Chapter 2: Relations and Functions

Miscellaneous Exercises

Question 1. The relation f is defined by $f(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right.$
The relation g is defined by $g(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{array}\right.$. Show that f is a function and g is not a function.

Solution : Here, the relation f is defined as $f(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right.$.
It is observed that for,
$0 \leq x<3, \quad f(x)=x^{2}$
$3<x \leq 10, \quad f(x)=3 x$
Also, at $x=3, f(x)=3^{2}=9$
Or $f(x)=3 \times 3=9$ that is, at $x=3, f(x)=9$.
Thus, for $0 \leq x \leq 10$, the images of $f(x)$ are unique.
Therefore, the given relation is a function.
The relation g is defined as $g(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{array}\right.$.
It can be observed that for, $x=2, g(x)=2^{2}=4$ and $g(x)=3 \times 2=6$.
Thus, element 2 of the domain of the relation g corresponds to two different images that is, 4 and 6 .

Therefore, this relation is not a function.

Question 2. If $f(x)=x^{2}$, find. $\frac{f(1.1)-f(1)}{(1.1-1)}$
Solution : Given that, $f(x)=x^{2}$.
Now, $\frac{f(1.1)-f(1)}{(1.1-1)}=\frac{(1.1)^{2}-(1)^{2}}{(1.1-1)}$
Simplify the squares,
$=\frac{1.21-1}{0.1}$
Subtract the numbers,
$=\frac{0.21}{0.1}$
Divide the numbers,
$=2.1$
Therefore, $\frac{f(1.1)-f(1)}{(1.1-1)}=2.1$.

Question 3. Find the domain of the function $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
Solution : Here, the function is $f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}$.
Simplify $x^{2}-8 x+12$,

$$
f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}=\frac{x^{2}+2 x+1}{(x-6)(x-2)}
$$

It can be observed that function f is defined for all real numbers except at $x=6$ and $x=2$.
Therefore, the domain of f is $\mathbf{R}-\{2,6\}$.

Question 4. Find the domain and the range of the real function f defined by $f(x)=\sqrt{(x-1)}$
Solution : Here, the real function is $f(x)=\sqrt{(x-1)}$.
It can be observed that $\sqrt{(x-1)}$ is defined for $x \geq 1$.
Thus, the domain of f is the set of all real numbers greater than 0 equal to 1 .
That is, the domain of $f=[1, \infty)$.
As $x \geq 1 \Rightarrow(x-1) \geq 0 \Rightarrow \sqrt{(x-1)} \geq 0$
Therefore, the range of f is the set of all real numbers greater than or equal to 0 . Therefore, the range of $f=[0, \infty)$.

Question 5. Find the domain and the range of the real function f defined by $f(x)=|x-1|$.

Solution : Here, the real function is $f(x)=|x-1|$.
It is clear that $|x-1|$ is defined for all real numbers.
Thus, Domain of $f=\mathbf{R}$.
And for $x \in \mathbf{R},|x-1|$ assumes all real numbers.
Therefore, the range of f is the set of all non-negative real numbers.

Question 6. Let $f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}$ be a function from \mathbf{R} into \mathbf{R}. Determine the range of f.
Solution : Here,

$$
f=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in \mathbf{R}\right\}=\left\{(0,0),\left(\pm 0.5, \frac{1}{5}\right),\left(\pm 1, \frac{1}{2}\right),\left(\pm 1.5, \frac{9}{13}\right),\left(\pm 2, \frac{4}{5}\right),\left(3, \frac{9}{10}\right),\left(4, \frac{16}{17}\right), \ldots\right\}
$$

The range of f is the set of all second elements.
It can be seen that all these elements are greater than or equal to 0 but less than 1 . Therefore, range of $f=[0,1)$.

Question 7. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined, respectively by $f(x)=x+1, g(x)=2 x-3$. Find $f+g, f-g$ and $\frac{f}{g}$.

Solution : Here, $f, g: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x+1, g(x)=2 x-3$.
$(f+g)(x)=f(x)+g(x)=(x+1)+(2 x-3)=3 x-2$
Thus, $(f+g)(x)=3 x-2$
$(f-g)(x)=f(x)-g(x)=(x+1)-(2 x-3)=x+1-2 x+3=-x+4$
Thus, $(f-g)(x)=-x+4$
Now, $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbf{R}$
$\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, 2 x-3 \neq 0$ or $2 x \neq 3$
Therefore, $\left(\frac{f}{g}\right)(x)=\frac{x+1}{2 x-3}, x \neq \frac{3}{2}$

Question 8. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from \mathbf{Z} to \mathbf{Z} defined by $f(x)=a x+b$, for some integers a, b. Determine a, b.

Solution : Given that, $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ and $f(x)=a x+b$.
Consider the pairs $(1,1)$ and $(0,-1)$,
$(1,1) \in f \Rightarrow f(1)=1 \Rightarrow a \times 1+b=1 \Rightarrow a+b=1$
$(0,-1) \in f \Rightarrow f(0)=-1 \Rightarrow a \times 0+b=-1 \Rightarrow b=-1$
Substitute $b=-1$ in $a+b=1$,
That is, $a+(-1)=1 \Rightarrow a=1+1=2$.
Therefore, the respective values of a and b are 2 and -1 .

Question 9. Let R be a relation from \mathbf{N} to \mathbf{N} defined by $\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$. Are the following true?
(i) $(a, a) \in \mathrm{R}$, for all $a \in \mathbf{N}$
(ii) $(a, b) \in \mathrm{R}$, implies $(b, a) \in \mathrm{R}$
(iii) $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$.

Justify your answer in each case.
Solution : Given that, $\mathrm{R}=\left\{(a, b): a, b \in \mathbf{N}\right.$ and $\left.a=b^{2}\right\}$.
(i) It can be observed that $2 \in \mathbf{N}$; but $2 \neq 2^{2}=4$.

Thus, the statement " $(a, a) \in \mathbf{R}$, for all $a \in \mathbf{N}$ " is not true.
(ii) It can be observed that $(9,3) \in \mathbf{N}$ because $9,3 \in \mathbf{N}$ and $9=3^{2}$.

Then, $3 \neq 9^{2}=81$
Thus, $(3,9) \notin \mathbf{N}$
Therefore, the statement " $(a, b) \in \mathrm{R}$, implies $(b, a) \in \mathrm{R}$ " is not true.
(iii) It can be observed that $(9,3) \in \mathbf{R},(16,4) \in \mathrm{R}$ because $9,3,16,4 \in \mathbf{N}$ and $9=3^{2}$ also $16=4^{2}$.

Now, $9 \neq 4^{2}=16$; therefore, $(9,4) \notin \mathbf{N}$
Therefore, the statement " $(a, b) \in \mathrm{R},(b, c) \in \mathrm{R}$ implies $(a, c) \in \mathrm{R}$ " is not true.

Question 10. Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\}$ and $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ Are the following true?
(i) f is a relation from A to B .
(ii) f is a function from A to B .

Justify your answer in each case.
Solution : Here, $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,5,9,11,15,16\}$.
Now,
$\mathrm{A} \times \mathrm{B}=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11)$,
$(2,15),(2,16),(3,1),(3,5),(3,9),(3,11),(3,15),(3,16),(4,1),(4,5),(4,9)$, ,
$(4,11),(4,15),(4,16)\}$
It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$.
(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

It is seen that f is a subset of $\mathrm{A} \times \mathrm{B}$.
Therefore, f is a relation from A to B .
(ii) Because the same first element that is, 2 corresponds to two different images 9 and 11, relation f is not a function.

Question 11. Let f be the subset of $\mathbf{Z} \times \mathbf{Z}$ defined by $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$. Is f a function from \mathbf{Z} to \mathbf{Z} ? justify your answer.

Solution : Here, the relation f is defined as $f=\{(a b, a+b): a, b \in \mathbf{Z}\}$.
It is known that a relation f from a set A to B is said to be a function if every element of set A has unique images in set B.
Since $2,6,-2,-6 \in \mathbf{Z},(2 \times 6,2+6),(-2 \times-6,-2+(-6)) \in f$
That is, $(12,8),(12,-8) \in f$
It can be observed that the same first element 12 corresponds to two different images 8 and -8 .
Therefore, relation f is not a function.

Question 12. Let $\mathrm{A}=\{9,10,11,12,13\}$ and let $f: \mathrm{A} \rightarrow \mathbf{N}$ be defined by $f(n)=$ the highest prime factor of n. Find the range of f. Learn
Solution : Here, $\mathrm{A}=\{9,10,11,12,13\}$ and $f: \mathrm{A} \rightarrow \mathbf{N}$ is defined as $f(n)=$ The highest prime factor of n.

Determine the prime factor of each number,
Prime factor of $9=3$
Prime factors of $10=2,5$
Prime factor of $11=11$
Prime factors of $12=2,3$
Prime factor of $13=13$
Determine the highest prime factor of each number,
$f(9)=$ The highest prime factor of $9=3$
$f(10)=$ The highest prime factor of $10=5$
$f(11)=$ The highest prime factor of $11=11$
$f(12)=$ The highest prime factor of $12=3$
$f(13)=$ The highest prime factor of $13=13$
The range of f is the set of all $f(n)$, where $n \in \mathrm{~A}$.
Therefore, Range of $f=\{3,5,11,13\}$.

