_{0}^{3}\left(\frac{y^{2}}{4}\right) d x \\
& =\left(\frac{y^{3}}{12}\right)_{0}^{3} \\
& =\frac{27}{12} \\
& =\frac{9}{4} \text { square units }
\end{aligned}
$$

Therefore, the option 2 is correct.

Exercise 8.2

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$

The point of intersection of the circle $4 x^{2}+4 y^{2}=9$ and the curve $x^{2}=4 y$

$$
\begin{aligned}
4 x^{2}+\left(\frac{x^{2}}{2}\right)^{2} & =9 \\
16 x^{2}+x^{4} & =36 \\
x^{4}+16 x^{2}-36 & =0 \\
x^{4}+18 x^{2}-2 x^{2}-36 & =0 \\
x^{2}\left(x^{2}+18\right)-2\left(x^{2}+18\right) & =0 \\
\left(x^{2}-2\right)\left(x^{2}+18\right) & =0
\end{aligned}
$$

Hence, $x=-\sqrt{2}, \sqrt{2}$
The area of the shaded region is the region bounded by the curve $y=\frac{1}{2} \sqrt{9-4 x^{2}}, y=\frac{x^{2}}{4}$, the lines $x=-\sqrt{2}, x=\sqrt{2}$ and the $x-$ axis Hence, the required area is $A=\int_{-\sqrt{2}}^{\sqrt{2}}\left(\frac{1}{2} \sqrt{9-4 x^{2}}-\frac{x^{2}}{4}\right) d x$

Hence,

$$
\begin{aligned}
& A=\int_{-\sqrt{2}}^{\sqrt{2}}\left(\frac{1}{2} \sqrt{9-4 x^{2}}-\frac{x^{2}}{4}\right) d x \\
& =2\left(\frac{1}{4}\left(\frac{2 x}{2} \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 x}{3}\right)-\frac{x^{3}}{12}\right)_{0}^{\sqrt{2}} \\
& =2\left(\frac{1}{4}\left(\frac{2 \sqrt{2}}{2}+\frac{9}{2} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right)-\frac{2 \sqrt{2}}{12}\right) \\
& =\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{3} \\
& =\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{\sqrt{2}}{6}
\end{aligned}
$$

Therefore area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$ is $\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{\sqrt{2}}{6}$ square units
2. Find the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$

Solution: The required area of the region is the shaded region in the following figure

Learn

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

Points of intersection of the both curves

$$
\begin{aligned}
(x-1)^{2}+1-x^{2} & =1 \\
(x-1)^{2} & =x^{2} \\
x-1 & =-x \\
2 x & =1 \\
x & =\frac{1}{2}
\end{aligned}
$$

Both circles intersect at $x=\frac{1}{2}$
The area of the shaded region is sum of the following two regions
(i) Two times the area of the region bounded by $y=\sqrt{1-(x-1)^{2}}$, the lines $x=0, x=\frac{1}{2}$ and x - axis in the first quadrant.
(ii) Two times the area of the region bounded by the $y=\sqrt{1-x^{2}}$, the lines $x=\frac{1}{2}, x=1$ and $x-$ axis in the first quadrant.
Hence, the required area is $A=2\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right]$

$$
\begin{aligned}
& A=2\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right] \\
& =2\left[\left[\frac{x-1}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1}(x)\right]_{\frac{1}{2}}^{1}\right]
\end{aligned}
$$

$$
=2\left[\left[-\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)-\frac{1}{2}\left(\sin ^{-1}(-1)\right)\right]\right.
$$

$$
\left.+\left[\frac{1}{2} \sin ^{-1}(1)-\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right)-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right]\right]
$$

$$
=4\left[-\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{\pi}{12}+\frac{\pi}{4}\right]
$$

$$
=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
$$

Therefore, the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$ $\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ square units
3. Find the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3$.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by two curves $y=f(x)$ and $y=g(x)$ the lines $x=a, x=b$ is $\int_{a}^{b}|f(x)-g(x)| d x$.

The area of the shaded region is the region bounded by the curve $y=x^{2}+2$, the lines $y=x, x=0, x=3$ and the x-axis in the first quadrant.
Hence, the required area is $A=\int_{0}^{3}\left(x^{2}+2-x\right) d x$

$$
\begin{aligned}
A & =\int_{0}^{3}\left(x^{2}+2-x\right) d x \\
& =\left[\frac{x^{3}}{3}+2 x-\frac{x^{2}}{2}\right]_{0}^{3} \\
& =9+6-\frac{9}{2} \\
& =\frac{21}{2}
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3 . \frac{21}{2}$ square units
4. Using the integration, find the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3),(3,2)$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the
Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.
The equations of the sides of the triangle are as below
Equation of $A B$ is $y=\frac{3}{2}(x+1)$
Equation of $B C$ is $y=\frac{-x+7}{2}$
Equation of $C A$ is $y=\frac{1}{2}(x+1)$

The area of the triangle is sum of the following areas
(i) The area of the region between the lines $A B, A C, x=-1, x=1$
(ii) The area of the region between the lines $B C, A C, x=1, x=3$

Hence, the area of the triangle is

Learn

$$
\begin{aligned}
A & =\int_{-1}^{1}(A B-A C) d x+\int_{1}^{3}(B C-A C) d x \\
& =\int_{-1}^{1} \frac{3}{2}(x+1)-\frac{1}{2}(x+1) d x+\int_{1}^{3}\left(\frac{1}{2}(-x+7)-\frac{1}{2}(x+1)\right) d x \\
& =\int_{-1}^{1}(x+1) d x+\frac{1}{2} \int_{1}^{3}(-2 x+6) d x \\
& =\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}+\frac{1}{2}\left[-x^{2}+6 x\right]_{1}^{3} \\
& =\frac{1}{2}+1-\frac{1}{2}+1+\frac{1}{2}(9+1-6) \\
& =2+2 \\
& =4
\end{aligned}
$$

Therefore, the area of the triangle formed by the points $(-1,0),(1,3),(3,2)$ is 4 square units.
5. Use the integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left.\right|_{a} ^{b}(f(x)-g(x)) d x \mid$.

The vertices of triangle are
Equation of $A B$ is $y=2 x+1$
Equation of $B C$ is $x=4$
Equation of $C A$ is $y=3 x+1$
The area of the triangle is the area of the region between the lines $A B, A C, x=0, x=4$

Hence, the area of the triangle is

$$
\begin{aligned}
A & =\int_{0}^{4}(A C-A B) d x \\
& =\int_{0}^{4}(3 x+1)-(2 x+1) d x \\
& =\int_{0}^{4} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{4} \\
& =8 \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the lines $y=2 x+1, y=3 x+1$ and $x=4$ is 8 square units
6. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is

1) $2(\pi-2)$
2) $(\pi-2)$
3) $2 \pi-1$
4) $2(\pi+2)$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The area of the shaded region is area of the region bounded by the curve $y=\sqrt{4-x^{2}}$ and $y=2-x$, lines $x=0, x=2$ in the first quadrant.
Hence, the required area is

$$
\begin{aligned}
A & =\int_{0}^{2} \sqrt{4-x^{2}}-(2-x) d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)-2 x+\frac{x^{2}}{2}\right]_{0}^{2} \\
& =2 \sin ^{-1}(1)-4+2 \\
& =\pi-2
\end{aligned}
$$

Therefore, option 2 is correct
7. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is

1) $\frac{2}{3}$
2) $\frac{1}{3}$
3) $\frac{1}{4}$
4) $\frac{3}{4}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The point of intersection of the curve $y^{2}=4 x$ and the line $y=2 x$

$$
\begin{aligned}
(2 x)^{2} & =4 x \\
4 x^{2} & =4 x \\
x(x-1) & =0 \\
x & =0 \text { or } x=1
\end{aligned}
$$

The area of the shaded region is the area of the region bounded by the curves $y^{2}=4 x$ and the line $y=2 x$, lines $x=0, x=1$ and x - axis in the first quadrant.
Hence, the required area is

$$
\begin{aligned}
A & =\int_{0}^{1}(2 \sqrt{x}-2 x) d x \\
& =2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =2\left(\frac{2}{3}-\frac{1}{2}\right) \\
& =2\left(\frac{1}{6}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, option 2 is correct

Miscellaneous Exercise -8

1. (i) Find the area under the curve $y=x^{2}$, the lines $x=1, x=2$ and the x-axis.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the region bounded by the curve $y=x^{2}$, the lines $x=1, x=2$ and the x-axis in the first quadrant.

Hence, the required area is $A=\int_{1}^{2} x^{2} d x$

$$
\begin{aligned}
A & =\int_{1}^{2} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{1}^{2} \quad \square x^{n} d x=\frac{x^{n+1}}{n+1} ; n \neq-1 \\
& =\frac{1}{3}(8-1) \\
& =\frac{7}{3} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{2}$ and the lines $x=1, x=2$ and the x-axis in the first quadrant is $\frac{7}{3}$ square units
(ii) Find the area under the curve $y=x^{4}$, the lines $x=1, x=5$ and the x-axis.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the region bounded by the curve $y=x^{4}$, the lines $x=1, x=5$ and the x-axis in the first quadrant.

Hence, the required area is $A=\int_{1}^{5} x^{4} d x$

$$
\begin{aligned}
A & =\int_{1}^{5} x^{4} d x \\
& =\left[\frac{x^{5}}{5}\right]_{1}^{5} \quad\left\lceil x^{n} d x=\frac{x^{n+1}}{n+1} ; n \neq-1\right. \\
& =\frac{1}{5}(3125-1) \\
& =624.8 \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{4}$ and the lines $x=1, x=5$ and the x - axis in the first quadrant is 624.8 square units
2. Find the area between the curves $y=x$ and $y=x^{2}$.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by two curves $y=f(x)$ and $y=g(x)$ the lines $x=a, x=b$ is $\int_{a}^{b}|f(x)-g(x)| d x$.

The point of intersection of curve $y=x^{2}$ and the line $y=x$

$$
\begin{aligned}
x & =x^{2} \\
x^{2}-x & =0 \\
x(x-1) & =0 \\
x & =0 \text { or } x=1
\end{aligned}
$$

The area of the shaded region is the region bounded by the curve $y=x^{2}$, the lines $y=x, x=0, x=1$.

Hence, the required area is $A=\int_{0}^{1}\left(x-x^{2}\right) d x$

$$
\begin{aligned}
A & =\int_{0}^{1}\left(x-x^{2}\right) d x \\
& =\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\left(\frac{1}{2}-\frac{1}{3}\right) \\
& =\frac{1}{6} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{2}$ and the line $y=x$ is $\frac{1}{6}$ square units
3. Find the area of the region lying in the first quadrant bounded by $y=4 x^{2}$, lines $y=1, y=4$ and the y-axis .

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $x=g(y)$, lines $y=a, y=b$ and $y-$ axis in the first quadrant is defined as $\int_{a}^{b} g(y) d y$
The area of the shaded region is the region bounded by the curve $y=4 x^{2}$, the lines $y=1, y=4$ and the y-axis in the first quadrant.
Hence, the required area is $A=\frac{1}{2} \int_{1}^{4} \sqrt{y} d y$

$$
\begin{aligned}
A & =\frac{1}{2} \int_{1}^{4} \sqrt{y} d y \\
& =\frac{1}{2}\left(\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right)_{1}^{4} \\
& =\frac{1}{2}\left(\frac{2}{3}\right)(8-1) \\
& =\frac{7}{3}
\end{aligned}
$$

The area of the shaded region is the region bounded by the curve $y=4 x^{2}$, the lines $y=1, y=4$ and the y-axis in the first quadrant. $\frac{7}{3}$ square units
4. Sketch the graph of $y=|x+3|$, and evaluate $\int_{-6}^{0}|x+3| d x$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The given equation $y=|x+3|$ can be rewrite as below

$$
y= \begin{cases}x+3 & x>-3 \\ -(x+3) & x<-3\end{cases}
$$

Hence,

$$
\begin{aligned}
\int_{-6}^{0}|x+3| d x & =\left|\int_{-6}^{-3}(x+3) d x-\int_{-3}^{0}(x+3) d x\right| \\
& =\left|\left(\frac{x^{2}}{2}+3 x\right)_{-6}^{-3}-\left(\frac{x^{2}}{2}+3 x\right)_{-3}^{0}\right| \\
& =\left|\frac{9}{2}-9-\frac{36}{2}+18+\frac{9}{2}-9\right| \\
& =9
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=|x+3|$ between the lines $x=-6, x=0$ above the $x-$ axis is 9 square units
5. Find the area bounded by the curve $y=\sin x$ between the lines $x=0$ and $x=2 \pi$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is 2 times the region bounded by the curve $y=\sin x$, the lines $x=0, x=\pi$ and the x - axis in the first quadrant.

Hence, the required area is $A=2\left(\int_{0}^{\pi} \sin x d x\right)$

$$
\begin{aligned}
A & =2\left(\int_{0}^{\pi} \sin x d x\right) \\
& =2(-\cos x)_{0}^{\pi} \\
& =2(1+1) \\
& =4
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=\sin x$ between the lines $x=0, x=2 \pi$ is 4 square units
6. Find the area of the region enclosed between the curves $y^{2}=4 a x$ and the line $y=m x$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the

Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.
The curve $y^{2}=4 a x$ and the line $y=m x$ intersect:

$$
\begin{aligned}
(m x)^{2} & =4 a x \\
m^{2} x^{2} & =4 a x \\
m^{2} x & =4 a \\
x & =\frac{4 a}{m^{2}}
\end{aligned}
$$

The area of the shaded region is the area of the region bounded between the curve $y^{2}=4 a x$ and the line $y=m x$ is sum of the following regions
Hence, the required area is

$$
\begin{aligned}
A & =\int_{0}^{\frac{4 a}{m^{2}}} 2 \sqrt{a x}-m x \\
& =2 \sqrt{a}\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)_{0}^{\frac{4 a}{m^{2}}}-m\left(\frac{x^{2}}{2}\right)_{0}^{\frac{4 a}{m^{2}}} \\
& =2 \sqrt{a}\left(\frac{2}{3}\right)\left(\frac{8 a^{\frac{3}{2}}}{m^{3}}\right)-m\left(\frac{8 a^{2}}{m^{4}}\right) \\
& =\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}} \\
& =\frac{8 a^{2}}{3 m^{3}}
\end{aligned}
$$

Therefore, the enclosed between the curves $y^{2}=4 a x$ and the line $y=m x$ is $\frac{8 a^{2}}{3 m^{3}}$ square units
7. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

Points of intersection of the curve $4 y=3 x^{2}$ and the line $2 y=3 x+12$

$$
\begin{aligned}
3 x^{2} & =2(3 x+12) \\
3 x^{2}-6 x-24 & =0 \\
x^{2}-2 x-8 & =0 \\
x^{2}-4 x+2 x-8 & =0 \\
x(x-4)+2(x-4) & =0 \\
(x+2)(x-4) & =0
\end{aligned}
$$

It implies that $x=-2, x=4$

The area of the shaded region is two times the area of the region bounded by the curves $y=\frac{3 x^{2}}{4}$, the lines $y=\frac{3 x+12}{2}, x=-2, x=4$.
Hence, the required area is

$$
\begin{aligned}
A & =\int_{-2}^{4}\left(\frac{3 x^{2}}{4}-\frac{3 x+12}{2}\right) d x \\
& =\frac{3}{4} \int_{-2}^{4}\left(x^{2}-2 x-8\right) d x \\
& =\frac{3}{4}\left(\frac{x^{3}}{3}-x^{2}-8 x\right)_{-2}^{4} \\
& =\frac{3}{4}\left(\frac{64}{3}-16-32+\frac{8}{3}+4-16\right) \\
& =\left|\frac{3}{4}\left(\frac{72}{3}-60\right)\right| \\
& =27
\end{aligned}
$$

Therefore, the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$ is 27 square units
8. Find the area of the smallest region in the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The area of the shaded region is the region between the curves $y=\frac{2}{3} \sqrt{9-x^{2}}$, $y=2\left(\frac{3-x}{3}\right)$ and the lines $x=0, x=3$

Hence, the area of the shaded region is $A=\frac{2}{3} \int_{0}^{3}\left(\sqrt{9-x^{2}}-(3-x)\right) d x$

$$
\begin{aligned}
A & =\frac{2}{3} \int_{0}^{3}\left(\sqrt{9-x^{2}}-(3-x)\right) d x \\
& =\frac{2}{3}\left[\frac{x}{2} \sqrt{9-x^{2}}-\frac{9}{2} \sin ^{-1} \frac{x}{3}-3 x+\frac{x^{2}}{2}\right]_{0}^{3} \\
& =\frac{2}{3}\left[-\frac{9}{2}\left(\frac{\pi}{2}\right)-9+\frac{9}{2}\right] \\
& =\frac{2}{3}\left(\frac{9}{2}\right)\left(\frac{\pi}{2}-1\right) \\
& =\frac{3}{2}(\pi-2)
\end{aligned}
$$

Therefore, the area of the smallest region in the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$ is $\frac{3}{2}(\pi-2)$ square units
9. Find the area of the smallest region in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The area of the shaded region is the region between the curves $y=\frac{b}{a} \sqrt{a^{2}-x^{2}}$ and the line $y=\frac{b}{a}(a-x)$

Hence, the area of the shaded region is $A=\frac{b}{a} \int_{0}^{3}\left(\sqrt{a^{2}-x^{2}}-(a-x)\right) d x$

$$
\begin{aligned}
A & =\frac{b}{a} \int_{0}^{3}\left(\sqrt{a^{2}-x^{2}}-(a-x)\right) d x \\
& =\frac{b}{a}\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}-\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}-a x+\frac{x^{2}}{2}\right]_{0}^{a} \\
& =\frac{b}{a}\left[-\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-a^{2}+\frac{a^{2}}{2}\right] \\
& =\frac{b}{a}\left(\frac{a^{2}}{2}\right)\left(\frac{\pi}{2}-1\right) \\
& =\frac{a b}{4}(\pi-2)
\end{aligned}
$$

Therefore, the area of the smallest region in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$ is $\frac{a b}{4}(\pi-2)$ square units
10. Find the area bounded by the curve $x^{2}=y$ and the line $y=x+2$ and $x-$ axis.

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

Points of intersection of the curve $x^{2}=y$ and the line $y=x+2$

$$
\begin{aligned}
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
x^{2}-2 x+x-2 & =0 \\
x(x-2)+1(x-2) & =0 \\
(x+1)(x-2) & =0
\end{aligned}
$$

Hence, the points of intersection of both curve and the line are $x=-1, x=2$

The area of the shaded region is the sum of the areas of the region bounded by the curve $y=x+2$, lines $x=-2, x=-1$ and x - axis and the area of the region bounded by the curves $x^{2}=y$, the lines $x=-1, x=0$ and $x-$ axis in the second quadrant.

Hence, the required area is $A=\int_{-2}^{1}(x+2) d x+\int_{-1}^{0} x^{2} d x$

$$
\begin{aligned}
A & =\int_{-2}^{1}(x+2) d x+\int_{-1}^{0} x^{2} d x \\
& =\left(\frac{x^{2}}{2}+2 x\right)_{-2}^{-1}+\left[\frac{x^{3}}{3}\right]_{-1}^{0} \\
& =\left(\frac{1}{2}-2-2+4+\frac{1}{3}\right) \\
& =\left(\frac{5}{6}\right) \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $x^{2}=y$ the line $y=x+2$ and $x-$ axis is $\frac{5}{6}$ square units
11. Using the method of integration, find the area bounded by the curve $|x|+|y|=1$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The area of the shaded region is four times the area of the triangle in the first quadrant Hence, the required area is $A=4 \int_{0}^{1}(x+1) d x$

$$
\begin{aligned}
A & =4 \int_{0}^{1}(-x+1) d x \\
& =4\left(-\frac{x^{2}}{2}+x\right)_{0}^{1} \\
& =4\left(-\frac{1}{2}+1\right) \\
& =4\left(\frac{1}{2}\right) \\
& =2 \text { square units }
\end{aligned}
$$

Therefore, the area bounded by the curve $|x|+|y|=1$ is 2 square units
12. Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The area of the shaded region is two times the area of the region bounded by the line $y=x^{2}$ and the line $y=x$ in the first quadrant
Hence, the required area is $A=2 \int_{0}^{1}\left(x^{2}-x\right) d x$

$$
\begin{aligned}
A & =2 \int_{0}^{1}\left(x^{2}-x\right) d x \\
& =2\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =2\left(\frac{1}{3}-\frac{1}{2}\right) \\
& =\frac{1}{3} \text { square units }
\end{aligned}
$$

Therefore the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$ is $\frac{1}{3}$ square units
13. Using the method of integration, find the area of the triangle formed by the points $A(2,0), B(4,5), C(6,3)$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The equations of the sides of the triangle are as below
Equation of $A B$ is $y=\frac{5}{2}(x-2)$
Equation of $B C$ is $y=-x+9$
Equation of $C A$ is $y=\frac{3}{4}(x-2)$

The area of the triangle is sum of the following areas
(iii) The area of the region between the lines $A B, A C, x=2, x=4$
(iv) The area of the region between the lines $B C, A C, x=4, x=6$

Hence, the area of the triangle is

$$
\begin{aligned}
A & =\int_{2}^{4}(A B-A C) d x+\int_{4}^{6}(B C-A C) d x \\
& =\int_{2}^{4}\left(\frac{5}{2}(x-2)-\frac{3}{4}(x-2)\right) d x+\int_{4}^{6}\left((-x+9)-\frac{3}{4}(x-2)\right) d x \\
& =\frac{5}{2} \int_{2}^{4}(x-2) d x-\frac{3}{4} \int_{2}^{6}(x-2) d x+\int_{4}^{6}(-x+9) d x \\
& =\frac{5}{2}\left(\frac{x^{2}}{2}-2 x\right)_{2}^{4}-\frac{3}{4}\left(\frac{x^{2}}{2}-2 x\right)_{2}^{6}+\left(-\frac{x^{2}}{2}+9 x\right)_{4}^{6}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5}{2}(2)-\frac{3}{4}(8)+(-18+54+8-36) \\
& =5-6+8 \\
& =7
\end{aligned}
$$

Therefore, the area of the triangle formed by the points $A(2,0), B(4,5), C(6,3)$ is 7 square units.
14. Using the method of integration find the area of the region bounded by the lines $2 x+y=4,3 x-2 y=6, x-3 y+5=0$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The vertices of triangle are
Equation of $A B$ is $y=-2 x+4$
Equation of $B C$ is $y=\frac{x+5}{3}$
Equation of $C A$ is $y=\frac{3 x-6}{2}$
The area of the triangle is sum of the following areas
(i) The area of the region between the lines $A B, B C, x=1, x=2$
(ii) The area of the region between the lines $B C, A C, x=2, x=4$

Hence, the area of the triangle is

$$
\begin{aligned}
A & =\int_{1}^{2}(B C-A B) d x+\int_{2}^{4}(B C-A C) d x \\
& =\int_{1}^{2}\left(\frac{1}{3}(x+5)-(-2 x+4)\right) d x+\int_{2}^{4}\left(\frac{1}{3}(x+5)-\left(\frac{3 x-6}{2}\right)\right) d x \\
& =\frac{1}{3} \int_{1}^{4}(x+5) d x+\int_{1}^{2}(2 x-4) d x-\frac{3}{2} \int_{2}^{4}(x-2) d x \\
& =\frac{1}{3}\left(\frac{x^{2}}{2}+5 x\right)_{1}^{4}+\left(x^{2}-4 x\right)_{1}^{2}-\frac{3}{2}\left(\frac{x^{2}}{2}-2 x\right)_{2}^{4} \\
& =\frac{1}{3}\left(28-\frac{11}{2}\right)+(-4+3)-\frac{3}{2}(2) \\
& =\frac{15}{2}-1-3 \\
& =\frac{7}{2}
\end{aligned}
$$

Therefore, the area of the region bounded by the lines $2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$ is $\frac{7}{2}$ square units
15. Find the area of the region $\left\{(x, y): y^{2} \leq 4 x\right.$ and $\left.4 x^{2}+4 y^{2} \leq 9\right\}$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

Point of intersection of $y^{2}=4 x, 4 x^{2}+4 y^{2}=9$

$$
\begin{aligned}
4 x^{2}+4(4 x) & =9 \\
4 x^{2}+16 x-9 & =0 \\
4 x^{2}+18 x-2 x-9 & =0 \\
2 x(2 x+9)-1(2 x+9) & =0 \\
(2 x-1)(2 x+9) & =0
\end{aligned}
$$

Observing the figure both curves intersect at $x=\frac{1}{2}$
The area of the shaded region is sum of the following areas
(i) Two times the area of the region bounded by the curve $y^{2}=4 x$, lines $x=0, x=\frac{1}{2}$ and x-axis in the first quadrant.
(ii) Two times the area of the region bounded by the curve $4 x^{2}+4 y^{2}=9$, lines $x=\frac{1}{2}, x=\frac{3}{2}$ and $x-$ axis in the first quadrant.

Hence, the area of the shaded region is $A=2\left[\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9-4 x^{2}} d x\right]$

$$
\begin{aligned}
A & =2\left[\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9-4 x^{2}} d x\right] \\
& =2\left[\int_{0}^{\frac{1}{2}} 2 x^{\frac{1}{2}} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{3^{2}-(2 x)^{2}} d x\right] \\
& =2\left[2\left(\frac{2}{3} x^{\frac{3}{2}}\right)_{0}^{\frac{1}{2}}+\frac{1}{4}\left(\frac{2 x}{2} \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{2 x}{3}\right)\right)_{\frac{1}{2}}^{\frac{3}{2}}\right] \\
& =2\left[2\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+\frac{1}{4}\left(\frac{9}{2}\left(\frac{\pi}{2}\right)-\frac{1}{2} 2 \sqrt{2}-\frac{9}{2} \sin ^{-1} \frac{1}{3}\right)\right] \\
& =2\left(\frac{2 \sqrt{2}}{3}+\frac{9 \pi}{16}-\sqrt{2}-\frac{9}{8} \sin ^{-} \frac{1}{3}\right) \\
& =\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{1}{3 \sqrt{2}}
\end{aligned}
$$

Therefore, the area of the region $\left\{(x, y): y^{2} \leq 4 x\right.$ and $\left.4 x^{2}+4 y^{2} \leq 9\right\}$ is

$$
\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{1}{3 \sqrt{2}}
$$

16. Area bounded by the curve $y=x^{3}$, the x - axis and ordinates $x=-2$ and $x=1$ is in square units
2) -9
3) $-\frac{15}{4}$
4) $\frac{15}{4}$
5) $\frac{17}{4}$

Solution:
The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is sum of areas of the regions bounded by the curve $y=x^{3}$, the line $x=0, x=1$ and x - axis in the first quadrant and bounded by the curve $y=-x^{3}$, the line $x=0, x=-2$ and x - axis in the third quadrant

Hence, the required area is $A=\int_{-2}^{0}-x^{3} d x+\int_{0}^{1} x^{3} d x$

$$
\begin{aligned}
A & =\int_{-2}^{0}-x^{3} d x+\int_{0}^{1} x^{3} d x \\
& =\left(-\frac{x^{4}}{4}\right)_{-2}^{0}+\left(\frac{x^{4}}{4}\right)_{0}^{1} \\
& =\frac{16}{4}+\frac{1}{4} \\
& =\frac{17}{4} \text { square units }
\end{aligned}
$$

Therefore, the option 4 is correct
17. Area bounded by the curve $y=x|x|, x-$ axis and the ordinates $x=-1$ and $x=1$ is given by in square units.
2) 0
2) $\frac{1}{3}$
3) $\frac{2}{3}$
4) $\frac{4}{3}$

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The given equation of the curve $y=x|x|$ can be rewrite as

$$
y= \begin{cases}x^{2} & x \geq 0 \\ -x^{2} & x<0\end{cases}
$$

The area of the shaded region is two times the area of the region bounded by the curve $y=x^{2}$, the line $x=0, x=1$ and x-axis.

Hence, the required area is $A=2 \int_{0}^{1} x^{2} d x$

$$
\begin{aligned}
A & =2 \int_{0}^{1} x^{2} d x \\
& =2\left(\frac{x^{3}}{3}\right)_{0}^{1} \\
& =\frac{2}{3} \text { square units }
\end{aligned}
$$

Therefore, the option 3 is correct.
18. The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$

1) $\frac{4}{3}(4 \pi-\sqrt{3})$
2) $\frac{4}{3}(4 \pi+\sqrt{3})$
3) $\frac{4}{3}(8 \pi-\sqrt{3})$
4) $\frac{4}{3}(8 \pi+\sqrt{3})$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$
The points of intersection of the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$

$$
\begin{array}{r}
x^{2}+6 x-16=0 \\
x^{2}+8 x-2 x-16=0 \\
x(x+8)-2(x+8)=0 \\
(x-2)(x+8)=0
\end{array}
$$

It implies that $x=2$ or $x=-8$
Observing the graph, the point of intersection of circle and parabola is $x=2$
The area of the shaded region is sum of the area of the semicircle $x^{2}+y^{2}=16$ and two times the area of the region bounded by the circle $y=\sqrt{16-x^{2}}$, parabola $y=\sqrt{6 x}$, the lines $x=0, x=2, x-$ axis in the first quadrant.

Hence, the required area is $A=8 \pi+2 \int_{0}^{2} \sqrt{16-x^{2}}-\sqrt{6 x} d x$

$$
\begin{aligned}
A & =8 \pi+2 \int_{0}^{2} \sqrt{16-x^{2}}-\sqrt{6 x} d x \\
& =8 \pi+2\left(\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)-\sqrt{6}\left(\frac{2}{3}\right) x^{\frac{3}{2}}\right)_{0}^{2} \\
& =8 \pi+2\left(\sqrt{12}+8 \cdot \frac{\pi}{6}-\sqrt{6}\left(\frac{2}{3}\right) 2 \sqrt{2}\right) \\
& =8 \pi+2\left(2 \sqrt{3}+\frac{4 \pi}{3}-\frac{8 \sqrt{3}}{3}\right) \\
& =2\left(\frac{16 \pi}{3}-\frac{2 \sqrt{3}}{3}\right) \\
& =\frac{4}{3}(8 \pi-\sqrt{3})
\end{aligned}
$$

Therefore, the option 3 is correct.
19. The area bounded by the y - axis, $y=\cos x, y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$

1) $2(\sqrt{2}-1)$
2) $(\sqrt{2}-1)$
3) $(\sqrt{2}+1)$
4) $\sqrt{2}$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The area of the shaded region is the area of the region between the two curves $y=\sin x$ and $y=\cos x$, lines $x=0, x=\frac{\pi}{4}$ in the first quadrant.

Hence, the required area is $A=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x$

$$
\begin{aligned}
A & =\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x \\
& =(\sin x+\cos x)_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-1 \\
& =(\sqrt{2}-1) \text { square units }
\end{aligned}
$$

Therefore, the option 2 is correct.

