Chapter 5: Continuity and differentiability.

Exercise 5. Miscellaneous

1. Differentiate the function w.r.t x

$$(3x^2-9x+5)^9$$

Solution:

Let
$$y = (3x^2 - 9x + 5)^9$$

Using chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} = \left(3x^2 - 9x + 5\right)^9$$

$$=9(3x^2-9x+5)^8 \cdot \frac{d}{dx}(3x^2-9x+5)$$

$$=9(3x^2-9x+5)^8.(6x-9)$$

$$=9(3x^2-9x+5)^8.3(2x-3)$$

$$= 27(3x^2 - 9x + 5)^8 \cdot (2x - 3)$$

2. Differentiate the function w.r.t x

$$\sin^3 x + \cos^6 x$$

Let
$$y = \sin^3 x + \cos^6 x$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\sin^3 x \right) + \frac{d}{dx} \left(\cos^6 x \right)$$

$$=3\sin^2 x.\frac{d}{dx}(\sin x)+6\cos^5 x.\frac{d}{dx}(\cos x)$$

$$=3\sin^2 x \cos x + 6\cos^5 x \cdot (-\sin x)$$

$$= 3\sin x \cos x \left(\sin x - 2\cos^4 x\right)$$

3. Differentiate the function w.r.t x

$$\left(5x\right)^{3\cos 2x}$$

Solution:

Let
$$y = (5x)^{3\cos 2x}$$

Taking logarithm on both sides, we obtain

$$\log y = 3\cos 2x \log 5x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = 3\left[\log 5x.\frac{d}{dx}(\cos 2x) + \cos 2x.\frac{d}{dx}(\log 5x)\right]$$

$$\Rightarrow \frac{dy}{dx} = 3y \left[\log 5x \left(-\sin 2x \right) \cdot \frac{d}{dx} \left(2x \right) + \cos 2x \cdot \frac{1}{5x} \cdot \frac{d}{dx} \left(5x \right) \right]$$

$$\Rightarrow \frac{dy}{dx} = 3y \left[-2\sin x \log 5x + \frac{\cos 2x}{x} \right]$$

$$\Rightarrow \frac{dy}{dx} = 3y \left[\frac{3\cos 2x}{x} - 6\sin 2x \log 5x \right]$$

$$\therefore \frac{dy}{dx} = (5x)^{3\cos 2x} \left[\frac{3\cos 2x}{x} - 6\sin 2x \log 5x \right]$$

4. Differentiate the function w.r.t *x*

$$\sin^{-1}\left(x\sqrt{x}\right), \ 0 \le x \le 1$$

Solution:

Let
$$y = \sin^{-1}(x\sqrt{x})$$

Using chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx}\sin^{-1}\left(x\sqrt{x}\right)$$

$$= \frac{1}{\sqrt{1 - \left(x\sqrt{x}\right)^3}} \times \frac{d}{dx} \left(x\sqrt{x}\right)$$

$$= \frac{1}{\sqrt{1-x^3}} \times \frac{d}{dx} \left(x^{\frac{1}{2}} \right)$$

$$= \frac{1}{\sqrt{1-x^3}} \times \frac{3}{2} \cdot x^{\frac{1}{2}}$$

$$=\frac{3\sqrt{x}}{2\sqrt{1-x^3}}$$

$$=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}$$

5. Differentiate the function w.r.t x

$$\frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}}, -2 < x < 2$$

Solution:

$$Let y = \frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}}$$

By quotient rule, we obtain

$$\frac{dy}{dx} = \frac{\sqrt{2x+7} \frac{d}{dx} \left(\cos^{-1} \frac{x}{2}\right) - \left(\cos^{-1} \frac{x}{2}\right) \frac{d}{dx} \left(\sqrt{2x+7}\right)}{\left(\sqrt{2x+7}\right)^2}$$

$$\frac{\sqrt{2x+7} \left[\frac{-1}{\sqrt{1-\left(\frac{x}{2}\right)^2}} \frac{d}{dx} \left(\frac{x}{2}\right) \right] - \left(\cos^{-1}\frac{x}{2}\right) \frac{1}{2\sqrt{2x+7}} \cdot \frac{d}{dx} (2x+7)}{2x+7}$$

$$=\frac{\sqrt{2x+7}\frac{-1}{\sqrt{4-x^2}}-\left(\cos^{-1}\frac{x}{2}\right)\frac{2}{2\sqrt{2x+7}}}{2x+7}$$

$$= \frac{-\sqrt{2x+7}}{\sqrt{4-x^2(2x+7)}} - \frac{\cos^{-1}\frac{x}{2}}{\left(\sqrt{2x+7}\right)(2x+7)}$$

$$= -\left[\frac{1}{\sqrt{4 - x^2 \sqrt{2x + 7}}} + \frac{\cos^{-1} \frac{x}{2}}{(2x + 7)^{\frac{3}{2}}}\right]$$

6. Differentiate the function w.r.t x

$$\cot^{-1} \left[\frac{\sqrt{(1+\sin x)} + \sqrt{(1-\sin x)}}{\sqrt{(1+\sin x)} - \sqrt{(1-\sin x)}} \right], 0 < x < \frac{\pi}{2}$$

Let
$$y = \cot^{-1} \left[\frac{\sqrt{(1+\sin x)} + \sqrt{(1-\sin x)}}{\sqrt{(1+\sin x)} - \sqrt{(1-\sin x)}} \right]$$
....(1)

Then,
$$\left[\frac{\sqrt{(1+\sin x)} + \sqrt{(1-\sin x)}}{\sqrt{(1+\sin x)} - \sqrt{(1-\sin x)}} \right]$$

$$=\frac{\left(\sqrt{1+\sin x}+\sqrt{1-\sin x}\right)^2}{\left(\sqrt{1+\sin x}-\sqrt{1-\sin x}\right)\sqrt{1+\sin x}+\sqrt{1-\sin x}}$$

$$= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1+\sin x) - (1-\sin x)}}{(1+\sin x) - (1-\sin x)}$$

$$=\frac{2+2\sqrt{1-\sin^2 x}}{2\sin x}$$

$$=\frac{1+\cos x}{\sin x}$$

$$=\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}\cos\frac{x}{2}}$$

$$=\cot\frac{x}{2}$$

Therefore, equation (1) becomes

$$y = \cot^{-1} \left(\cot \frac{x}{2} \right)$$

$$\Rightarrow y = \frac{x}{2}$$

$$\therefore \frac{dy}{dx} = \frac{1}{2} \frac{d}{dx} (x)$$

$$\frac{dy}{dx} = \frac{1}{2}$$

7. Differentiate the function w.r.t x

$$(\log x)^{\log x}, x > 1$$

Solution:

Let
$$y = (\log x)^{\log x}$$

Taking logarithm on both sides, we obtain

$$\log y = \log x \cdot \log(\log x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx} \Big[\log x \cdot \log \Big(\log x \Big) \Big]$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \log(\log x) \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} \left[\log(\log x) \right]$$

$$\Rightarrow \frac{dy}{dx} = y \left[\log(\log x) \cdot \frac{1}{x} + \log x \cdot \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) \right]$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{1}{x} \log(\log x) + \frac{1}{x} \right]$$

$$\therefore \frac{dy}{dx} = \left(\log x\right)^{\log x} \left[\frac{1}{x} + \frac{\log(\log x)}{x} \right]$$

8. Differentiate the function w.r.t x cos(acos x + b sin x), for some constant a and b

Solution:

Let
$$y = \cos(a\cos x + b\sin x)$$

By using chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx}\cos(a\cos x + b\sin x)$$

$$\Rightarrow \frac{dy}{dx} = -\sin(a\cos x + b\sin x) \cdot \frac{d}{dx} (a\cos x + b\sin x)$$

$$= -\sin(a\cos x + b\sin x) \cdot \left[a(-\sin x) + b\cos x\right]$$

$$= (a\cos x + b\sin x)\sin(a\cos x + b\sin x)$$

9. Differentiate the function w.r.t x

$$\left(\sin x - \cos x\right)^{\left(\sin x - \cos x\right)}, \frac{\pi}{4} < x < \frac{3\pi}{4}$$

Let
$$y = (\sin x - \cos x)^{(\sin x - \cos x)}$$

Taking logarithm on both sides, we obtain

$$\log y = \log \left[\left(\sin x - \cos x \right)^{\left(\sin x - \cos x \right)} \right]$$

$$\Rightarrow \log y = (\sin x - \cos x) \log(\sin x - \cos x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dy}{dx} = \frac{d}{dx} \Big[\Big(\sin x - \cos x \Big) \cdot \log \Big(\sin x - \cos x \Big) \Big]$$

$$\frac{1}{y}\frac{dy}{dx} = \log(\sin x - \cos x) \cdot \frac{d}{dx}(\sin x - \cos x) + (\sin x - \cos x) \cdot \frac{d}{dx}\log(\sin x - \cos x)$$

$$\frac{1}{y}\frac{dy}{dx} = \log(\sin x - \cos x).(\cos x + \sin x) + (\sin x - \cos x).\frac{1}{(\sin x - \cos x)}\frac{d}{dx}(\sin x - \cos x)$$

$$\Rightarrow \frac{dy}{dx} = (\sin x - \cos x)^{(\sin x - \cos x)} \Big[(\cos x + \sin x) \cdot \log(\sin x - \cos x) + (\cos x + \sin x) \Big]$$

$$\therefore \frac{dy}{dx} = \left(\sin x - \cos x\right)^{(\sin x - \cos x)} \left(\cos x + \sin x\right) \left[1 + \log\left(\sin x - \cos x\right)\right]$$

10. Differentiate the function w.r.t x

$$x^{x} + x^{a} + a^{x} + a^{a}$$
, for such fixed $a > 0$ and $x > 0$

Let
$$y = x^x + x^a + a^x + a^a$$

Also, let
$$x^x = u$$
, $x^a = v$, $a^x = w$ and $a^a = s$

$$\therefore y = u + v + w + s$$

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + \frac{ds}{dx} \dots (1)$$

$$u = x^x$$

$$\Rightarrow \log u = \log x^x$$

$$\Rightarrow \log u = x \log x$$

Differentiating both side with respect to x we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x. \frac{d}{dx}(x) + x. \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log x \cdot 1 + x \cdot \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{x} \left[\log x + 1 \right] = x^{x} \left(1 + \log x \right) \dots (2)$$

$$v = x^a$$

$$\therefore \frac{dv}{dx} = \frac{d}{dx} (x^a)$$

$$\Rightarrow \frac{dv}{dx} = ax^{a-1}...(3)$$

$$w = a^{\lambda}$$

$$\Rightarrow \log w = \log a^x$$

$$\Rightarrow \log w = x \log a$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{w} \cdot \frac{dw}{dx} = \log a \cdot \frac{d}{dx} (x)$$

$$\Rightarrow \frac{dw}{dx} = w \log a$$

$$\Rightarrow \frac{dw}{dx} = a^x \log a \dots (4)$$

$$s = a^a$$

Since a is constant, a^a is also constant

$$\therefore \frac{ds}{dx} = 0....(5)$$

From 1,2,3,4 and 5, we obtain

$$\frac{dy}{dx} = x^{x} (1 + \log x) + ax^{a-1} + a^{x} \log a + 0$$

$$= x^{x} (1 + \log x) + ax^{a-1} + a^{x} \log a$$

11. Differentiate the function w.r.t x

$$x^{x^2-3} + (x-3)^{x^2}$$
, for $x > 3$

Solution:

Let
$$y = x^{x^2-3} + (x-3)^{x^2}$$

Also, let
$$u = x^{x^2-3}$$
 and $v = (x-3)^{x^2}$

$$\therefore y = u + v$$

Differentiating both sides with respect to x we obtain

$$\frac{dv}{dx} = \frac{du}{dx} + \frac{dv}{dx} \dots (1)$$

$$u = x^{x^2 - 3}$$

$$\therefore \log u = \log \left(x^{x^2 - 3} \right)$$

$$\log u = (x^2 - 3)\log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x \cdot \frac{d}{dx}(x^2 - 3) + (x^2 - 3) \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \log x \cdot 2x + \left(x^2 - 3\right) \cdot \frac{1}{3}$$

$$\Rightarrow \frac{du}{dx} = x^{x^2 - 3} \left[\frac{x^2 - 3}{x} + 2 \times \log x \right]$$

Also,

$$v = (x-3)^{x^2}$$

$$\therefore \log v = \log (x-3)^{x^2}$$

$$\Rightarrow \log v = x^2 \log(x-3)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \log(x-3)\frac{d}{dx}(x^2) + x^2\frac{d}{dx}\left[\log(x-3)\right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \log(x-3)2x + x^2 \cdot \frac{1}{x-3} \cdot \frac{d}{dx}(x-3)$$

$$\Rightarrow \frac{dv}{dx} = v \left[2x \log(x-3) + \frac{x^2}{x-3} \cdot 1 \right]$$

$$\Rightarrow \frac{dv}{dx} = (x-3)^{x^2} \left[\frac{x^2}{x-3} + 2x \log(x-3) \right]$$

Substituting the expression of $\frac{du}{dx}$ and $\frac{dv}{dx}$ in equation (1), we obtain

$$\frac{dy}{dx} = x^{x^2 - 3} \left[\frac{x^2 - 3}{x} + 2x \log x \right] + (x - 3)x^2 \left[\frac{x^2}{x - 3} + 2x \log(x - 3) \right]$$

12. Find
$$\frac{dy}{dx}$$
, if $y = 12(1-\cos t)$, $x = 10(t-\sin t)$, $\frac{\pi}{2} < t < \frac{\pi}{2}$

$$-\frac{\pi}{2} < t < \frac{\pi}{2}$$

Solution:

It is given that $y=12(1-\cos t)$, $x=10(t-\sin t)$

$$\therefore \frac{dx}{dt} = \frac{d}{dt} \Big[10 \Big(t - \sin t \Big) \Big] = 10 \frac{d}{dt} \Big(t - \sin t \Big) = 10 \Big(1 - \cos t \Big)$$

$$\frac{dy}{dx} = \frac{d}{dx} \Big[12 (1 - \cos t) \Big] = 12 \frac{d}{dt} (1 - \cos t) = 12 \cdot \Big[0 - (-\sin t) \Big] = 12 \sin t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{12\sin t}{10(1-\cos t)} = \frac{12.2\sin\frac{t}{2}.\cos\frac{t}{2}}{10.2\sin^2\frac{t}{2}} = \frac{6}{5}\cot\frac{t}{2}$$

13. Find
$$\frac{dy}{dx}$$
, if $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$, $-1 \le x \le 1$

Solution:

It is given that $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left[\sin^{-1} x + \sin^{-1} \sqrt{1 - x^2} \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left(\sin^{-1} x \right) + \frac{d}{dx} \left(\sin^{-1} \sqrt{1 - x^2} \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1(\sqrt{1 - x^2})}} \cdot \frac{d}{dx} \left(\sqrt{1 - x^2}\right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} + \frac{1}{x} \cdot \frac{1}{2\sqrt{1-x^2}} \frac{d}{dx} (1-x^2)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} + \frac{1}{2x\sqrt{1-x^2}}(-2x)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}}$$

$$\therefore \frac{dy}{dx} = 0$$

14. If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, for $-1 < x < 1$, prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$

It is given that, $x\sqrt{1+y} + y\sqrt{1+x} = 0$

$$x\sqrt{1+y} = -y\sqrt{1+x}$$

Squaring both sides, we obtain

$$x^2(1+y) = y^2(1+x)$$

$$\Rightarrow x^2 + x^2y = y^2 + xy^2$$

$$\Rightarrow x^2 - y^2 = xy^2 - x^2y$$

$$\Rightarrow x^2 - y^2 = xy(y - x)$$

$$\Rightarrow (x+y)(x-y) = xy(y-x)$$

$$\therefore x + y = -xy$$

$$\Rightarrow (1+x)y = -x$$

$$\Rightarrow y = \frac{-x}{(1+x)}$$

Differentiating both sides with respect to x, we obtain

$$y = \frac{-x}{\left(1+x\right)}$$

$$\frac{dy}{dx} = -\frac{(1+x)\frac{d}{dx}(x) - x\frac{d}{dx}(1+x)}{(1+x)^2} = -\frac{(1+x)-x}{(1+x)^2} = -\frac{1}{(1+x)^2}$$

Hence, proved

15. If
$$(x-a)^2 + (y-b)^2 = c^2$$
, for some $c > 0$, prove that
$$\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$
 is a constant

independent of a and b

It is given that, $(x-a)^2 + (y-b)^2 = c^2$

Differentiating both sides with respect to x, we obtain

$$\frac{d}{dx}\left[\left(x-a\right)^{2}\right] + \frac{d}{dx}\left[\left(y-b\right)^{2}\right] = \frac{d}{dx}\left(c^{2}\right)$$

$$\Rightarrow 2(x-a)\frac{d}{dx}(x-a) + 2(y-b)\frac{d}{dx}(y-b) = 0$$

$$\Rightarrow 2(x-a).1+2(y-b)\frac{dy}{dx}=0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-(x-a)}{y-b} \dots (1)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{-(x-a)}{y-b} \right]$$

$$=-\frac{\left[\left(y-b\right)\frac{d}{dx}(x-a)-\left(x-a\right)\frac{d}{dx}\left(y-b\right)\right]}{\left(y-b\right)^{2}}$$

$$=-\left[\frac{(y-b)-(x-a)\frac{dy}{dx}}{(y-b)^2}\right]$$

$$=-\left[\frac{(y-b)-(x-a)\left\{\frac{-(x-a)}{y-b}\right\}}{(y-b)^2}\right] \quad \text{[using (1)]}$$

$$= -\left[\frac{(y-b)^{2} + (x+a)^{2}}{(y-b)^{2}}\right]$$

$$\therefore \left[\frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2y}{dx^2}} \right]^{\frac{3}{2}} = \frac{\left[\left(1 + \frac{(x-a)^2}{(y-b)^2}\right) \right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3} \right]} = \frac{\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^2} \right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^3} \right]}$$

$$= -\frac{\left[\frac{c^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{(y-b)^{3}} = \frac{\frac{c^{2}}{(y-b)^{3}}}{-\frac{c^{2}}{(y-b)^{3}}}$$

= - c, which is constant and is independent of a and b

Hence, proved

16. If
$$\cos y = x \cos(a+y)$$
 with $\cos a \neq \pm 1$, prove that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$

Solution:

It is given that, $\cos y = x \cos(a + y)$

$$\therefore \frac{d}{dx} = \left[\cos y\right] = \frac{d}{dx} \left[x\cos\left(a+y\right)\right]$$

$$\Rightarrow$$
 $-\sin y \frac{dy}{dx} = \cos(a+y) \frac{d}{dx}(x) + x \cdot \frac{d}{dx} \left[\cos(a+y)\right]$

$$\Rightarrow$$
 $-\sin y = \frac{dy}{dx}\cos(a+y) + x.\left[-\sin(a+y)\right]\frac{dy}{dx}$

Since
$$\cos y = x \cos(a + y), x = \frac{\cos y}{\cos(a + y)}$$

Then, equation (1) reduces to
$$\left[\frac{\cos y}{\cos(a+y)}\sin(a+y)-\sin y\right]\frac{dy}{dx} = \cos(a+y)$$

$$\Rightarrow \left[\cos y.\sin(a+y) - \sin y.\cos(a+y)\right] \frac{dy}{dx} = \cos^2(a+y)$$

$$\Rightarrow \sin(a+y-y)\frac{dy}{dx} = \cos^2(a+b)$$

$$\Rightarrow \frac{dy}{dx} = \frac{\cos^2(a+b)}{\sin a}$$

Hence, proved

17. If
$$x = a(\cos t + t \sin t)$$
 and $y = a(\sin t - t \cos t)$, find $\frac{d^2y}{dx^2}$

Solution:

It is given that, $x = a(\cos t + t \sin t)$ and $y = a(\sin t - t \cos t)$

$$\therefore \frac{dx}{dt} = a \cdot \frac{d}{dt} \left(\cot t \sin t \right)$$

$$= a \left[-\sin t + \sin t \cdot \frac{d}{dt} (t) + t \cdot \frac{d}{dt} (\sin t) \right]$$

$$= a[-\sin t + \sin t + t\cos t] = at\cos t$$

$$\frac{dy}{dx} = a \cdot \frac{d}{dt} \left(\sin t - t \cos t \right)$$

$$= a \left[\cos t - \left\{ \cos t \cdot \frac{d}{dt}(t) + t \cdot \frac{d}{dt}(\cos t) \right\} \right]$$

$$= a \left[\cos t - \left\{ \cos t - t \sin t \right\} \right] = a t \sin t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{at\sin t}{at\cos t} = \tan t$$

Then,
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\tan t \right) = \sec^2 t \frac{dt}{dx}$$

$$= \sec^2 t \frac{1}{a t \cos t} \quad \left[\frac{dx}{dt} = at \cos t \Rightarrow \frac{dt}{dx} = \frac{1}{at \cos t} \right]$$

$$=\frac{\sec^3 t}{at}, 0 < t < \frac{\pi}{2}$$

18. If $f(x) = |x|^3$, show that f''(x) exists for all real x, and find it

Solution:

It is known that,
$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

Therefore, when $x \ge 0$, $f(x) = |x|^3 = x^3$

In this case, $f'(x) = 3x^2$ and hence, f''(x) = 6x

When
$$x < 0$$
, $f(x) = |x|^3 = (-x^3) = x^3$

In this case, $f'(x) = 3x^2$ and hence f''(x) = 6x

Thus, for $f(x) = |x|^3$, f''(x) exists for all real x and is given by, $f''(x) = \begin{cases} 6x, & \text{if } x \ge 0 \\ -6x, & \text{if } x < 0 \end{cases}$

19. Using mathematical induction prove that $\frac{d}{dx}(x^n) = nx^{n-1}$ for all positive integers n

Solution:

To prove: $P(n): \frac{d}{dx}(x^n) = nx^{n-1}$ for all positive integers n

For n = 1,

$$P(1): \frac{d}{dx}(x) = 1 = 1.x^{1-1}$$

$$\therefore p(n)$$
 is true for $n = 1$

Let p(k) is true for some positive integer k

That is,
$$p(k): \frac{d}{dx}(x^k) = kx^{k-1}$$

It is to be proved that p(k+1) is also true

Consider
$$\frac{d}{dx}(x^{k+1}) = \frac{d}{dx}(x.x^k)$$

$$x^k \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(x^k)$$

$$= x^k . 1 + x . k . x^{k-1}$$

$$= x^k + kx^k$$

$$=(k+1)x^k$$

$$=(k+1).x^{(k+1)-1}$$

Thus, P(k+1) is true whenever P(k) is true

Therefore, by the principal of mathematical induction, the statement P(n) is true for every

positive integer n

Hence, proved

20. Using the fact that $\sin(A+B) = \sin A \cos B + \cos A \sin B$ and the differentiation, obtain the sum formula for cosines

Solution:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

Differentiating both sides with respect to x, we obtain

$$\frac{d}{dx}\left[\sin\left(A+B\right)\right] = \frac{d}{dx}\left(\sin A\cos B\right) + \frac{d}{dx}\left(\cos A\sin B\right)$$

$$\Rightarrow \cos(A+B)\frac{d}{dx}(A+B) = \cos B\frac{d}{dx}(\sin A) + \sin A\frac{d}{dx}(\cos B) + \sin B\frac{d}{dx}(\cos A) + \cos A\frac{d}{dx}(\sin B)$$

$$\Rightarrow \cos(A+B)\frac{d}{dx}(A+B) = \cos B \cdot \cos A\frac{d}{dx} + \sin A(-\sin B)\frac{dB}{dx} + \sin B(-\sin A)\frac{dA}{dx} + \cos A\cos B\frac{dB}{dx}$$

$$\Rightarrow \cos(A+B)\left[\frac{dA}{dx} + \frac{dB}{dx}\right] = (\cos A\cos B - \sin A\sin B)\left[\frac{dA}{dx} + \frac{dB}{dx}\right]$$

$$\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$$

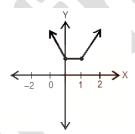
21. Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer

Solution:

Consider
$$f(x) = |x| + |x+1|$$

Since modulus function is everywhere continuous and sum of two continuous function is also continuous

Differentiability of f(x):Graph of f(x) shows that f(x) is everywhere derivable except possible at x = 0 and x = 1



At x = 0, Left hand derivative

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\left(|x| + |x - 1|\right) - (1)}{x} = \lim_{x \to 0^{-}} \frac{\left|(-x) - (x - 1)\right| - 1}{x} = \lim_{x \to 0^{-}} \frac{-2x}{x} = -2$$

Right hand derivative =

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{\left(|x| + |x - 1|\right) - (1)}{x} = \lim_{x \to 0^+} \frac{\left(-x\right) - \left(x - 1\right) - 1}{x} = \lim_{x \to 0^-} \frac{0}{x} = 0$$

Since $L.H.D \neq R.H.D f(x)$ is not derivable at x = 0

At x = 1

L.H.D

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\left(|x| + |x - 1|\right)}{x - 1} = \lim_{x \to 1^{-}} \frac{(x) - (x - 1) - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{0}{x - 1} = 0$$

R.H.D

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{\left(|x| + |x - 1| - 1\right)}{x - 1} = \lim_{x \to 1^{+}} \frac{(x) - (x - 1) - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{2(x - 1)}{x - 1} = 2$$

Since $L.H.D \neq R.H.D f(x)$ is not derivable at x = 1

 $\therefore f(x)$ is continuous everywhere but not derivable at exactly two points

22. If
$$y = \begin{bmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$
, prove that $\frac{dy}{dx} = \begin{bmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{bmatrix}$

$$y = \begin{bmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$

$$\Rightarrow y = (mc - nb) f(x) - (lc - na) g(x) + (lb - ma) h(x)$$

Then,
$$\frac{dy}{dx} = \frac{d}{dx} \left[\left(mc - nb \right) f(x) \right] - \frac{d}{dx} \left[\left(lc - na \right) g(x) \right] + \frac{d}{dx} \left[\left(lb - ma \right) h(x) \right]$$

$$=(mc-nb)f'(x)-(lc-na)g'(x)+(lb-ma)h'(x)$$

$$= \begin{bmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$

Thus,
$$\frac{dy}{dx} = \begin{bmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$

23. If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$, show that $(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - a^2y = 0$

Solution:

It is given that, $y = e^{a\cos^{-1}x}$

Taking logarithm on both sides, we obtain

$$\log y = a \cos^{-1} x \log e$$

$$\log y = a \cos^{-1} x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = ax\frac{1}{\sqrt{1-x^2}}$$

$$\frac{dy}{dx} = \frac{-ay}{\sqrt{1 - x^2}}$$

By squaring both the sides, we obtain

$$\left(\frac{dy}{dx}\right)^2 = \frac{a^2y^2}{1-x^2}$$

$$\Rightarrow \left(1 - x^2\right) \left(\frac{dy}{dx}\right)^2 = a^2 y^2$$

$$\left(1 - x^2\right) \left(\frac{dy}{dx}\right)^2 = a^2 y^2$$

Again, differentiating both sides with respect to x, we obtain

$$\Rightarrow \left(\frac{dy}{dx}\right)^{2} \left(-2x\right) + \left(1 - x^{2}\right) \times 2\frac{dy}{dx} \frac{d^{2}y}{dx^{2}} = a^{2}.2y \frac{dy}{dx}$$

$$\Rightarrow x \frac{dy}{dx} + (1 - x^2) \frac{d^2y}{dx^2} = a^2.y \qquad \left[\frac{dy}{dx} \neq 0 \right]$$

$$\Rightarrow (1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0$$

Hence, proved

Exercise 5.1

1. Prove that the function f(x) = 5x - 3 is continuous at x = 0, x = -3 and at x = 5

Solution:

The given function is f(x) = 5x - 3

At
$$x = 0, f(0) = 5 \times 0 - 3 = 3$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (5x - 3) = 5 \times 0 - 3 = 3$$

$$\therefore \lim_{x \to \infty} f(x) = f(0)$$

Therefore, f is continuous at x = 0

At
$$x = -3$$
, $f(-3) = 5x(-3) - 3 = 18$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} f(5x - 3) = 5x(-3) - 3 = -18$$

$$\therefore \lim_{x \to 3} f(x) = f(-3)$$

Therefore, f is continuous at x = -3

At
$$x=5$$
, $f(x)=f(5)=5\times 5-3=25-3=22$

$$\lim_{x \to 5} f(x) = \lim_{x \to 5} (5x - 3) = 5 \times 5 - 3 = 22$$

$$\therefore \lim_{x \to 5} f(x) = f(5)$$

Therefore, is f continuous at x = 5

2. Examine the continuity of the function at $f(x) = 2x^2 - 1$ x = 3

Solution:

The given function is $f(x) = 2x^2 - 1$

At
$$x=3$$
, $f(x)=f(3)=2\times 3^2-1=17$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x^2 - 1) = 2 \times 3^2 - 1 = 17$$

$$\therefore \lim_{x \to 3} f(x) = f(3)$$

Thus, f is continuous at x = 3.

3. Examine the following functions for continuity

a)
$$f(x) = x - 5$$

b)
$$f(x) = \frac{1}{x-5}, x \neq 5$$

c)
$$f(x) = \frac{x^2 - 25}{x + 5}, x \neq 5$$

$$d) f(x) = |x-5|$$

Solution:

a) The given function is f(x) = x - 5

It is evident that f is defined at every real number k and its value at k is k-5

It is also observed that $\lim_{x \to k} f(x) = \lim_{x \to k} f(x-5) = k = k-5 = f(k)$

$$\therefore \lim_{x \to k} f(x) = f(k)$$

Hence, f is continuous at every real number and therefore, it is a continuous function.

b) The given function is $f(x) = \frac{1}{x-5}$, $x \ne 5$ for any real number $k \ne 5$, we obtain

$$\lim_{x \to k} f(x) = \lim_{x \to k} \frac{1}{x - 5} = \frac{1}{k - 5}$$

Also,
$$f(k) = \frac{1}{k-5}$$
 (As $k \neq 5$)

$$\lim_{x \to k} f(x) = f(k)$$

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.

c) The given function is
$$f(x) = \frac{x^2 - 25}{x + 5}$$
, $x \ne 5$

For any real number $c \neq -5$, we obtain

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{x^2 - 25}{x + 5} = \lim_{x \to c} \frac{(x + 5)(x - 5)}{x + 5} = \lim_{x \to c} (x - 5) = (c - 5)$$

Also,
$$f(c) = \frac{(c+5)(c-5)}{c+5} = c(c-5)(as c \neq 5)$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Hence f is continuous at every point in the domain of f and therefore. It is continuous function.

d) The given function is
$$f(x) = |x-5| = \begin{cases} 5-x, & \text{if } x < 5 \\ x-5, & \text{if } x \ge 5 \end{cases}$$

This function f is defined at all points of the real line.

Let c be a point on a real time. Then, c < 5 or c = 5 or c > 5

Case I: c < 5

Then,
$$f(c) = 5 - c$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (5 - x) = 5 - c$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all real numbers less than 5.

Case II : c = 5

Then,
$$f(c) = f(5) = (5-5) = 0$$

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5} (5 - x) = (5 - 5) = 0$$

$$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5} (x - 5) = 0$$

$$\therefore \lim_{x \to c^+} f(x) = \lim_{x \to c^+} (x) = f(c)$$

Therefore, f is continuous at x = 5

Case III: c > 5

Then,
$$f(c) = f(5) = c - 5$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} f(x-5) = c-5$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at real numbers greater than 5.

Hence, f is continuous at every real number and therefore, it is a continuous function.

4. Prove that the function $f(x) = x^n$ is continuous at is ax = n positive integer.

Solution:

The given function is $f(x) = x^n$

It is evident that f is defined at all positive integers, n, and its value at n is n^n .

Then,
$$\lim_{x \to n} f(n) = \lim_{x \to n} f(x^n) = n^n$$

$$\therefore \lim_{x \to n} f(x) = f(n)$$

Therefore, f is continuous at n, where n is a positive integer.

5. Is the function
$$f$$
 defined by $f(x) = \begin{cases} x, & \text{if } x \le 1 \\ 5, & \text{if } x > 1 \end{cases}$

Continuous at
$$x = 0$$
? At $x = 1$?. At $x = 2$?

The given function
$$f$$
 is $f(x) = \begin{cases} x, & \text{if } x \le 1 \\ 5, & \text{if } x > 1 \end{cases}$

At
$$x = 0$$

It is evident that f is defined at 0 and its value of 0 is 0

Then,
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} x = 0$$

$$\therefore \lim_{x \to 0} f(x) = f(0)$$

Therefore, f is continuous at x = 0

At
$$x = 1$$

f is defined at 1 and its value at is 1.

The left hand limit of at f i x = 1 s,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1$$

The right hand limit of at f is x = 1,

$$\lim_{x \to 1^+} f\left(x\right) = \lim_{x \to 1^+} f\left(5\right)$$

$$\therefore \lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

Therefore, is f is not continuous at x = 1

At
$$x = 2$$

f is defined at 2 and its value at 2 is 5.

Then,
$$\lim_{x\to 2} f(x) = \lim_{x\to 2} f(5) = 5$$

$$\therefore \lim_{x \to 2} f(x) = f(2)$$

Therefore f is continuous at x = 2

6. Find all points of discontinuous of f, where f is defined by

$$f(x) = \begin{cases} 2x+3, & \text{if } x \le 2\\ 2x-3 & \text{if } x > 2 \end{cases}$$

The given function f if $f(x) = \begin{cases} 2x+3, & \text{if } x \le 2 \\ 2x-3, & \text{if } x > 2 \end{cases}$

It is evident that the given function f is defined at all the points of the real time.

Let c be a point on the real line. Then, three cases arise.

I.
$$c < 2$$

II.
$$c > 2$$

III.
$$c = 2$$

Case (i)
$$c < 2$$

Then,
$$f(x) = 2x + 3$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x+3) = 2c+3$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 2

Case (ii)
$$c > 2$$

Then,
$$f(c) = 2c - 3$$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x - 3) = 2c - 3$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 2

Case (iii)
$$c = 2$$

Then, the left hand limit of f at x = 2 is

$$\lim_{x \to 2} f(x) = \lim_{x \to 2^{-}} (2x+3) = 2 \times 2 + 3 = 7$$

The right hand limit of f at is x = 2

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (2x+3) = 2 \times 2 - 3 = 1$$

It is observed that the left and right hand limit of f at x = 2 do not coincide.

Hence, x = 2 is the only point of discontinuity of f.

7. Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} |x| + 3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x + 2 & \text{if } x \ge 3 \end{cases}$$

Solution:

The given function f is defined at all the points at the real line.

Let c be a point on the real line.

Case I:

If
$$c < -3$$
, then $f(c) = -c + 3$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (-x+3) = -c+3$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < -3

Case II:

If
$$c = -3$$
 then $f(-3) = -(-3) + 3 = 6$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (-x+3) = -(-3) + 3 = 6$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} f(-2x) = 2x(-3) = 6$$

$$\therefore \lim_{x \to 3} f(x) = f(-3)$$

Therefore, f is continuous at x = -3

Case III:

If
$$, -3 < c < 3$$
 then $f(c) = -2c$ and $\lim_{x \to c} f(x) = \lim_{x \to 3c} (-2x) = -2c$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous in (-3, 3)

Case IV:

If c = 3, then the left hand limit of f at x = 3 is

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} f(-2x) = -2 \times 3 = 6$$

The right hand limit of f at x = 3 is

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{-}} f(6x+2) = 6 \times 3 + 2 = 20$$

It is observed that the left and right hand limit of f at x = 3 do not coincide.

Case V:

If
$$c > 3$$
, then $f(c) = 6c + 2$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (6x + 2) = 6c + 2$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore f is continuous at all points x, such that x > 3.

Hence, x = 3 is the only point of discontinuity of f.

8. Find all points of discontinuity of f, where f is defined by $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$

The given function
$$f$$
 is $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$

It is known that, $x < 0 \Longrightarrow |x| = -x$ and $x > 0 \Longrightarrow |x| = x$

Therefore, the given function can be rewritten as

$$f(x) \begin{cases} \frac{|x|}{x} = \frac{-x}{x} = -1 & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ \frac{|x|}{x} = \frac{x}{x} = 1 & \text{if } x > 0 \end{cases}$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If
$$c < 0$$
, then $f(c) = 1$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (-1) = -1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore f is continuous at all points x < 0

Case II:

If c = 0, then the left hand limit of f at x = 0 is,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-1) = -1$$

The right hand limit of f at x = 0 is

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1) = 1$$

It is observed that the left and right hand limit of f at x = 0 do not coincide.

Therefore, f is not continuous at x = 0.

Case III:

If
$$c > 0$$
, $f(c) = 1$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (1) = 1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.

9. Find all points of discontinuity of f, where f is defined by $f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0 \\ -1, & \text{if } x \ge 0 \end{cases}$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0 \\ -1, & \text{if } x \ge 0 \end{cases}$

It is known that, $x < 0 \Longrightarrow |x| = x$

Therefore, the given function can be rewritten as

$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0 \\ -1, & \text{if } x \ge 0 \end{cases} \Rightarrow f(x) = -1 \text{ for all } x \in R$$

Let c be any real number. Then $\lim_{x\to c} f(x) = \lim_{x\to c} (-1) = -1$

Also,
$$f(c) = -1 = \lim_{x \to c} f(x)$$

Therefore, the given function is continuous function.

Hence, the given function has no point of discontinuity.

10. Find all the points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} x+1, & \text{if } x \ge 1 \\ x^2+1, & \text{if } x < 1 \end{cases}$$

The given function
$$f$$
 is $f(x) = \begin{cases} x+1, & \text{if } x \ge 1 \\ x^2+1, & \text{if } x < 1 \end{cases}$

The given function f is defined at all the points of the real lime.

Let c be a point on the real time.

Case I:

If
$$c < 1$$
, then $f(c) = c^2 + 1$ and $\lim_{x \to c} f(x) = \lim_{x \to c} f(x^2 + 1) = c^2 + 1$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 1

Case II:

If
$$c = 1$$
, then $f(c) = f(1) = 1 + 1 = 2$

The left hand limit of f at x = 1 is

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} + 1) = 1^{2} + 1 = 2$$

The right hand limit of f at x = 1 is

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 1) = 1^2 + 1 = 2$$

$$\therefore \lim_{x \to 1} f(x) = f(c)$$

Therefore, f is continuous at x = 1

Case III:

If
$$c > 1$$
, then $f(c) = c + 1$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x+1) = c+1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 1.

Hence, the given function f has no points of discontinuity.

11. Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2\\ x^2 + 1, & \text{if } x > 2 \end{cases}$$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If
$$c < 2$$
, then $f(c) = c^3 - 3$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x^3 - 3) = c^3 - 3$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such at that x < 2

Case II:

If
$$c = 2$$
, then $f(c) = f(2) = 2^3 - 3 = 5$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{-}} (x^{3} - 3) = 2^{3} - 3 = 5$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (x^2 + 1) = 2^2 + 1 = 5$$

$$\therefore \lim_{x\to 2} f(x) = f(2)$$

Therefore, f is continuous at x = 2

Case III:

If
$$c > 2$$
, then $f(c) = c^2 + 1$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x^2 + 1) = c^2 + 1$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 2

Thus, the given function f is continuous at every point on the real time.

Hence, f has no point of discontinuity.

12. Find all points of discontinuity of f, where f is define by $f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If
$$c < 1$$
, then $f(c) = c^{10} - 1$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x^{10} - 1) = c^{10} - 1$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 1

Case II:

If c = 1, then the left hand limit of f at x = 1 is

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{10} - 1) = 10^{10} - 1 = 1 - 1 = 0$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{2}) = 1^{2} = 1$$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case III:

If
$$c > 1$$
, then $f(c) = c^2$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (x^2) = c^2$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore f is continuous at al points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of discontinuity of f.

13. Is the function define by $f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$ a continuous function?

Solution:

The given function is
$$f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I;

If
$$c < 1$$
, then $f(c) = c + 5$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x + 5) = c + 5$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 1

Case II:

If
$$c = 1$$
, then $f(1) = 1 + 5 = 6$

The left hand limit of f at x = 1 is

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+5) = 1+5 = 6$$

The right hand limit of
$$f$$
 at $x = 1$ is $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 5) = 1 - 5 = -4$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore f is not continuous at x = 1

Case III:

If
$$c > 1$$
, then $f(c) = c - 5$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x - 5) = c - 5$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore f is continuous at all points x, such that x > 1

Thus, from the above observations, it can be concluded that x = 1 is the only point of discontinuity of f.

14. Discuss the continuity of the function f, where f is defined by

$$f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$$

Solution:

The given function is
$$f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$$

The given function is defined at all the points of the interval [0, 10].

Let c be a point in the interval [0, 10]

Case I;

If
$$0 \le c < 1$$
 then $f(c) = c + 5$ $f(c) = 3$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (3) = 3$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous in the interval [0,1)

Case II:

If
$$c=1$$
, then $f(3)=3$

The left hand limit of f at x = 1 is

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3) = 3$$

The left hand limit of f at x = 1 is $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (3) = 3$

The right hand limit of f at x = 1 is $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4) = 4$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore f is not continuous at x = 1

Case III:

If
$$c > 1$$
, then $f(c) = 4$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (4) = 4$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore f is continuous at all points of the interval (1, 3)

Case IV:

If
$$c = 3$$
, then $f(c) = 5$

The left hand limit of f at x = 3 is $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (4) = 4$

The right hand limit of
$$f$$
 at $x = 3$ is $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (5) = 5$

It is observed that the left and right hand limit of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:

If
$$3 < c \le 10$$
, then $f(c) = 5$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (5) = 5$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points of the interval (3, 10].

Hence, f is not continuous at x = 1 and x = 3

15. Discuss the continuity of the function f, where f is defined by

$$f(x) = \begin{cases} 2x, & \text{if } x < 0 \\ 0, & \text{if } 0 \le x \le 1 \\ 4x. & \text{if } x > 1 \end{cases}$$

Solution:

The given function is
$$f(x) = \begin{cases} 2x, & \text{if } x < 0 \\ 0, & \text{if } 0 \le x \le 1 \\ 4x. & \text{if } x > 1 \end{cases}$$

The given function is defined at all the points of the real line.

Let c be a point on the real line

Case I;

If
$$, c < 0$$
 then $f(c) = 2c$, $\lim_{x \to c} f(x) = \lim_{x \to c} (2x) = 2c$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points, x such that x < 0

Case II:

If
$$c = 0$$
, then $f(c) = f(0) = 3$

The left hand limit of
$$f$$
 at $x = 0$ is $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (2x) = 2 \times 0 = 0$

The right hand limit of
$$f$$
 at $x = 0$ is $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (0) = 0$

$$\therefore \lim_{x \to 0} f(x) = f(0)$$

Therefore, f is continuous at x = 0

Case III:

If
$$0 < c < 1$$
, then $f(x) = 0$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (0) = 0$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore f is continuous at all points of the interval (0, 1)

Case IV:

If
$$c = 1$$
, then $f(c) = f(1) = 0$

The left hand limit of f at x = 1 is $\lim_{x \to \Gamma} f(x) = \lim_{x \to \Gamma} (0) = 0$

The right hand limit of f at x = 1 is $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4x) = 4 \times 1 = 4$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1

Case V:

If
$$c < 1$$
, then $f(c) = 4c$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (4x) = 4c$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 1

Hence, f is not continuous only at x = 1

16. Discuss the continuity of the function f, where f is defined by

$$f(x) = \begin{cases} -2, & \text{if } x \le -1\\ 2x, & \text{if } -1 < x \le 1\\ 2, & \text{if } x > 1 \end{cases}$$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} -2, & \text{if } x \le -1 \\ 2x, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$

The given function is defined at all point of the real time. Let c be a point on the real time.

Case I:

If
$$c < -1$$
, then $f(c = -2)$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (-2) = -2$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x , such that x < -1 Case -II:

If
$$c = -1$$
, then $f(c) = f(-1) = -2$

The left hand limit of f at x = -1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-2) = -2$$

The right hand limit of f at x = -1 is,

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2x(-1) = -2$$

$$\lim_{x \to 1} f(x) = f(-1)$$

Therefore, f is continuous at x = -1

Case III:

If
$$-1 < c < 1$$
, then $f(c) = 2c$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (2x) = 2c$$

$$\lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points of the interval (-1,1).

Case - IV:

If
$$c = 1$$
, then $f(c) = f(1) = 2 \times 1 = 2$

The left hand limit of f at x = 1 is,

$$\lim_{x \to \Gamma} f(x) = \lim_{x \to \Gamma} (2x) = 2 \times 1 = 2$$

The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2 = 2$$

$$\lim_{x \to 1} f(x) = f(c)$$

Therefore, f is continuous at x = 2

Case -V:

If
$$c > 1$$
, $f(c) = 2$ and $\lim_{x \to 2} f(x) = \lim_{x \to 2} (2) = 2$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points, x, such that x > 1

Thus, from the above observations, it can be concluded that f is continuous at all points of the real time.

17. Find the relationship be a and b so that the function f defined by $f(x) = \begin{cases} ax + 1, & if \ x \le 3 \\ bx + 3, & if \ x > 3 \end{cases}$ is continuous at x = 3.

Solution: The given function f is $f(x) = \begin{cases} ax + 1, & \text{if } x \leq 3 \\ bx + 3, & \text{if } x > 3 \end{cases}$ If f is continuous at x = 3, then

$$\lim_{x \to 3^{\circ}} f(x) = \lim_{x \to 3^{\circ}} f(x) = f(3)$$

Also,

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(ax+1) = 3a+1$$

$$\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} f(ax+1) = 3b+3$$

$$f(3) = 3a + 1$$

therefore, from (1), we obtain

$$3a+1 = 3b+3 = 3a+1$$

$$\Rightarrow 3a+1=3b+3$$

$$\Rightarrow 3a=3b+2$$

$$\Rightarrow a=b+\frac{2}{3}$$

Therefore, the required relationship is given by, $a=b+\frac{2}{3}$

18. For what value of λ is the function defined by $f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{if } x \le 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$ continuous at x = 0? What about continuity at x = 1?

Solution: The given function
$$f$$
 is $f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{if } x \le 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$

If f is continuous at x = 0, then

$$\lim_{x \to 0^{-}} f(x) \lim_{x \to 0^{-}} f(x) = f(0)$$

$$\Rightarrow \lim_{x \to 0^{-}} \lambda (x^{2} - 2x) = \lim_{x \to 0^{+}} (4x + 1) = \lambda (0^{2} - 2 \times 0)$$

$$\Rightarrow \lambda (02 - 2 \times 0) = 4 \times 0 + 1 = 0$$

Therefore, there is no value of λ for which f is continuous at x = 0

At
$$x = 1$$
,

$$f(1) = 4x + 1 = 4 \times 1 + 1 = 5$$

 \Rightarrow 0=1=0, which is not possible

$$\lim_{x\to 1} (4x+1) = 4 \times 1 + 1 = 5$$

19. Show that the function defined by g(x) = x - [x] is discontinuous at all integral point. Here [x] denoted the greatest integer less than or equal to x.

Solution:

The given function is
$$g(x) = x - [x]$$

It is evident that *g* is defined at all integral points.

Let *n* be a integer

Then,

$$g(n) = n - [n] = n - n = 0$$

The left hand limit of f at x = n is

$$\lim_{x \to n^{-}} g(x) = \lim_{x \to n^{-}} \left[x - [x] \right] = \lim_{x \to n^{-}} x - \lim_{x \to n^{-}} \left[x \right] = n - (n - 1) = 1$$

The right hand limit of f at x = n is

$$\lim_{x \to n^{-}} g(x) = \lim_{x \to n^{-}} \left[x - [x] \right] = \lim_{x \to n^{-}} x - \lim_{x \to n^{-}} \left[x \right] = n - n = 0$$

It is observed that the left and right hand limits of f at x = n do not coincide.

Therefore, f is not continuous at x = n

Hence, g is discontinuous at all integral points

20. Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x = \pi$?

Solution:

The given function is $f(x) = x^2 - \sin x + 5$

It is evident that f is defined at $x = \pi$

At
$$x = \pi$$
, $f(x) = f(\pi) = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$

Consider
$$\lim_{x \to \pi} f(x) = \lim_{x \to \pi} f(x^2 - \sin x + 5)$$

Put
$$x = \pi + h$$

If $x \to \pi$, then it is evident that $h \to 0$

$$\lim_{x \to \pi} f(x) = \lim_{x \to \pi} (x^2 - \sin x) + 5$$

$$= \lim_{h \to 0} \left[(\pi + h)^2 - \sin(\pi + h) + 5 \right]$$

$$= (\pi + 0)^2 - \lim_{h \to 0} \left[\sin \pi \cosh + \cos \pi + \sinh \right] + 5$$

$$= \pi^2 - \lim_{h \to 0} \pi \cosh - \lim_{h \to 0} \cos \pi + \sinh + 5$$

$$= \pi^2 - \sin \pi \cos 0 - \cos \pi \sin 0 + 5$$

$$= \pi^2 - 0 \times 1 - (-1) \times 0 + 5$$

$$= \pi^2 + 5$$

$$\therefore \lim_{x \to x} f(x) = f(\pi)$$

Therefore, the given function f is continuous at $x = \pi$

21. Discuss the continuity of the following functions.

A)
$$f(x) = \sin x + \cos x$$

B)
$$f(x) = \sin x - \cos x$$

C)
$$f(x) = \sin x \times \cos x$$

Solution:

It is known that if g and h are two continuous functions, then g+h, g-h and g.h are also continuous.

It has to proved first that $g(x) = \sin x$ and $h(x) = \cos x$ are continuous functions.

Let
$$g(x) = \sin x$$

It is evident that $g(x) = \sin x$ is defined for every real number.

Let c be a real number. Put x = c + h

If
$$x \to c$$
, then $h \to 0$

$$g(c) = \sin c$$

$$\lim_{x \to c} g(x) = \lim_{x \to c} g \sin x$$

$$=\lim_{h\to 0}\sin\big(c+h\big)$$

$$= \lim_{h \to 0} \left[\sin c \cosh + \cos c \sinh \right]$$

$$= \lim_{h \to 0} (\sin c \cosh) + \lim_{h \to 0} (\cos c \sinh)$$

$$= \sin c \cos 0 + \cos c \sin 0$$

$$=\sin c + 0$$

$$= \sin c$$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is a continuous function.

Let
$$h(x) = \cos x$$

It is evident that $h(x) = \cos x$ is defined for every real number.

Let c be a real number. x = c + h

If
$$x \to c$$
, then $h \to 0$

$$h(c) = \cos c$$

$$\lim_{x \to c} (x) = \lim_{x \to c} \cos x$$

$$=\lim_{h\to 0}\cos(c+h)$$

$$= \lim_{h \to 0} \left[\cos c \cosh - \sin c \sinh \right]$$

$$= \lim_{h \to 0} \cos c \cosh - \lim_{h \to 0} \sin c \sinh$$

$$=\cos c\cos 0 - \sin c\sin 0$$

$$=\cos c \times 1 - \sin c \times 0$$

$$=\cos c$$

$$\therefore \lim_{h\to 0} (x) = h(c)$$

Therefore, h is a continuous function.

Therefore, it can be concluded that

a)
$$f(x) = g(x) + h(x) = \sin x + \cos x$$
 is a continuous function

b)
$$f(x) = g(x) - h(x) = \sin x - \cos x$$
 is a continuous function

c)
$$f(x) = g(x) \times h(x) = \sin x \times \cos x$$
 is a continuous function

22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Solution:

It is known that if p and h are two continuous functions, then

i.
$$\frac{h(x)}{g(x)} \cdot g(x) \neq 0$$
 is continuous

ii.
$$\frac{1}{g(x)} \cdot g(x) \neq 0$$
 is continuous

iii.
$$\frac{1}{h(x)}.h(x) \neq 0$$
 is continuous

It has to be proved first that $g(x) - \sin x$ and $h(x) - \cos x$ are continuous functions.

Let
$$g(x) - \sin x$$

It has evident that $g(x) - \sin x$ is defined for every real number.

Let c be a real number. Put x-c+h

If
$$x \to C$$
, then $h \to 0$

$$g(c)-\sin x$$

$$\lim_{x+c} g(c) - \lim_{x+c} \sin x$$

$$-\lim_{x \to c} \sin(c+h)$$

$$-\lim_{x+c} [\sin c \cosh + \cos c \sinh]$$

$$-\lim_{x+c} (\sin c \cosh) + \lim_{x+c} (\cos c \sinh)$$

$$-\sin c \cos 0 + \cos c \sin 0$$

$$-\sin c + 0$$

$$-\sin c$$

$$\therefore \lim_{0+c} g(x) - g(c)$$

Therefore, g is a continuous function.

Let
$$h(x) - \cos x$$

It is evident that $h(x) - \cos x$ is defined for every real number.

Let c be a real number. Put x-c+h

If
$$x \to c$$
, then $h \to 0x$

$$h(c) - \cos c$$

$$-\lim_{x\to 0}\cos(c+h)$$

$$-\lim_{x\to 0} \left[\cos c \cosh - \sin c \sinh\right]$$

$$-\lim_{x\to 0}\cos c\cosh - \lim_{x\to 0}\sin c\sinh$$

$$-\cos c \cos 0 - \sin c \sin 0$$

$$-\cos c x 1 - \sin c x 0$$

$$=\cos c$$

$$\therefore \lim h(x) - h(c)$$

Therefore, $h(x) - \cos x$ is continuous function.

It can be conclued that,

$$\cos ex - \frac{1}{\sin x}$$
, $\sin x \neq 0$ is continuous

 $\Rightarrow \cos ex \, x, x \neq nx (n \in \mathbb{Z})$ is continuous

Therefore, secant is continuous except at X - np, nIZ

$$\sec x = \frac{1}{\cos x}, \cos x \neq 0$$
 is continuous

$$\Rightarrow$$
 sec $x, x \neq (2n+1)\frac{\pi}{2}(n \in Z)$ is continuous

Therefore, secant is continuous except at $x - (2n+1)\frac{\pi}{2}(n \in \mathbb{Z})$

$$\cot x = \frac{\cos x}{\sin x}$$
, $\sin x \neq 0$ is continuous

$$\Rightarrow$$
 cot $x, x \neq n\pi(n \in Z)$ is continuous

Therefore, cotangent is continuous except at x-np, nIZ

23. Find the points of discontinuity of
$$f$$
, where $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0 \\ x + 1, & \text{if } x \ge 0 \end{cases}$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0 \\ x + 1, & \text{if } x \ge 0 \end{cases}$

It is evident that f is defined at all points of the real line.

Let c be a real number

Case I:

If
$$c < 0$$
, then $f(c) = \frac{\sin c}{c}$ and $\lim_{x \to c} f(x) = \lim_{x \to c} \left(\frac{\sin x}{x}\right) = \frac{\sin c}{c}$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 0

Case II:

If
$$c > 0$$
, then $f(c) = c + 1$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x + 1) = c + 1$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x > 0 Case III:

If
$$c = 0$$
, then $f(c) = f(0) = 0 + 1 = 1$

The left hand limit of f at x = 0 is,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin x}{x} = 1$$

The right hand limit of f at x = 0 is,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = 1$$

$$\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

Therefore, f is continuous at x = 0

From the above observations, it can be conducted that f is continuous at all points of the real line.

Thus, f has no point of discontinuity.

24. Determine if
$$f$$
 defined by $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } \neq 0 \\ 0, & \text{if } \neq 0 \end{cases}$ is a continuous function?

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } \neq 0 \\ 0, & \text{if } \neq 0 \end{cases}$

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

If
$$c \neq 0$$
, then $f(c) = c^2 \sin \frac{1}{c}$

$$\lim_{x \to c} f(x) = \lim_{x \to c} \left(x^2 \sin \frac{1}{x} \right) = \left(\lim_{x \to c} x^2 \right) \left(\lim_{x \to c} \sin \frac{1}{x} \right) = c^2 \sin \frac{1}{c}$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all p[oints $x \neq 0$

Case II:

If
$$c = 0$$
, then $f(0) = 0$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^2 \sin \frac{1}{2} \right)$$

It is known that, $-1 \le \sin \frac{1}{x} \le 1$, $x \ne 0$

$$\Rightarrow -x^2 \le \sin \frac{1}{x} \le x^2$$

$$\Rightarrow \lim_{x \to 0} \left(-x^2 \right) \le \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) \le \lim_{x \to 0} x^2$$

$$\Rightarrow 0 \le \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) \le 0$$

$$\Rightarrow \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = 0$$

$$\therefore \lim_{x \to 0} f(x) = 0$$

Similarly,
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = 0$$

$$\therefore \lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x) = 0$$

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus f is a continuous function.

25. Examine the continuity of f, where f is defined by

$$f(x) = \begin{cases} \sin x - \cos x, & if \quad x \neq 0 \\ 1, & if \quad x = 0 \end{cases}$$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases}$

It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:

If
$$c \neq 0$$
, then $f(c) = \sin c - \cos c$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (\sin x - \cos x) = \sin c - \cos c$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that $x \neq 0$

Case II:

If
$$c = 0$$
, then $f(0) = -1$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (\sin x - \cos x) = \sin 0 - \cos 0 = 0 - 1 = -1$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (\sin x - \cos x) = \sin 0 - \cos 0 = 0 - 1 = -1$$

$$\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$$

Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

26. Find the value of k so that the function f is continuous at the indicated point.

$$f(x) \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if} \quad x \neq \frac{\pi}{2} \\ 3, & \text{if} \quad x = \frac{\pi}{2} \quad atx = \frac{\pi}{2} \end{cases}$$

Solution:

The given function
$$f$$
 is $f(x)$

$$\begin{cases}
\frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\
3, & \text{if } x = \frac{\pi}{2}
\end{cases}$$

The given function f is continuous at $x = \frac{\pi}{2}$, it is defined at $x = \frac{\pi}{2}$ and if the value of the f at $x = \frac{\pi}{2}$ equals the limit of f at $x = \frac{\pi}{2}$.

It is evident that f is defined at $x = \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right) = 3$

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x}$$

Put
$$x = \frac{\pi}{2} + h$$

Then,
$$x \to \frac{\pi}{2} \Rightarrow h \to 0$$

$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{h \to 0} \frac{k \cos \left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)}$$

$$= k \lim_{x \to 0} \frac{-\sinh}{-2h} = \frac{k}{2} \lim_{x \to 0} \frac{\sinh}{h} = \frac{k}{2} \cdot 1 = \frac{k}{2}$$

$$\therefore \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$$

$$\Rightarrow \frac{k}{2} = 3$$

$$\Rightarrow k = 6$$

Therefore, the required value of k is 6.

27. Find the value of k so that the function f is continuous at the indicated point.

$$f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases} \text{ at } x = 2$$

Solution:

The given function is
$$f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases}$$

The given function f is continuous at x = 2, if f is defined at x = 2 and if the value of f at x = 2 equals the limit of f at x = 2

It is evident that f is defined at x = 2 and $f(2) = k(2)^2 = 4k$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} (kx)^{2} = \lim_{x \to 2^{+}} (3) = 4k$$

$$\Rightarrow k \times 2^2 = 3 = 4k$$

$$\Rightarrow 4k = 3 = 4k$$

$$\Rightarrow 4k = 3$$

$$\Rightarrow k = \frac{3}{4}$$

Therefore, the required value of k is $\frac{3}{4}$.

28. Find the values of k so that the function f is continuous at the indicated point.

$$f(x) = \begin{cases} kx+1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases} \text{at } x = \pi$$

Solution:

The given function is
$$f(x) = \begin{cases} kx+1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$$

The given function f is continuous at $x = \pi$ and, if f is defined at $x = \pi$ and if the value of f at $x = \pi$ equals the limit of f at $x = \pi$

It is evident that f is defined at $x = \pi$ and $f(\pi) = k\pi + 1$

$$\lim_{x \to \pi^{-}} f(x) = \lim_{x \to \pi^{+}} f(x) = f(\pi)$$

$$\Rightarrow \lim_{x \to \pi^{-}} (kx+1) = \lim_{x \to \pi^{+}} \cos x = k\pi + 1$$

$$\Rightarrow k\pi + 1 = \cos \pi = k\pi + 1$$

$$\Rightarrow k\pi + 1 = -1 = k\pi + 1$$

$$\Rightarrow k\pi + 1 = -1 = k\pi + 1$$

$$\Rightarrow k = -\frac{2}{\pi}$$

Therefore, the required value of k is $-\frac{2}{\pi}$.

29. Find the values of k so that the function f is continuous at the indicated point.

$$f(x) = \begin{cases} kx+1, & if \quad x \le 5\\ 3x-5, & if \quad x > 5 \end{cases}$$

Solution:

The given function of
$$f$$
 is $f(x) = \begin{cases} kx+1, & \text{if } x \le 5 \\ 3x-5, & \text{if } x > 5 \end{cases}$

The given function f is continuous at x=5, if f is defined at x=5 and if the value of f at x=5 equals the limit of f at x=5

It is evident that f is defined at x=5 and f(5)=kx+1=5k+1

$$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{+}} f(x) = f(5)$$

$$\Rightarrow \lim_{x \to 5^{-}} (kx+1) = \lim_{x \to 5^{+}} (3x-5) = 5k+1$$

$$\Rightarrow 5k+1=15-5=5k+1$$

$$\Rightarrow 5k+1=10$$

$$\Rightarrow 5k=9$$

$$\Rightarrow k = \frac{9}{5}$$

Therefore, the required value of k is $\frac{9}{5}$

30. Find the vales of a and b such that the function defined

$$f(x) = \begin{cases} 5, & if & x \le 2\\ ax + b, & if & 2 < x < 10 \text{ is continuous function.} \\ 21 & if & x \ge 10 \end{cases}$$

Solution:

The given function
$$f$$
 is $f(x) = \begin{cases} 5, & \text{if } x \le 2 \\ ax + b, & \text{if } 2 < x < 10 \\ 21 & \text{if } x \ge 10 \end{cases}$

It is evident that the given function f is defined at all points of the real line.

If f is a continuous function, then f is a continuous at all real numbers.

In a particular, f is continuous at x=2 and x=10

Since f is continuous at x = 2, we obtain

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} \left(5 \right) = \lim_{x \to 2^{+}} \left(ax + b \right) = 5$$

$$\Rightarrow$$
 5 = 2a + b = 5

$$\Rightarrow 2a+b=5$$

.....(1)

Since f is continuous at x = 10, we obtain

$$\lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{+}} f(x) = f(10)$$

$$\Rightarrow \lim_{x \to 10^{-}} (ax + b) = \lim_{x \to 2^{+}} (21) = 21$$

$$\Rightarrow$$
 10a+b-21=21

$$\Rightarrow$$
 10 $a+b=21$

.....(2)

On subtracting equation (1) from equation (2), we obtain

$$8a = 16$$

$$\Rightarrow a = 2$$

By putting a = 2 in equation (1), we obtain

$$2\times2+b=5$$

$$\Rightarrow 4+b=5$$

$$\Rightarrow b=1$$

Therefore, the values of a and b for which f is a continuous function are 2 and 1 respectively.

31. Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.

Solution:

The given function is $f(x) = \cos(x^2)$

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = goh$$
, where $g(x) = \cos x$ and $h(x) = x^2$

$$\left[\because (goh)(x) = g(h(x)) = g(x^2) = \cos(x^2) = f(x) \right]$$

It has to be first proves that $g(x) = \cos x$ and $h(x) = x^2$ are continuous functions.

It is evident that g is defined foe every real number.

Let c be a real number.

Then,
$$g(c) = \cos c$$

Put
$$x = c + h$$

If
$$x \rightarrow c$$
, then $h \rightarrow 0$

$$\lim_{x \to c} g(x) = \lim_{x \to c} \cos x$$

$$=\lim_{h\to 0}\cos(c+h)$$

$$= \lim_{h \to 0} [\cos c \cosh - \sin c \sinh]$$

$$= \lim_{h \to 0} \cos c \cosh - \lim_{h \to 0} \sin c \sinh$$

$$=\cos c\cos 0 - \sin c\sin 0$$

$$=\cos c \times 1 - \sin c \times 0$$

$$=\cos c$$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, $g(x) = \cos x$ is a continuous function

$$h(x) = x^2$$

Clearly, h is defined for every real number.

Let k be a real number, then $h(k) = k^2$

$$\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2$$

$$\therefore \lim_{x \to k} h(x) = h(k)$$

Therefore, h is a continuous function.

It is known that for real valued functions g and h, such that (goh) is defined at c, it g is continuous at c and it f is continuous at c.

Therefore,
$$f(x) = (goh)(x) = cos(x^3)$$
 is a continuous function.

32. Show that the function defined by $f(x) = |\cos x|$ is a continuous function

Solution:

The given function is $f(x) = |\cos x|$

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = goh$$
, where $g(x) = |x|$ and $h(x) = \cos x$

$$\left[\because (goh)(x) = g(h(x)) = g(\cos x) = |\cos x| = f(x) \right]$$

It has to be first proves that g(x) = |x| and $h(x) = \cos x$ are continuous functions.

$$g(x) = |x|$$
, can be written as

$$g(x) = \begin{cases} -x & if \quad x < 0 \\ x & if \quad x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If
$$c < 0$$
, then $g(c) = -c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x < 0

Case II:

If
$$c > 0$$
, then $g(c) = c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If
$$c = 0$$
, then $g(c) = g(0) = 0$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$

$$\therefore \lim_{x \to c^{-}} g(x) = \lim_{x \to c^{+}} g(x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

$$h(x) = \cos x$$

It is evident that $h(x) = \cos x$ is defined for every real number.

Let *c* be a real number. Put x = c + h

If
$$x \rightarrow c$$
, then $h \rightarrow 0$

$$h(c) = \cos c$$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \cos x$$

$$=\lim_{h\to 0}\cos(c+h)$$

$$= \lim_{h \to 0} \left[\cos c \cosh - \sin c \sinh \right]$$

$$= \lim_{h\to 0} \cos c \cosh - \lim_{h\to 0} \sin c \sinh$$

$$=\cos c\cos 0-\sin c\sin 0$$

$$=\cos c \times 1 - \sin c \times 0$$

 $=\cos c$

$$=\lim_{h\to c}h(x)=h(c)$$

Therefore, $h(x) = \cos x$ is continuous function/

It is known that for real values functions g and h, such that (goh) is defined at c, if g is continuous at c and if f is continuous at g(c), then (fog) is continuous at c.

Therefore,
$$f(x) = (goh)(x) = g(h(x)) = g(\cos x) = |\cos x|$$
 is a continuous function.

33. Examine that $\sin |x|$ is a continuous function

Solution:

Let
$$f(x) = \sin|x|$$

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = goh$$
, where $g(x) = |x|$ and $h(x) = \sin x$

$$\left[\because (goh)(x) = g(h(x)) = g(\sin x) = |\sin x| = f(x)\right]$$

It has to be prove first that g(x) = |x| and $h(x) = \sin x$ are continuous functions.

$$g(x) = |x|$$
 can be written as

$$g(x) = \begin{cases} -x & if \quad x < 0 \\ x & if \quad x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If
$$c < 0$$
, then $g(c) = -c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, that x < 0

Case II:

If
$$c > 0$$
, then $g(c) = c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If
$$c = 0$$
, then $g(c) = g(0) = 0$

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$

$$\therefore \lim_{x \to c^{-}} g(x) = \lim_{x \to c^{+}} g(x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

$$h(x) = \sin x$$

It is evident that $h(x) = \sin x$ is defined for every real number.

Let c be a real number. Put x = c + k

If
$$x \rightarrow c$$
, then $k \rightarrow 0$

$$h(c) = \sin c$$

$$\lim_{x \to c} h(x) = \lim_{x \to c} \sin x$$

$$= \lim_{k \to 0} \sin(c + k)$$

$$= \lim_{k \to 0} \left[\sin c \cos k + \cos c \sin k \right]$$

$$= \lim_{k \to 0} \left(\sin c \cos k \right) - \lim_{k \to 0} \left(\cos c \sin k \right)$$

$$=\sin c\cos 0 + \cos c\sin 0$$

$$=\sin c + 0$$

$$=\sin c$$

$$= \lim_{x \to c} h(x) = g(c)$$

Therefore, h is continuous function.

It is known that for real values functions g and h, such that (goh) is defined at c, if g is continuous at c and if f is continuous at g(c), then (foh) is continuous at c.

Therefore, $f(x) = (goh)(x) = g(h(x)) = g(\sin x) = |\sin x|$ is a continuous function.

34. Find all the points of discontinuity of f defined by f(x) = |x| - |x+1|.

Solution:

The given function is f(x) = |x| - |x+1|

The two functions, g and h, are defined as

$$g(x) = |x| \text{ and } h(x) = |x+1|$$

Then
$$f = g - h$$

The continuous of g and h is examined first.

$$g(x) = |x|$$
 can be written as

$$g(x) = \begin{cases} -x & if & x < 0 \\ x & if & x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If
$$c < 0$$
, then $g(c) = g(0) = -c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$

$$\therefore \lim_{r \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, that x < 0

Case II:

If
$$c > 0$$
, then $g(c) = c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0

Case III:

If
$$c = 0$$
, then $g(c) = g(0) = 0$

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$$

$$\therefore \lim_{x \to c^{-}} g(x) = \lim_{x \to c^{+}} g(x) = g(0)$$

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

$$h(x) = |x+1|$$

$$h(x) = \begin{cases} -(x+1), & if, \quad x < -1 \\ x+1, & if, \quad x \ge -1 \end{cases}$$

Clearly, *h* is defined for every real number.

Let c be a real number

Case I:

If
$$c < -1$$
, then $h(c) = -(c+1)$ and $\lim_{x \to c} h(x) = \lim_{x \to c} \left[-(x+1) \right] = -(c+1)$

$$\therefore \lim_{x \to c} h(x) = h(c)$$

Therefore, *h* is continuous at all points *x*, such that x < -1

Case II:

If
$$c > -1$$
, then $h(c) = c + 1$ and $\lim_{x \to c} h(x) = \lim_{x \to c} x + 1 = (c + 1)$

$$\therefore \lim_{x \to c} h(x) = h(c)$$

Therefore, *g* is continuous at all points *x*, such that x > -1

Case III:

If
$$c = -1$$
, then $h(c) = h(-1) = -1 + 1 = 0$

$$\lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{-}} \left[-(x+1) \right] = -(-1+1)0$$

$$\lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} (x+1) = (-1+1) = 0$$

$$\therefore \lim_{x \to 1^{-}} h = \lim_{x \to 1^{+}} h(x) = h(-1)$$

Therefore, h is continuous at x = -1

From the above three observations, it can be concluded that h is continuous at all points of the real line.

g and h are continuous functions. Therefore, f=g-h is also a continuous function.

Therefore, f has no point of discontinuity.

Exercise 5.2

1. Differentiate the function with respect to x. $\sin(x^2 + 5)$

Solution:

Let
$$f(x) = \sin(x^2 + 5)$$
, $u(x) = x^2 + 5$, and $v(t) = \sin t$

Then,
$$(vou)(x) = v(u(x)) = v(x^2 + 5) = \tan(x^2 + 5) = f(x)$$

Thus, f is a composite of two functions

Put
$$t = u(x) = x^2 + 5$$

Then, we obtain

$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(x^2 + 5)$$

$$\frac{dt}{dx} = \frac{d}{dx}\left(x^2 + 5\right) = \frac{d}{dx}\left(x^2\right) + \frac{d}{dx}\left(5\right) = 2x + 0 = 2x$$

Therefore, by chain rule,
$$\frac{df}{dx} = \frac{dv}{dt}\frac{dt}{dx} = \cos(x^2 + 5) \times 2x = 2x\cos(x^2 + 5)$$

Alternate method

$$\frac{d}{dx}\left[\sin\left(x^2+5\right)\right] = \cos\left(x^2+5\right) \frac{d}{dx}\left(x^2+5\right)$$

$$= \cos\left(x^2+5\right) \left[\frac{d}{dx}\left(x^2\right) + \frac{d}{dx}(5)\right]$$

$$= \cos\left(x^2+5\right) \left[2x+0\right]$$

$$= 2x\cos\left(x^2+5\right)$$

2. Differentiate the functions with respect of x. cos(sin x)

Solution:

Let
$$f(x) = \cos(\sin x), u(x) = \sin x, and v(t) = \cos t$$

Then,
$$(vou)(x) = v(u(x)) = v(\sin x) = \cos(\sin x) = f(x)$$

Thus, f is a composite function of two functions

Put
$$t = u(x) = \sin x$$

$$\therefore \frac{dv}{dt} = \frac{d}{dt} \left[\cos t\right] = -\sin t = -\sin \left(\sin x\right)$$

$$\frac{dt}{dx} = \frac{d}{dx} (\sin x) = \cos x$$

By chain rule,
$$\frac{df}{dx}$$
, $\frac{dv}{dt}$. $\frac{dt}{dx} = -\sin(\sin x)\cos x = -\cos x\sin(\sin x)$

Alternate method

$$\frac{d}{dx}\left[\cos\left(\sin x\right)\right] = -\sin\left(\sin x\right)\frac{d}{dx}\left(\sin x\right) = -\sin\left(\sin x\right) - \cos x = -\cos x \sin\left(\sin x\right)$$

3. Differentiate the functions with respect of x. $\sin(ax+b)$

Solution:

Let
$$f(x) = \sin(ax+b), u(x) = ax+b, and v(t) = \sin t$$

Then,
$$(vou)(x) = v(u(x)) = v(ax+b) = \sin(ax+b) = f(x)$$

Thus, f is a composite function of two functions u and v

Put
$$t = u(x) = ax + b$$

Therefore,
$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(ax + b)$$

$$\frac{dt}{dx} = \frac{d}{dx}(ax+b) = \frac{d}{dx}(ax) + \frac{d}{dx}(b) = a+0 = a$$

Hence, by chain rule, we obtain

$$\frac{df}{dx} = \frac{dv}{dt}\frac{dt}{dx} = \cos(ax+b)a = a\cos(ax+b)$$

Alternate method

$$\frac{d}{dx} \Big[\sin(ax+b) \Big] = \cos(ax+b) \frac{d}{dx} (ax+b)$$

$$= \cos(ax+b) \Big[\frac{d}{dx} (ax) + \frac{d}{dx} (b) \Big]$$

$$= \cos(ax+b) (a+0)$$

$$= a\cos(ax+b)$$

4. Differentiate the functions with respect of x. $\sec(\tan(\sqrt{x}))$

Solution:

Let
$$f(x) = \sec(\tan(\sqrt{x})), u(x) = \sqrt{x}, v(t) = \tan t, and w(s) = \sec s$$

Then,
$$(wovou)(x) = w[v(u(x))] = w[v(\sqrt{x})] = w(\tan \sqrt{x}) = \sec(\tan \sqrt{x}) = f(x)$$

Thus, f is a composite function of three functions, u, v and w

Put
$$s = v(t) = \tan t$$
 and $t = u(x) = \sqrt{x}$

Then,
$$\frac{dw}{ds} = \frac{d}{ds}(\sec s) = \sec s \tan s = \sec(\tan t)\tan(\tan t)$$
 [$s = \tan t$]

$$=\sec\left(\tan\sqrt{x}\right).\tan\left(\tan\sqrt{x}\right) \quad \left[t=\sqrt{x}\right]$$

$$\frac{ds}{dt} = \frac{d}{dt} (\tan t) = \sec^2 t = \sec^2 \sqrt{x}$$

$$\frac{dt}{dx} = \frac{d}{dx} \left(\sqrt{x} \right) = \frac{d}{dx} \left(x^{\frac{1}{2}} \right) = \frac{1}{2} . x^{\frac{1}{2} - 1} = \frac{1}{2\sqrt{x}}$$

Hence, by chain rule, we obtain

$$\frac{dt}{dx} = \frac{dw}{ds} \frac{ds}{dt} \frac{dt}{dx}$$

$$= \sec\left(\tan\sqrt{x}\right) \cdot \tan\left(\tan\sqrt{x}\right) \times \sec^2\sqrt{x} \times \frac{1}{2\sqrt{x}}$$

$$= \frac{1}{2\sqrt{x}} \sec^2\sqrt{x} \left(\tan\sqrt{x}\right) \tan\left(\tan\sqrt{x}\right)$$

$$= \frac{\sec^2 \sqrt{x} \sec \left(\tan \sqrt{x}\right) \tan \left(\tan \sqrt{x}\right)}{2\sqrt{x}}$$

Alternate method

$$\frac{d}{dx} \left[\sec\left(\tan\sqrt{x}\right) \right] = \sec\left(\tan\sqrt{x}\right) \tan\left(\tan\sqrt{x}\right) \frac{d}{dx} \left(\tan\sqrt{x}\right)$$

$$= \sec\left(\tan\sqrt{x}\right) \tan\left(\tan\sqrt{x}\right) \sec^2\left(\sqrt{x}\right) \frac{d}{dx} \left(\sqrt{x}\right)$$

$$= \sec\left(\tan\sqrt{x}\right) \cdot \tan\left(\tan\sqrt{x}\right) \cdot \sec^2\left(\sqrt{x}\right) \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{\sec\left(\tan\sqrt{x}\right) \cdot \tan\left(\tan\sqrt{x}\right) \cdot \sec^2\left(\sqrt{x}\right)}{2\sqrt{x}}$$

5. Differentiate the functions with respect of X. $\frac{\sin(ax+b)}{\cos(cx+d)}$

Solution:

The given function is
$$f(x) = \frac{\sin(ax+b)}{\cos(cx+d)} = \frac{g(x)}{h(x)}$$
, where $g(x) = \sin(ax+b)$ and

$$h(x) = \cos(cx+d)$$

$$\therefore h(x) = \cos(cx + d)$$

$$\therefore f = \frac{g'h - gh'}{h^2}$$

Consider
$$g(x) = \sin(ax+b)$$

Let
$$u(x) = ax + b, v(t) = \sin t$$

Then
$$(vou)(x) = v(u(x)) = v(ax+b) = \sin(ax+b) = g(x)$$

 \therefore g is a composite function of two functions, u and v

Put
$$t = u(x) = ax + b$$

$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(ax + b)$$

$$\frac{dt}{dx} = \frac{d}{dx}(ax+b) = \frac{d}{dx}(ax) + \frac{d}{dx}(b) = a+0 = a$$

Therefore, by chain rule, we obtain

$$g' = \frac{dg}{dx} = \frac{dv}{dt}\frac{dt}{dx} = \cos(ax+b).a = a\cos(ax+b)$$

Consider
$$h(x) = \cos(cx+d)$$

Let
$$p(x) = cx + d, q(y) = \cos y$$

Then,
$$(qop)(x) = q(p(x)) = q(cx+d) = cos(cx+d) = h(x)$$

... h is a composite function of two functions, p and q

Put
$$y = p(x) = cx + d$$

$$\frac{dq}{dy} = \frac{d}{dy}(\cos y) = -\sin y = -\sin(cx + d)$$

$$\frac{dy}{dx} = \frac{d}{dx}(cx+d) = \frac{d}{dx}(cx) + \frac{d}{dx}(d) = c$$

Therefore, by chain rule, we obtain

$$h' = \frac{dh}{dx} = \frac{dq}{dy}\frac{dy}{dx} = -\sin(cx+d) \times c = -c\sin(cx+d)$$

$$\therefore f' = \frac{a\cos(ax+b)\cos(cx+d) - \sin(ax+b)\{-c\sin cx+d\}}{\left[\cos(cx+d)\right]^2}$$

$$= a\cos(ax+b) + a\sin(ax+b)\sin(cx+d) \times 1$$

$$= \frac{a\cos(ax+b)}{\cos(cx+d)} + c\sin(ax+b)\frac{\sin(cx+d)}{\cos(cx+d)} \times \frac{1}{\cos(cx+d)}$$

$$= a\cos(ax+b)\sec(cx+d) + c\sin(ax+b)\tan(cx+b)\sec(cx+d)$$

6. Differentiate the function with respect to x. $\cos x^3 \cdot \sin^2(x^5)$

Solution:

$$\frac{d}{dx} \Big[\cos x^{3} \cdot \sin^{2} (x^{5}) \Big] = \sin^{2} (x^{5}) \times \frac{d}{dx} \Big(\cos x^{3} \Big) + \cos^{3} \times \frac{d}{dx} \Big[\sin^{2} (x^{5}) \Big] \\
= \sin^{2} (x^{5}) \times \Big(-\sin x^{3} \Big) \times \frac{d}{dx} \Big(x^{3} \Big) + \cos x^{3} + 2\sin (x^{5}) \frac{d}{dx} \Big[\sin x^{5} \Big] \\$$
The given function is $= \sin x^{3} \sin^{2} (x^{5}) \times 3x^{2} + 2\sin x^{5} \cos x^{3} \cdot \cos x^{5} \times \frac{d}{dx} \Big(x^{5} \Big) \\
= 3x^{2} \sin x^{3} \sin^{3} (x^{5}) + 2\sin x^{5} \cos x^{5} \cos x^{3} \times 5x^{4} \\
= 10x^{4} \sin x^{5} \cos x^{5} \cos x^{3} - 3x^{2} \sin x^{3} \sin^{2} (x^{5})$

7. Differentiate the functions with respect to x.

$$\sqrt[2]{\cot(x^2)}$$

Solution:

$$\frac{d}{dx} \left[\sqrt[2]{\cot(x^2)} \right]$$

$$= 2 \cdot \frac{1}{\sqrt[2]{\cot(x^2)}} \times \frac{d}{dx} \left[\cot(x^2) \right]$$

$$= \sqrt{\frac{\sin(x^2)}{\cos(x^2)}} \times -\cos ec^2(x^2) \times \frac{d}{dx}(x^2)$$

$$= \sqrt{\frac{\sin(x^2)}{\cos(x^2)}} \times \frac{1}{\sin^2(x^2)} \times (2x)$$

$$= \frac{-2x}{\sqrt{\cos x^2 \sqrt{\sin x^2 \sin x^2}}}$$

$$=\frac{-2\sqrt{2}x}{\sqrt{2\sin x^2\cos x^2\sin x^2}}$$

$$=\frac{-2\sqrt{2}x}{\sin x^2\sqrt{\sin 2x^2}}$$

8. Differentiate the functions with respect to x

$$\cos(\sqrt{x})$$

Solution:

Let
$$f(x) = \cos(\sqrt{x})$$

Also, let
$$u(x) = \sqrt{x}$$

And,
$$v(t) = \cos t$$

Then,
$$(vou)(x) = v(u(x))$$

$$=v(\sqrt{x})$$

$$=\cos\sqrt{x}$$

$$=f(x)$$

Clearly, f is a composite function of two functions, u and v, such that $t = u(x) = \sqrt{x}$

Then,
$$\frac{dt}{dx} = \frac{d}{dx} \left(\sqrt{x} \right) = \frac{d}{dx} \left(x^{\frac{1}{2}} \right)$$

$$\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

And,
$$\frac{dv}{dt} = \frac{d}{dt}(\cos t) = -\sin t = -\sin \sqrt{x}$$

By using chain rule, we obtain

$$\frac{dt}{dx} = \frac{dv}{dt} \frac{dt}{dx}$$

$$= -\sin(\sqrt{x}) \frac{1}{2\sqrt{x}}$$

$$= -\frac{1}{2\sqrt{x}} \sin(\sqrt{x})$$

$$= -\frac{\sin(\sqrt{x})}{2\sqrt{x}}$$

Alternate method

$$\frac{d}{dx} \left[\cos\left(\sqrt{x}\right) \right] = -\sin\left(\sqrt{x}\right) \frac{d}{dx} \left(\sqrt{x}\right)$$

$$= -\sin\left(\sqrt{x}\right) \times \frac{d}{dx} \left(x^{\frac{1}{2}}\right)$$

$$= -\sin\sqrt{x} \times \frac{1}{2} x^{-\frac{1}{2}}$$

$$= \frac{-\sin\sqrt{x}}{2\sqrt{x}}$$

9. Prove that the function f given by $f(x) = |x-1|, x \in R$ is not differentiable at x = 1

Solution:

The given function is $f(x) = |x-1|, x \in R$

It is known that a function f is differentiable at a point x = c in its domain if both

$$\lim_{k\to 0^{-}} \frac{f\left(c+h\right) - f\left(c\right)}{k} \text{ and } \lim_{h\to 0^{+}} \frac{f\left(c+h\right) - f\left(c\right)}{h} \text{ are finite and equal}$$

To check the differentiability of the given function at x = 1,

Consider the left hand limit of f at x = 1

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{f|I+h-1||1-1|}{h}$$

$$\lim_{h \to 0^{-}} \frac{|h| - 0}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} \qquad (h < 0 \Longrightarrow |h| = -h)$$

$$= -1$$

Consider the right hand limit of f at x = 1

$$\lim_{h \to 0^{+}} \frac{f\left(1+h\right) - f\left(1\right)}{h} = \lim_{h \to 0^{+}} \frac{f\left|I+h-1\right| - \left|1-1\right|}{h}$$

$$= \lim_{h \to 0^+} \frac{|h| - 0}{h} = \lim_{h \to 0^+} \frac{h}{h} \qquad (h > 0 \Longrightarrow |h| = h)$$

$$= 1$$

Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x = 1

10. Prove that the greatest integer function defined by f(x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2

Solution:

The given function f is f(x) = [x], 0 < x < 3

It is known that a function f is differentiable at a point x = c in its domain if both $\lim_{x \to c} \frac{f(c+h) - f(c)}{f(c+h) - f(c)}$ are finite and equal

$$\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \text{ and } \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h} \text{ are finite and equal}$$

To check the differentiable of the given function at x = 1, consider the left hand limit of f at x = 1

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{[1+h] - [1]}{h}$$

$$= \lim_{h \to 0^{-}} \frac{0 - 1}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

Consider the right hand limit of f at x = 1

$$= \lim_{h \to 0^+} \frac{f\left(1+h\right) - f\left(1\right)}{h} = \lim_{h \to 0^-} \frac{\left[1+h\right]\left[1\right]}{h}$$

$$= \lim_{h \to 0^+} \frac{1-1}{h} = \lim_{h \to 0^+} 0 = 0$$

Since the left and right limits of f at x = 1 are not equal, f is not differentiable at x = 1

To check the differentiable of the given function at x=2, consider the left hand limit of f at x=2

$$= \lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{-}} \frac{[2+h] - [2]}{h}$$

$$= \lim_{h \to 0^{-}} \frac{1-2}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

Consider the right hand limit of f at x=1

$$= \lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{+}} \frac{[2+h] - [2]}{h}$$

$$= \lim_{h \to 0^+} \frac{1-2}{h} = \lim_{h \to 0^+} 0 = 0$$

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x = 2

Exercise 5.3

11. Find
$$\frac{dy}{dx}$$
: $2x + 3y = \sin x$

Solution:

The given relationship is $2x + 3y = \sin x$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dy}(2x+3y) = \frac{d}{dx}(\sin x)$$

$$\Rightarrow \frac{d}{dy}(2x) + \frac{d}{dx}(3y) = \cos x$$

$$\Rightarrow 2 + 3 \frac{dy}{dx} = \cos x$$

$$\Rightarrow 3\frac{dy}{dx} = \cos x - 2$$

$$\therefore \frac{dx}{dy} = \frac{\cos x - 2}{3}$$

12. Find
$$\frac{dy}{dx}$$
: $2x + 3y = \sin y$

Solution:

The given relationship is $2x + 3y = \sin y$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \frac{d}{dx}(\sin y)$$

$$\Rightarrow 2 + 3\frac{d}{dx} = \cos y \frac{dy}{dx}$$

(by using chain rule)

$$\Rightarrow 2 = (\cos y - 3) \frac{dy}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{2}{\cos y - 3}$$

13. Find
$$\frac{dy}{dx}$$
: $ax + by^2 = \cos y$

Solution:

The given relationship is $ax + by^2 = \cos y$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(ax) + \frac{d}{dx}(by^2) = \frac{d}{dx}(\cos y)$$

$$\Rightarrow a + b \frac{d}{dx} (by^2) = \frac{d}{dx} (\cos y)$$

Using chain rule, we obtain $\frac{d}{dx}(y^2) = 2y \frac{d}{dx}(\cos y)$(1)

And
$$\frac{d}{dx}(\cos y) = \sin y \frac{d}{dx}$$
.....(2)

From (1) and (2), we obtain

$$a + bx 2y \frac{dy}{dx} = -\sin y \frac{dy}{dx}$$

$$\Rightarrow (2by + \sin y) \frac{dy}{dx} = -a$$

$$\therefore \frac{dy}{dx} = \frac{-a}{2by + \sin y}$$

14. Find
$$\frac{dy}{dx}$$
: $xy + y^2 = \tan x + y$

Solution:

The given relationship is $xy + y^2 = \tan x + y$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(xy+y^2) = \frac{d}{dx}(\tan x + y)$$

$$\Rightarrow \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}(\tan x) + \frac{dy}{dx}$$

$$\Rightarrow \left[y \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} \right] + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$

[using product rule and chain rule]

$$y.1 + x \frac{dy}{dx} + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$

$$\Rightarrow (x+2y-1)\frac{dy}{dx} = \sec^2 x - y$$

$$\therefore \frac{dy}{dx} = \frac{\sec^2 x - y}{\left(x + 2y - 1\right)}$$

15. Find
$$\frac{dy}{dx}$$
: $x^2 + xy + y^2 = 100$

Solution:

The given relationship is $x^2 + xy + y^2 = 100$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}\left(x^2 + xy + y^2\right) = \frac{d}{dx}(100)$$

[Derivative of constant function is 0]

$$\Rightarrow \frac{d}{dx}x^2 + \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = 0$$

$$\Rightarrow 2x + \left[y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx} \right] + 2y \frac{dy}{dx} = 0$$

[Using product rule and chain rule]

$$\Rightarrow 2x + y.1 + x.\frac{dy}{dx} + 2y\frac{dy}{dx} = 0$$

$$\Rightarrow 2x + y + (x + 2y) \cdot \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{2x+y}{x+2y}$$

16. Find
$$\frac{dy}{dx}$$
: $x^2 + x^2y + xy^2 + y^3 = 81$

The given relationship is $x^2 + x^2y + xy^2 + y^3 = 81$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x^{3} + x^{2}y + xy^{2} + y^{3}) = \frac{d}{dx}(81)$$

$$\Rightarrow \frac{d}{dx}(x^{3}) + \frac{d}{dx}(x^{2}y) + \frac{d}{dx}(xy)^{2} + \frac{d}{dx}(y^{3}) = 0$$

$$\Rightarrow 3x^{2} + \left[y\frac{d}{dx}(x^{2}) + x^{2}\frac{dy}{dx}\right] + \left[y^{2}\frac{d}{dx}(x) + x\frac{d}{dx}(y^{2})\right] + 3y^{2}\frac{dy}{dx} = 0$$

$$\Rightarrow 3x^{2} + \left[y.2x + x^{2}\frac{dx}{dy}\right] + \left[y^{2}.1 + x.2y\frac{dy}{dx}\right] + 3y^{2}\frac{dx}{dy} = 0$$

$$\Rightarrow (x^{2} + 2xy + 3y^{2})\frac{dy}{dx} + (3x^{2} + 2xy + y^{2}) = 0$$

$$\therefore \frac{dy}{dx} = \frac{-(3x^{2} + 2xy + y^{2})}{(x^{2} + 2xy + 3y^{2})}$$

17. Find
$$\frac{dx}{dy}$$
: $\sin^2 y + \cos xy = \pi$

Solution:

The given relationship is $\sin^2 y + \cos xy = \pi$

$$\frac{d}{dx}\left(\sin^2 y + \cos xy\right) = \frac{d}{dx}(\pi)\dots(1)$$

$$\Rightarrow \frac{d}{dx}(\sin^2 y) + \frac{d}{dx}(\cos xy) = 0$$

Using chain rule, we obtain

$$\frac{d}{dx}(\sin^2 y) + 2\sin y \frac{d}{dx}(\sin y) = 2\sin y \cos y \frac{dy}{dx}$$

$$\frac{d}{dx}(\cos xy) + -\sin x \ y(xy) = -\sin x \ y \left[\ y \frac{d}{dx}(x) + x \frac{dy}{dx} \right] \dots (2)$$

$$= -\sin xy \left[y.1 + x \frac{dy}{dx} \right] = -y\sin xy - x\sin xy \frac{dy}{dx} \dots (3)$$

From (1), (2) and (3), we obtain

$$2\sin y\cos y\frac{dy}{dx} - y\sin xy - x\sin xy\frac{dy}{dx} = 0$$

$$\Rightarrow (2\sin y \cos y - x \sin xy) \frac{dy}{dx} = y \sin xy$$

$$\Rightarrow (\sin 2y - x\sin xy)\frac{dx}{dy} = y\sin xy$$

$$\therefore \frac{dx}{dy} = \frac{y \sin xy}{\sin 2y - x \sin xy}$$

18. Find
$$\frac{dy}{dx}$$
: $\sin^2 x + \cos^2 y = 1$

Solution:

The given relationship is $\sin^2 x + \cos^2 y = 1$

$$\frac{dy}{dx}\left(\sin^2 x + \cos^2 y\right) = \frac{d}{dx}(1)$$

$$\Rightarrow \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}\cos^2 y = 0$$

$$\Rightarrow 2\sin x \cdot \frac{d}{dx}(\sin x) + 2\cos y \cdot \frac{d}{dx}(\cos y) = 0$$

$$\Rightarrow 2 \sin x \cos x + 2 \cos (-\sin y) \cdot \frac{dy}{dx} = 0$$

$$\Rightarrow \sin x - \sin 2y \frac{dy}{dx} = 0$$

$$\therefore \frac{dx}{dy} = \frac{\sin 2x}{\sin 2y}$$

19. Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

The given relationship is $y = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$

$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow \sin y = \frac{2x}{1+x^2}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin y) = \frac{d}{dx} \left(\frac{2x}{1+x^2} \right)$$

$$\Rightarrow \cos y \frac{dy}{dx} = \frac{d}{dx} \left(\frac{2x}{1+x^2} \right) \dots (1)$$

The function $\frac{2x}{1+x^2}$, is of the form of $\frac{u}{v}$

Therefore, by quotient rule, we obtain

$$\frac{d}{dx}\left(\frac{2x}{1+x^2}\right) = \frac{\left(1+x^2\right)\frac{d}{dx}\left(2x\right) - 2x \cdot \frac{d}{dx}\left(1+x^2\right)}{\left(1+x^2\right)}$$

$$= \frac{\left(1+x^2\right) \cdot 2 - 2x\left[0+2x\right]}{\left(1+x^2\right)^2} = \frac{2+2x^2-4x^3}{\left(1+x^2\right)^2} = \frac{2\left(1+x^2\right)}{\left(1+x^2\right)^2} \dots (2)$$

Also,
$$\sin y = \frac{2x}{1+x^2}$$

$$\Rightarrow \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} = \sqrt{\frac{\left(\left(1 + x^2\right)^2 - 4x^2\right)}{\left(1 + x^2\right)^2}} \dots (3)$$

$$= \sqrt{\frac{\left(1 - x^2\right)^2}{\left(1 - x^2\right)^2}} = \frac{1 - x^2}{1 + x^2}$$

From (1) (2) and (3) we obtain

$$\frac{1-x^2}{1+x^2}x\frac{dy}{dx} = \frac{2(1-x^2)}{(1+x^2)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{1+x^2}$$

20. Find
$$\frac{dx}{dy}$$
: $y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$

Solution:

The given relationship is $y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$

$$y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$

$$\Rightarrow \tan y = \frac{3x - x^3}{1 - 3x^2} \dots (1)$$

It is known that,
$$\tan y = \frac{3\tan\frac{y}{3} - \tan^3\frac{y}{3}}{1 - 3\tan^2\frac{y}{3}}$$
....(2)

Comparing equations (1) and (2), we obtain

$$x = \tan \frac{y}{3}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx}\left(\tan\frac{y}{3}\right)$$

$$\Rightarrow 1 = \sec^2 \frac{y}{3} \cdot \frac{d}{dx} \left(\frac{y}{3} \right)$$

$$\Rightarrow 1 = \sec^2 \frac{y}{3} \cdot \frac{1}{3} \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3}{\sec^2 \frac{y}{3}} = \frac{3}{1 + \tan^2 \frac{y}{3}}$$

$$\therefore \frac{dx}{dy} = \frac{3}{1+x^2}$$

21. Find
$$\frac{dy}{dx}$$
: $y \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$, $0 < x < 1$

Solution:

The given relationship is,

$$y\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow \cos y = \frac{1-x^2}{1+x^2}$$

$$\Rightarrow \frac{1-\tan^2\frac{y}{2}}{1+\tan^2\frac{y}{2}} = \frac{1-x^2}{1+x^2}$$

On comparing LHS and RHS of the above relationship, we obtain

$$\tan\frac{y}{2} = x$$

Differentiating this relationship with respect to x, we obtain

$$\sec^2 \frac{y}{2} \cdot \frac{d}{dx} \left(\frac{y}{2} \right) = \frac{d}{dx} (x)$$

$$\Rightarrow \sec^2 \frac{y}{2} \times \frac{1}{2} \frac{d}{dx} = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{\sec^2 \frac{y}{2}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{1 + \tan^2 \frac{y}{2}}$$

$$\therefore \frac{dy}{dx} = \frac{1}{1+x^2}$$

22. Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$, $0 < x < 1$

Solution:

The given relationship is $y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

$$\Rightarrow$$
 = siny = $\frac{1-x^2}{1+x^2}$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}\left(\frac{1-x^2}{1+x^2}\right)....(1)$$

Using chain rule, we obtain

$$\frac{d}{dx}(\sin y) = \cos y.\frac{dy}{dx}$$

$$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}$$

$$=\sqrt{\frac{\left(1+x^2\right)^2-\left(1-x^2\right)^2}{\left(1+x^2\right)^2}}=\sqrt{\frac{4x^2}{\left(1+x^2\right)^2}}=\frac{2x}{1+x^2}$$

$$\therefore \frac{d}{dx}(\sin y) = \frac{2x}{1+x^2} \frac{dy}{dx} \dots (2)$$

$$\frac{d}{dx}\left(\frac{1-x^2}{1+x^2}\right) = \frac{\left(1+x^2\right)\left(1-x^2\right)-\left(1-x^2\right)\left(1+x^2\right)}{\left(1+x^2\right)^2}$$

$$=\frac{(1+x^2)(-2x)-(1-x^2)(2x)}{(1+x^2)^2}$$

$$=\frac{-2x-2x^3-2x+2x^3}{\left(1+x^2\right)^2}$$

$$=\frac{-4x}{(1+x^2)^2}....(3)$$

From (1), (2) and (3), we obtain

$$\frac{2x}{1+x^2} \frac{dy}{dx} = \frac{-4x}{(1+x^2)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{1+x^2}$$

Alternate method

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

[using quotient rule]

$$\Rightarrow \sin y = \frac{1 - x^2}{1 + x^2}$$

$$\Rightarrow (1+\sin y)x^2 = 1-\sin y$$

$$\Rightarrow x^2 = \frac{1 - \sin y}{1 + \sin y}$$

$$\Rightarrow x^2 = \frac{\left(\cos\frac{y}{2} - \sin\frac{y}{2}\right)^2}{\left(\cos\frac{y}{2} + \sin\frac{y}{x}\right)^2}$$

$$\Rightarrow x = \frac{\cos\frac{y}{2} - \sin\frac{y}{2}}{\cos\frac{y}{2} + \sin\frac{y}{2}}$$

$$\Rightarrow x = \frac{1 - \tan \frac{y}{2}}{1 + \tan \frac{y}{2}}$$

$$\Rightarrow x = \tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right)$$

$$\frac{d}{dx}(x) = \frac{d}{dx} \cdot \left[\tan \left(\frac{\pi}{4} - \frac{y}{2} \right) \right]$$

$$\Rightarrow 1 = \sec^2\left(\frac{\pi}{4} - \frac{y}{2}\right) \cdot \frac{d}{dx}\left(\frac{\pi}{4} - \frac{y}{2}\right)$$

$$\Rightarrow 1 = \left[1 + \tan^2 \left(\frac{\pi}{4} - \frac{y}{2} \right) \cdot \left(-\frac{1}{2} \cdot \frac{dy}{dx} \right) \right]$$

$$\Rightarrow 1 = (1 + x^2) \left(-\frac{1}{2} \frac{dy}{dx} \right)$$

$$\Rightarrow \frac{dx}{dy} = \frac{-2}{1+x^2}$$

23. Find
$$\frac{dy}{dx}$$
: $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$, $-1 < x < 1$

The given relationship is $y = \cos^{-1} \left(\frac{2x}{1+x^2} \right)$

$$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$$

$$\Rightarrow \cos y = \frac{2x}{1+x^2}$$

$$\frac{d}{dx}(\cos y) = \frac{d}{dx} \left(\frac{2x}{1+x^2} \right)$$

$$\Rightarrow -\sin y. \frac{dy}{dx} = \frac{\left(1 + x^2\right) \frac{d}{dx} \left(2x\right) - 2x \frac{d}{dx} \left(1 + x^2\right)}{\left(1 + x^2\right)^2}$$

$$\Rightarrow -\sqrt{1-\cos^2 y} \frac{dy}{dx} = \frac{\left(1+x^2\right) \times 2 - 2x \cdot 2x}{\left(1+x^2\right)^2}$$

$$\Rightarrow \left[\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} \right] \frac{dy}{dx} = -\left[\frac{2(1 - x)^2}{\left(1 + x^2\right)^2} \right]$$

$$\Rightarrow \sqrt{\frac{(1-x^2)^2 - 4x^2}{(1+x^2)^2}} \frac{dy}{dx} = \frac{-2(1-x^2)}{(1+x^2)}$$

$$\Rightarrow \sqrt{\frac{\left(1-x^2\right)^2}{\left(1+x^2\right)^2}} \frac{dy}{dx} = \frac{-2\left(1-x^2\right)}{\left(1+x^2\right)^2}$$

$$\Rightarrow \frac{1-x^2}{1+x^2} \frac{dy}{dx} = \frac{-2\left(1-x^2\right)}{\left(1+x^2\right)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{1+x^2}$$

24. Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$, $-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$

Relationship is $y = \sin^{-1}(2x\sqrt{1-x^2})$

$$y = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$$

$$\Rightarrow \sin y = 2x\sqrt{1-x^2}$$

$$\cos y = \frac{dy}{dx} = 2 \left[x \frac{d}{dx} \left(\sqrt{1 - x^2} \right) + \sqrt{1 - x^2} \frac{d}{dx} \right]$$

$$\Rightarrow \sqrt{1-\sin^2 y} \frac{dy}{dx} = 2 \left[\frac{x}{2} \cdot \frac{-2x}{\sqrt{1-x^2}} + \sqrt{1-x^2} \right]$$

$$\Rightarrow \sqrt{1 - \left(2x\sqrt{1 - x^2}\right)} \frac{dy}{dx} = 2 \left[\frac{-x^2 + 1 - x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \sqrt{1 - 4x^2 \left(1 - x^2\right)} \frac{dy}{dx} = 2 \left[\frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \sqrt{(1-2x)^2} \frac{dy}{dx} = 2 \left[\frac{1-2x^2}{\sqrt{1-x^2}} \right]$$

$$\Rightarrow (1 - 2x) \frac{dy}{dx} = 2 \left[\frac{1 - 2x^2}{\sqrt{1 - x^2}} \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{2}{\sqrt{1 - x^2}}$$

25. Find
$$\frac{dy}{dx}$$
: $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$, $0 < x < \frac{1}{\sqrt{2}}$

The given relationship is $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$

$$y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$$

$$\Rightarrow \sec y = \frac{1}{2x^2 - 1}$$

$$\Rightarrow \cos y = 2x^2 - 1$$

$$\Rightarrow 2x^2 = 1 + \cos y$$

$$\Rightarrow 2x^2 = 2\cos^2\frac{y}{2}$$

$$\Rightarrow x = \cos \frac{y}{2}$$

$$\frac{d}{dx}(x) = \frac{d}{dx}\left(\cos\frac{y}{2}\right)$$

$$\Rightarrow 1 = \sin \frac{y}{2} \cdot \frac{d}{dx} \left(\frac{y}{2} \right)$$

$$\Rightarrow \frac{-1}{\sin\frac{y}{2}} = \frac{1}{2} \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{\sin\frac{y}{2}} = \frac{-2}{\sqrt{1 - \cos^2\frac{y}{2}}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-2}{\sqrt{1-x^2}}$$

Exercise 5.4

1. Differentiating the following w.r.t $x : \frac{e^x}{\sin x}$

Solution:

Let
$$y = \frac{e^x}{\sin x}$$

Differentiating wrt x, we obtain

$$\frac{dy}{dx} = \frac{\sin x \frac{d}{dx} (e^x) - e^x \frac{d}{dx} (\sin x)}{\sin^2 x}$$

$$=\frac{\sin x.(e^x)-e^x.(\cos x)}{\sin^2 x}$$

$$=\frac{e^{x}\left(\sin x-\cos x\right)}{\sin^{2}x}, x\neq n\pi, n\in Z$$

2. Differentiating the following $e^{\sin^{-1}x}$

Solution:

Let
$$y = e^{\sin^{-1}x}$$

Differential wrt x, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\sin^{-1} x} \right)$$

$$\Rightarrow \frac{dy}{dx} = e^{\sin^{-1}x} \cdot \frac{d}{dx} \left(\sin^{-1} x \right)$$

$$\Rightarrow e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}$$

$$\therefore \frac{dy}{dx} = \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}}, x \in (-1,1)$$

3. Differentiating the following wrt $x:e^{x^3}$

Solution:

Let
$$y = e^{x^3}$$

By using the quotient rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} = \left(e^{x^3}\right) = e^{x^3} \cdot \frac{d}{dx} \left(x^3\right) = e^{x^3} \cdot 3x^2 = 3x^2 e^{x^3}$$

4. Differentiating the following w.r.t $x : \sin(\tan^{-1} e^{-x})$

Solution:

Let
$$y = \sin(\tan^{-1} e^{-x})$$

By using the chain rule, we obtain

$$\frac{dy}{dx}: \frac{d}{dx} \left[\sin \left(\tan^{-1} e^{-x} \right) \right]$$

$$=\cos\left(\tan^{-1}e^{-x}\right).\frac{d}{dx}\left(\tan^{-1}e^{-x}\right)$$

$$= \cos\left(\tan^{-1} e^{-x}\right) \cdot \frac{1}{1 + \left(e^{-x}\right)^{2}} \cdot \frac{d}{dx} \left(e^{-x}\right)$$

$$= \frac{\cos(\tan^{-1}e^{-x})}{1 + e^{-2x}} \cdot e^{-x} \cdot \frac{d}{dx}(-x)$$

$$=\frac{e^{-x}\cos(\tan^{-1}e^{-x})}{1+e^{-2x}}(-1)$$

$$=\frac{-e^{-x}\cos(\tan^{-1}e^{-x})}{1+e^{-2x}}$$

5. Differentiating the following w.r.t $x: \log(\cos e^x)$

Solution:

Let
$$y = \log(\cos e^x)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log \Big(\cos e^x \Big) \Big]$$

$$= \frac{1}{\cos e^x} \cdot \frac{d}{dx} \Big(\cos e^x \Big)$$

$$= \frac{1}{\cos e^x} \cdot \Big(-\sin e^x \Big) \frac{d}{dx} \Big(e^x \Big)$$

$$= \frac{-\sin e^x}{\cos e^x} \cdot e^x$$

$$= -e^x \tan e^x, e^x \neq (2n+1) \frac{\pi}{2}, n \in \mathbb{N}$$

6. Differentiating the following w.r.t $x: e^x + e^{x^2} + \dots + e^{x^5}$

Solution:

$$\frac{d}{dx}\left(e^{x} + e^{x^{2}} + \dots + e^{x^{5}}\right)$$

$$= \frac{d}{dx}\left(e^{x}\right) + \frac{d}{dx}\left(e^{x^{2}}\right) + \frac{d}{dx}\left(e^{x^{3}}\right) + \frac{d}{dx}\left(e^{x^{4}}\right) + \frac{d}{dx}\left(e^{x^{5}}\right)$$

$$= e^{x} + \left[e^{x^{2}}\frac{d}{dx}(x^{2})\right] + \left[e^{x^{3}}\frac{d}{dx}(x^{3})\right] + \left[e^{x^{4}}\frac{d}{dx}(x^{4})\right] + \left[e^{x^{5}}\frac{d}{dx}(x^{5})\right]$$

$$= e^{x} + \left(e^{x^{2}}2x\right) + \left(e^{x^{3}}3x^{2}\right) + \left(e^{x^{4}}4x^{3}\right) + \left(e^{x^{5}}5x^{4}\right)$$

$$= e^{x} + 2xe^{x^{2}} + 3x^{2}e^{x^{3}} + 5x^{4}e^{x^{5}}$$

7. Differentiating the following w.r.t $x: \sqrt{e^{\sqrt{x}}}, x > 0$

Solution:

Let
$$y = \sqrt{e^{\sqrt{x}}}$$

Then,
$$y^2 = e^{\sqrt{x}}$$

By differentiating this relationship with respect to x, we obtain

$$y^2 = e^{\sqrt{x}}$$

[by applying the chain rule]

$$\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{d}{dx} (\sqrt{x})$$

$$\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{1}{2} \frac{1}{\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4v\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}\sqrt{x}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{x}e^{\sqrt{x}}}, x > 0$$

8. Differentiating the following w.r.t $x: \log(\log x), x > 1$

Solution:

Let
$$y = \log(\log x)$$

By using the chain rule, we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log \Big(\log x \Big) \Big]$$

$$= \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$

$$= \frac{1}{\log x} \cdot \frac{1}{x}$$

$$\frac{1}{x \log x}, x > 1$$

9. Differentiating the following w.r.t
$$x : \frac{\cos x}{\log x}, x > 0$$

Let
$$y = \frac{\cos x}{\log x}$$

By using the quotient rule, we obtain

$$\frac{dy}{dx} = \frac{\frac{d}{dx}(\cos x)\log x - \cos x \frac{d}{dx}(\log x)}{(\log x)^2}$$

$$\frac{-\sin x \log x - \cos x \frac{1}{x}}{\left(\log x\right)^2}$$

$$= \frac{-\left[x\log x.\sin x + \cos x\right]}{x\left(\log x\right)^2}, x > 0$$

10. Differentiating the following w.r.t $x: \cos(\log x + e^x), x > 0$

Solution:

Let
$$y = \cos(\log x + e^x)$$

By using the chain rule, we obtain

$$y = \cos(\log x + e^x)$$

$$\frac{dy}{dx} = -\sin\left[\log x + e^x\right] \frac{d}{dx} \left(\log x + e^x\right)$$

$$= \sin\left(\log x + e^x\right) \left[\frac{d}{dx}(\log x) + \frac{d}{dx}(e^x)\right]$$

$$= -\sin\left(\log x + e^x\right) \left(\frac{1}{x} + e^x\right)$$

$$= \left(\frac{1}{x} + e^x\right) \sin\left(\log x + e^x\right), x > 0$$

Exercise 5.5

1. Differentiate the following with respect to x.

$$\cos x.\cos 2x.\cos 3x$$

Solution:

Let
$$y = \cos x \cdot \cos 2x \cdot \cos 3x$$

Taking logarithm or both the side, we obtain

$$\log y = \log(\cos x \cdot \cos 2x \cdot \cos 3x)$$

$$\Rightarrow \log y = \log(\cos x) + \log(\cos 2x) + \log(\cos 3x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{\cos x}\frac{d}{dx}(\cos x) + \frac{1}{\cos 2x}\frac{d}{dx}(\cos 2x) + \frac{1}{\cos 3x}\frac{d}{dx}(\cos 3x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[-\frac{\sin x}{\cos x} - \frac{\sin 2x}{\cos 2x} \frac{d}{dx} (2x) - \frac{\sin 3x}{\cos 3x} \frac{d}{dx} (3x) \right]$$

$$\therefore \frac{dy}{dx} = -\cos x \cdot \cos 2x \cdot \cos 3x \left[\tan x + 2 \tan 2x + 3 \tan 3x \right]$$

2. Differentiate the functions with respect to x.

$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Solution:

Let
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Taking logarithm or both the side, we obtain

$$\log y = \log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

$$\Rightarrow \log y = \frac{1}{2} \log \left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \Big[\log \{ (x-1)(x-2) \} - \log \{ (x-3)(x-4)(x-5) \} \Big]$$

$$\Rightarrow \log y = \frac{1}{2} \left[\log(x-1) + \log(x-2) - \log(x-3) - \log(x-4) - \log(x-5) \right]$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \left[\frac{1}{x-1}\frac{d}{dx}(x-1) + \frac{1}{x-2}\frac{d}{dx}(x-2) - \frac{1}{x-3}\frac{d}{dx}(x-3) - \frac{1}{x-4}\frac{d}{dx}(x-4) - \frac{1}{x-5}\frac{d}{dx}(x-5) \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{2} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right)$$

$$\therefore \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right]$$

3. Differentiate the functions with respect to x.

$$(\log x)^{\cos x}$$

Solution:

Let
$$y = (\log x)^{\cos x}$$

Taking logarithm or both the side, we obtain

$$\log y = \cos x \cdot \log(\log x)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}(\cos x) \times \log(\log x) + \cos x \times \frac{d}{dx}\left[\log(\log x)\right]$$

$$\Rightarrow \frac{1}{v} \frac{dy}{dx} = -\sin x \log (\log x) + \cos x \times \frac{1}{\log x} \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[-\sin x \log \left(\log x \right) + \frac{\cos x}{\log x} \times \frac{1}{x} \right]$$

$$\therefore \frac{dy}{dx} = (\log x)^{\cos x} \left[\frac{\cos x}{x \log x} - \sin x \log(\log x) \right]$$

4. Differentiate the functions with respect to x.

$$x^x - 2^{\sin x}$$

Solution:

Let
$$y = x^x - 2^{\sin x}$$

Also, let
$$x^x = u$$
 and $2^{\sin x} = v$

$$\therefore y = u - v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

$$u = x^x$$

Taking logarithm on both sides, we obtain

$$\log u = x \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \left[\frac{d}{dx}(x) \times \log x + x \times \frac{d}{dx}(\log x)\right]$$

$$\Rightarrow \frac{du}{dx} = u \left[1 \times \log x + x \times \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^x (\log x + 1)$$

$$\Rightarrow \frac{du}{dx} = x^x (1 + \log x)$$

$$v = 2^{\sin x}$$

Taking logarithm on both the sides with respect to x, we obtain

$$\log v = \sin x \cdot \log 2$$

$$\frac{1}{v}\frac{dv}{dx} = \log 2\frac{d}{dx}(\sin x)$$

$$\Rightarrow \frac{dv}{dx} = v \log 2 \cos x$$

$$\Rightarrow \frac{dv}{dx} = 2^{\sin x} \cos x \log 2$$

$$\therefore \frac{dv}{dx} = x^2 (1 + \log x) - 2^{\sin x} \cos x \log 2$$

5. Differentiate the functions with respect to x.

$$(x+3)^2.(x+4)^3.(x+5)^4$$

Solution:

Let
$$y = (x+3)^2 (x+4)^3 (x+5)^4$$

Taking logarithm on both sides, we obtain

$$\log y = \log(x+3)^{2} + \log(x+4)^{3} + \log(x+5)^{4}$$

$$\Rightarrow \log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

$$\frac{1}{y}\frac{dy}{dx} = 2.\frac{1}{x+3}\frac{d}{dx}(x+3) + 3.\frac{1}{x+4}\frac{d}{dx}(x+4) + 4.\frac{1}{x+5}\frac{d}{dx}(x+5)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left[\frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3 \cdot \left[2(x^2+9x+20)+3(x^2+9x+15)+4(x^2+7x+12)\right]$$

$$\therefore \frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3(9x^2+70x+133)$$

6. Differentiate the function with respect to x.

$$\left(x+\frac{1}{x}\right)^x+x^{\left(1+\frac{1}{x}\right)}$$

Solution:

Let
$$y = \left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Also, let
$$u = \left(x + \frac{1}{x}\right)^x$$
 and $v = x^{\left(1 + \frac{1}{x}\right)}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

Then,
$$u = \left(x + \frac{1}{x}\right)^x$$

Taking log on both sides

$$\Rightarrow \log u = \log \left(x + \frac{1}{x} \right)^x$$

$$\Rightarrow \log u = x \log \left(x + \frac{1}{x} \right)$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x) \times \log\left(x + \frac{1}{x}\right) + x \times \frac{d}{dx}\left[\log\left(x + \frac{1}{x}\right)\right]$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = 1 \times \log\left(x + \frac{1}{x}\right) + x \times \frac{1}{\left(x + \frac{1}{x}\right)} \frac{d}{dx} \left(x + \frac{1}{x}\right)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log \left(x + \frac{1}{x} \right) + \frac{x}{\left(x + \frac{1}{x} \right)} x \left(x + \frac{1}{x^2} \right) \right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^{x} \left[\log\left(x + \frac{1}{x}\right) + \frac{\left(x - \frac{1}{x}\right)}{\left(x + \frac{1}{x}\right)}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\log\left(x + \frac{1}{x}\right) + \frac{x^2 - 1}{x^2 + 1}\right]$$

$$v = x^{\left(x + \frac{1}{x}\right)}$$

Taking log on both sides, we obtain

$$v = x^{\left(x + \frac{1}{x}\right)}$$

$$\Rightarrow \log v = \left(1 + \frac{1}{x}\right) \log x$$

$$\frac{1}{v}\frac{dv}{dx} = \left[\frac{d}{dx}\left(1 + \frac{1}{x}\right)\right] \times \log x + \left(1 + \frac{1}{x}\right)\frac{d}{dx}\log x$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left(-\frac{1}{x^2}\right) \log x + \left(1 + \frac{1}{x}\right) \frac{1}{x}$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = -\frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{-\log x + x + 1}{x^2} \right]$$

$$\Rightarrow \frac{dv}{dx} = x^{\left(x + \frac{1}{x}\right)} \left(\frac{x + 1 - \log x}{x^2}\right) \quad \dots (3)$$

Therefore, from (1), (2) and (3), we obtain

$$\frac{dy}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right] + x^{\left(x + \frac{1}{x}\right)} \left(\frac{x + 1 - \log x}{x^2}\right)$$

7. Differentiate the functions with respect to x.

$$(\log x)^x + x^{\log x}$$

Solution:

Let
$$y = (\log x)^x + x^{\log x}$$

Also, let
$$u = (\log x)^x$$
 and $v = x^{\log x}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

$$u = (\log x)^x$$

$$\Rightarrow \log u = \log \left[\left(\log x \right)^x \right]$$

$$\Rightarrow \log u = x \log(\log x)$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x)x\log(\log x) + x.\frac{d}{dx}\left[\log(\log x)\right]$$

$$\Rightarrow \frac{du}{dx} = u \left[1x \log(\log x) + x \cdot \frac{1}{\log x} \frac{d}{dx} (\log x) \right]$$

$$\Rightarrow \frac{du}{dx} = \left(\log x\right)^x \left[\log\left(\log x\right) + \frac{x}{\log x} \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(\log x\right)^x \left[\log\left(\log x\right) + \frac{1}{\log x}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(\log x\right)^x \left\lceil \frac{\log(\log x) \cdot \log x + 1}{\log x} \right\rceil$$

$$\Rightarrow \frac{du}{dx} = (\log x)^{x-1} \left[1 + \log x \cdot \log(\log x) \right] \qquad \dots (2)$$

$$v = x^{\log x}$$

$$\Rightarrow \log v = \log(x^{\log x})$$

$$\Rightarrow \log v = \log x \log x = (\log x)^2$$

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\Big[\Big(\log x\Big)^2\Big]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = 2(\log x) \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x} \frac{\log x}{x}$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x - 1} \log x$$
(3)

Therefore, from (1), (2) and (3), we obtain

$$\frac{dy}{dx} = \left(\log x\right)^{x-1} \left[1 + \log x \cdot \log\left(\log x\right)\right] + 2x^{\log x - 1} \log x$$

8. Differentiate the functions with respect to x

$$\left(\sin x\right)^x + \sin^{-1}\sqrt{x}$$

Solution:

Let
$$y = (\sin x)^x + \sin^{-1} \sqrt{x}$$

Also, let
$$u = (\sin x)^x$$
 and $v = \sin^{-1} \sqrt{x}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx} \quad \dots (1)$$

$$u = (\sin x)^x$$

$$\Rightarrow \log u = \log(\sin x)^x$$

$$\Rightarrow \log u = x \log(\sin x)$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{d}{dx} (x) \times \log(\sin x) + x \times \frac{d}{dx} \left[\log(\sin x) \right]$$

$$\Rightarrow \frac{du}{dx} = u \left[1.\log(\sin x) + x \cdot \frac{1}{\sin x} \frac{d}{dx} (\sin x) \right]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^x \left[\log(\sin x) + \frac{x}{\sin x} \cdot \cos x \right]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^{x} (x \cot x + \log \sin x) \qquad \dots (2)$$

$$v = \sin^{-1} \sqrt{x}$$

Differentiating both sides with respect to x, we obtain

$$\frac{dv}{dx} = \frac{1}{\sqrt{1 - \left(\sqrt{x}\right)^2}} \frac{d}{dx} \left(\sqrt{x}\right)$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{\sqrt{1-x}} \frac{1}{2\sqrt{x}}$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{x - x^2}} \qquad \dots (3)$$

Therefore, from (1), (2) and (3) we obtain

$$\frac{dy}{dx} = (\sin x)^2 \left(x \cot x + \log \sin x \right) + \frac{1}{2\sqrt{x - x^2}}$$

9. Differentiate the function with respect to x.

$$x^{\sin x} + (\sin x)^{\cos x}$$

Solution:

Let
$$y = x^{\sin x} + (\sin x)^{\cos x}$$

Also
$$u = x^{\sin x}$$
 and $v = (\sin x)^{\cos x}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$
(1)

$$u = x^{\sin x}$$

$$\Rightarrow \log u = \log(x^{\sin x})$$

$$\Rightarrow \log u = \sin x \log x$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(\sin x).\log x + \sin x \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u = \left[\cos x \log x + \sin x \cdot \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{\sin x} \left[\cos x \log x + \frac{\sin x}{x} \right] \qquad \dots (2)$$

$$v = (\sin x)^{\cos x}$$

$$\Rightarrow \log v = \log(\sin x)^{\cos x}$$

$$\Rightarrow \log v = \cos x \log(\sin x)$$

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}(\cos x) \times \log(\sin x) + \cos x \times \frac{d}{dx}\left[\log(\sin x)\right]$$

$$\Rightarrow \frac{dv}{dx} = v \left[-\sin x \cdot \log(\sin x) + \cos x \cdot \frac{1}{\sin x} \frac{d}{dx} (\sin x) \right]$$

$$\Rightarrow \frac{dv}{dx} = \left(\sin x\right)^{\cos x} \left[-\sin x \cdot \log \sin x + \frac{\cos x}{\sin x} \cos x \right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[-\sin x \log \sin x + \cot x \cos x \right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[\cot x \cos x - \sin x \log \sin x\right] \qquad \dots (3)$$

Therefore, from (1), (2) and (3) we obtain

$$\frac{dy}{dx} = x^{\sin x} \left(\cos x \log x + \frac{\sin x}{x}\right) + \left(\sin x\right)^{\cos x} \left[\cos x \cot x - \sin x \log \sin x\right]$$

10. Differentiate the function with respect to x.

$$x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Solution:

Let
$$y = x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Also, let
$$u = x^{x\cos x}$$
 and $v = \frac{x^2 + 1}{x^2 - 1}$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$\therefore y = u + v$$

$$u = x^{x \cos x}$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x)\cos x \log x + x\frac{d}{dx}(\cos x)\log x + x\cos x\frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[1.\cos x.\log x + x.(-\sin x)\log x + x\cos x.\frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{x\cos x} \left(\cos x \log x - x \sin x \log x + \cos x\right)$$

$$\Rightarrow \frac{du}{dx} = x^{x\cos x} \Big[\cos x (1 + \log x) - x \sin x \log x \Big] \qquad \dots (2)$$

$$v = \frac{x^2 + 1}{x^2 - 1}$$

$$\Rightarrow \log v = \log(x^2 + 1) - \log(x^2 - 1)$$

$$\frac{1}{v} = \frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1} \times \left[\frac{-4x}{\left(x^2 + 1\right)\left(x^2 - 1\right)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{-4x}{\left(x^2 - 1\right)^2} \qquad \dots (3)$$

Therefore, from (1), (2) and (3) we obtain

$$\frac{dy}{dx} = x^{x\cos x} \left[\cos x \left(1 + \log x\right) - x\sin x \log x\right] - \frac{4x}{\left(x^2 - 1\right)^2}$$

11. Differentiate the function with respect to x.

$$(x\cos x)^x + (x\sin x)^{\frac{1}{x}}$$

Solution:

Let
$$y = (x\cos x)^x + (x\sin x)^{\frac{1}{x}}$$

Also, let
$$u = (x \cos x)^x$$
 and $v = (x \sin x)^{\frac{1}{x}}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad \dots (1)$$

$$u = (x\cos x)^2$$

$$\Rightarrow \log u = \log(x \cos x)^x$$

$$\Rightarrow \log u = x \log(x \cos x)$$

$$\Rightarrow \log u = x [\log x + \log \cos x]$$

$$\Rightarrow \log u = x \log x + x \log \cos x$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x + \log x) + \frac{d}{dx}(x \log \cos x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\left\{ \log x \frac{d}{dx}(x) + x \frac{d}{dx}(\log x) \right\} + \left\{ \log \cos x \frac{d}{dx}(x) + x \frac{d}{dx}(\log \cos x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = \left(x\cos x\right)^x \left[\left(\log x \cdot 1 + x \cdot \frac{1}{x}\right) + \left\{\log \cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} \left(\cos x\right) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = \left(x\cos x\right)^x \left[\left(\log x \cdot 1 + x \cdot \frac{1}{x}\right) + \left\{\log \cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} \left(\cos x\right) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[(\log x + 1) + \left\{ \log \cos x + \frac{x}{\cos x} (-\sin x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \Big[(1 + \log x) + (\log\cos x - x\tan x) \Big]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^{x} \left[1 - x\tan x + (\log x + \log\cos x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^{x} \left[1 - x\tan x + \log(x\cos x)\right] \quad \dots (2)$$

$$v = (x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log \left(x \sin x \right)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \frac{1}{x} \log (x \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} (\log x + \log \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} \log x + \frac{1}{x} \log \sin x$$

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{x}\log x\right) + \frac{d}{dx}\left[\frac{1}{x}\log(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}(\log x)\right] + \left[\log(\sin x) \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}\{\log(\sin x)\}\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{x}\right] + \left[\log(\sin x) \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}(1 - \log x) + \left[-\frac{\log(\sin x)}{x^2} + \frac{1}{x\sin x} \cdot \cos x\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}(x\sin x)^{\frac{1}{x}} + \left[\frac{1 - \log x}{x^2} + \frac{-\log(\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log x - \log(\sin x) + x\cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x\sin x) + x\cot x}{x^2} \right] \quad \dots (3)$$

Therefore, from (1), (2) and (3), we obtain

$$\frac{dy}{dx} = (x\cos x)^2 \left[1 - x\tan x + \log(x\cos x)\right] + (x\sin x)^{\frac{1}{x}} \left[\frac{x\cot x + 1 - \log(x\sin x)}{x^2}\right]$$

12. Find $\frac{dy}{dx}$ of function.

$$x^y + y^x = 1$$

Solution:

The given function is $x^y + y^x = 1$

Let
$$x^y = u$$
 and $y^x = v$

Then, the function becomes u + v = 1

$$\therefore \frac{du}{dx} + \frac{dv}{dx} = 0 \qquad \dots (1)$$

$$u = x^y$$

$$\Rightarrow \log u = \log(x^y)$$

$$\Rightarrow \log u = y \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x \frac{dy}{dx} + y \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log x \frac{dy}{dx} + y \cdot \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right) \qquad \dots (2)$$

$$v = v^x$$

$$\Rightarrow \log v = \log(y^x)$$

$$\Rightarrow \log v = x \log y$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \log y \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y)$$

$$\Rightarrow \frac{dv}{dx} = v \left(\log y.1 + x. \frac{1}{y}. \frac{d}{dx} \right)$$

$$\Rightarrow \frac{dv}{dx} = y^x \left(\log y + \frac{x}{y} \frac{dy}{dx} \right) \qquad \dots (3)$$

Therefore, from (1), (2) and (3) we obtain

$$x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right) + y^{x} \left(\log y + \frac{x}{y} \frac{dy}{dx} \right) = 0$$

$$\Rightarrow \left(x^2 + \log x + xy^{y-1}\right) \frac{dy}{dx} = -\left(yx^{y-1} + y^x \log y\right)$$

$$\therefore \frac{dy}{dx} = -\frac{yx^{y-1} + y^x \log y}{x^y \log x + xy^{x-1}}$$

13. Find
$$\frac{dy}{dx}$$
 of function $y^x = x^y$

The given function is $y^x = x^y$

Taking logarithm on both sides, we obtain

$$x \log y = y \log x$$

$$\log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y) = \log x \cdot \frac{d}{dx}(y) + y \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \log y.1 + x.\frac{1}{y}.\frac{dy}{dx} = \log x.\frac{dy}{dx} + y.\frac{1}{x}$$

$$\Rightarrow \log y + \frac{x}{y} \frac{dy}{dx} = \log x \frac{dy}{dx} + \frac{y}{x}$$

$$\Rightarrow \left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x} - \log y$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y}{x} \left(\frac{y - x \log y}{x - y \log x} \right)$$

14. Find
$$\frac{dy}{dx}$$
 of friction $(\cos x)^y = (\cos y)^x$

The given function is $(\cos x)^y = (\cos y)^x$

Taking logarithm on both sides, we obtain

$$y = \log \cos x = x \log \cos y$$

Differentiating both sides with respect to x, we obtain

$$\log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{d}{dx} (\log \cos x) = \log \cos y \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log \cos y)$$

$$\Rightarrow \log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) = \log \cos y \cdot 1 + x \cdot \frac{1}{\cos y} \cdot \frac{d}{dx} (\cos y)$$

$$\Rightarrow \log \cos x \frac{dy}{dx} + \frac{y}{\cos x} \left(-\sin x\right) = \log \cos y + \frac{x}{\cos y} \left(-\sin y\right) \frac{dy}{dx}$$

$$\Rightarrow \log \cos x \frac{dy}{dx} - y \tan x = \log \cos y - x \tan y \frac{dy}{dx}$$

$$\Rightarrow (\log \cos x + x \tan y) \frac{dy}{dx} = y \tan x + \log \cos y$$

$$\therefore \frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

15. Find
$$\frac{dy}{dx}$$
 of function $xy = e^{(x-y)}$

Solution:

The given function is $xy = e^{(x-y)}$

Taking logarithm on both sides, we obtain

$$\log(xy) = \log(e^{x-y})$$

$$\Rightarrow \log x + \log y = (x - y) \log e$$

$$\Rightarrow \log x + \log y = (x - y) \times 1$$

$$\Rightarrow \log x + \log y = x - y$$

$$\frac{d}{dx}(\log x) + \frac{d}{dx}(\log y) = \frac{d}{dx}(x) - \frac{dy}{dx}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = 1 - \frac{1}{x}$$

$$\Rightarrow \left(1 + \frac{1}{y}\right) \frac{dy}{dx} = \frac{x - 1}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y(x-1)}{x(y+1)}$$

16. Find the derivative of the function given by $f(x) = (1-x)(1+x^2)(1+x^4)(1+x^8)$ and hence find f'(1)

Solution:

The given relationship is
$$f(x) = (1-x)(1+x^2)(1+x^4)(1+x^8)$$

Taking logarithm on both sides, we obtain

$$\log f(x) = \log(1+x) + \log(1+x^2) + \log(1+x^4) + \log(1+x^8)$$

$$\frac{1}{f(x)} \cdot \frac{d}{dx} \left[f(x) \right] = \frac{d}{dx} \log(1+x) + \frac{d}{dx} \log(1+x^2) + \frac{d}{dx} \log(1+x^4) + \frac{d}{dx} \log(1+x^8)$$

$$\Rightarrow \frac{1}{f(x)} \cdot f'(x) = \frac{1}{1+x} \cdot \frac{d}{dx} (1+x) + \frac{1}{1+x^2} \cdot \frac{d}{dx} (1+x^2) + \frac{1}{1+x^4} \cdot \frac{d}{dx} (1+x^4) + \frac{1}{1+x^8} \cdot \frac{d}{dx} (1+x^8)$$

$$\Rightarrow f'(x) = f(x) \left[\frac{1}{1+x} + \frac{1}{1+x^2} \cdot 2x + \frac{1}{1+x^4} \cdot 4x^3 + \frac{1}{1+x^8} \cdot 8x^7 \right]$$

$$\therefore f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \left[\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} \right]$$

Hence,
$$f'(1) = (1+1)(1+1^2)(1+1^4)(1+1^8) \left[\frac{1}{1+1} + \frac{2\times 1}{1+1^2} + \frac{4\times 1^3}{1+1^4} + \frac{8\times 1^7}{1+1^8} \right]$$

$$= 2 \times 2 \times 2 \times 2 \left[\frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \right]$$

$$=16 \times \left(\frac{1+2+4+8}{2}\right)$$

$$=16 \times \frac{15}{2} = 120$$

- 17. Differentiate $(x^2 5x + 8)(x^3 + 7x + 9)$ in three easy mentioned below
 - i. By using product rule
 - ii. By expanding the product to obtain a single polynomial
 - iii. By logarithm differentiate

Do they all given the same answer?

Solution:

Let
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

(i) Let
$$x = x^2 - 5x + 8$$
 and $u = x^3 + 7x + 9$

$$\therefore y = uv$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dv}v + u\frac{dv}{dx}$$
 (By using product rule)

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} (x^2 - 5x + 8) \cdot (x^3 + 7x + 9) + (x^2 + 5x + 8) \cdot \frac{d}{dx} (x^3 + 7x + 9)$$

$$\Rightarrow \frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7x + 9) + x^2(3x^2 + 7) - 5x(3x^2 + 7) - 8(3x^2 + 7)$$

$$\Rightarrow \frac{dy}{dx} = (2x^4 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^2 + 7x^2) - 15x^3 - 35x + 24x^2 + 56$$

$$\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

(ii)
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

$$= x^{2}(x^{3} + 7x + 9) - 5x(x^{3} + 7x + 9) + 8(x^{3} + 7x + 9)$$

$$= x^5 + 7x^3 + 9x^2 - 5x^4 - 35x^2 - 45x + 8x^3 + 56x + 72$$

$$= x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left(x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72 \right)$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx}\left(x^5\right) - 5\frac{d}{dx}\left(x^4\right) + 15\frac{d}{dx}\left(x^3\right) - 26\frac{d}{dx}\left(x^2\right) + 11\frac{d}{dx}\left(x\right) + \frac{d}{dx}\left(72\right)$$

$$=5x^4 - 5 \times 4x^3 + 15 \times 3x^2 - 26 \times 2x + 11 \times 1 + 0$$

$$=5x^4 - 20x^3 + 45x^2 - 52x + 11$$

(iii) Taking logarithm on both sides, we obtain

$$\log y = \log(x^2 - 5x + 8) + \log(x^3 + 7x + 9)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\log\left(x^2 - 5x + 8\right) + \frac{d}{dx}\log\left(x^3 + 7x + 9\right)$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot \frac{d}{dx} \left(x^2 - 5x + 8 \right) + \frac{1}{x^3 + 7x + 9} \cdot \frac{d}{dx} \left(x^3 + 7x + 9 \right)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{1}{x^2 - 5x + 8} \times (2x - 5) + \frac{1}{x^3 + 7x + 9} \times (3x^2 + 7) \right]$$

$$\Rightarrow \frac{dy}{dx} = \left(x^2 - 5x + 8\right)\left(x^3 + 7x + 9\right)\left[\frac{2x - 5}{x^3 - 5x + 8} + \frac{3x^2 + 7}{x^3 + 7x + 9}\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9) \left[\frac{2x - 5(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^3 - 5x + 8) + (x^3 + 7x + 9)} \right]$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7 + 9) + 3x^2(x^2 - 5x + 8) + 7(x^2 - 5x + 8)$$

$$\Rightarrow \frac{dy}{dx} = (2x^5 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^4 - 15x^3 + 24x^2) + (7x^2 - 35x + 56)$$

$$\Rightarrow \frac{dy}{dx} = 5x^2 - 20x^3 + 45x^2 - 52x + 11$$

From the above three observations, it can be concluded that all the result of $\frac{dy}{dx}$ are same

18. If u, v and w are function of x, then show that $\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u\frac{dv}{dx}$. w+u.v $\frac{dw}{dx}$. In two ways – first by repeated application of product rule, second by logarithmic differentiation.

Solution:

Let
$$y = u.v.w = u.(v.w)$$

By applying product rule, we obtain

$$\frac{dy}{dx} = \frac{du}{dx} \cdot (v \cdot w) + u \cdot \frac{d}{dx} (v \cdot w)$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} v \cdot w + u \left[\frac{dv}{dx} \cdot w + v \cdot \frac{dv}{dx} \right]$$
(Again applying product rule)
$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \cdot \frac{dw}{dx}$$

By taking logarithm on both sides of the equation y = u.v.w, we obtain

$$\log y = \log u + \log v + \log w$$

$$\frac{1}{v} \cdot \frac{dy}{dx} = \frac{d}{dx} (\log u) + \frac{d}{dx} (\log v) + \frac{d}{dx} (\log w)$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx}$$

$$\Rightarrow \frac{dy}{dx} = y \left(\frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$

$$\Rightarrow \frac{dy}{dx} = u.v.w \left(\frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$

$$\therefore \frac{dy}{dx} = \frac{du}{dx}.v.w + u.\frac{dv}{dx}.w + u.v\frac{dw}{dx}$$

Exercise 5.6

1. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$, $x = 2at^2$, $y = at^4$

Solution:

The given equation are $x = 2at^2$ and $y = at^4$

Then,

$$\frac{dx}{dt} = \frac{d}{dt}(2at^2) = 2a \cdot \frac{d}{dt}(t^2) = 2a \cdot 2t = 4at$$

$$\frac{dy}{dx} = \frac{d}{dt}(at^4)a \cdot \frac{d}{dt}(t^4) = a \cdot 4 \cdot t^3 = 4at^3$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{4at^3}{4at} = t^2$$

2. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = a\cos\theta, y = b\cos\theta$$

Solution:

The given equations are $x = a\cos\theta$ and $y = b\cos\theta$

Then,
$$\frac{dx}{d\theta} = \frac{d}{d\theta} (a\cos\theta) = a(-\sin\theta) = -a\sin\theta$$

$$\frac{dy}{d\theta} = \frac{d}{d\theta} (b\cos\theta) = b(-\sin\theta) = -b\sin\theta$$

$$\therefore \frac{dy}{dx} \left(\frac{dy}{d\theta} \right) = \frac{-b\sin\theta}{-a\sin\theta} = \frac{b}{a}$$

3. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$ $x = \sin t, y = \cos 2t$

Solution:

The given equations are $x = \sin t$ and $y = \cos 2t$

Then,
$$\frac{dx}{dt} = \frac{d}{dt} (\sin t) = \cos t$$

$$\frac{dy}{dt} = \frac{d}{dt}(\cos 2t) = -\sin 2t \cdot \frac{d}{dt}(2t) = -2\sin 2t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dx}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-2\sin 2t}{\cos t} = \frac{-2.2\sin t\cos t}{\cos t} = -4\sin t$$

4. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = 4t, y = \frac{4}{t}$$

Solution:

The equation are x = 4t and $y = \frac{4}{t}$

$$\frac{dx}{dt} = \frac{d}{dt} (4t) = 4$$

$$\frac{dy}{dt} = \frac{d}{dt} \left(\frac{4}{t}\right) = 4 \cdot \frac{d}{dt} \left(\frac{1}{t}\right) = 4 \cdot \left(\frac{-1}{t^2}\right) = \frac{-4}{t^2}$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-4}{t^2}\right)}{4} = \frac{-1}{t^2}$$

5. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = \cos \theta - \cos 2\theta$$
, $y = \sin \theta - \sin 2\theta$

Solution:

The given equations are $x = \cos \theta - \cos 2\theta$ and $y = \sin \theta - \sin 2\theta$

Then,
$$\frac{dx}{d\theta} = \frac{d}{d\theta} (\cos \theta - \cos 2\theta) = \frac{d}{d\theta} (\cos \theta) - \frac{d}{d\theta} (\cos 2\theta)$$

$$=-\sin\theta(-2\sin 2\theta)=2\sin 2\theta-\sin\theta$$

$$\frac{dy}{d\theta} = \frac{d}{d\theta} \left(\sin \theta - \sin 2\theta \right) = \frac{d}{d\theta} \left(\sin \theta \right) - \frac{d}{d\theta} \left(\sin 2\theta \right)$$

$$=\cos\theta-2\cos\theta$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{\cos\theta - 2\cos\theta}{2\sin 2\theta - \sin\theta}$$

6. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$$

Solution:

The given equations are $x = a(\theta - \sin \theta)$ and $y = a(1 + \cos \theta)$

Then,
$$\frac{dx}{d\theta} = a \left[\frac{d}{d\theta} (\theta) - \frac{d}{d\theta} (\sin \theta) \right] = a (1 - \cos \theta)$$

$$\frac{dy}{d\theta} = a \left[\frac{d}{d\theta} (1) + \frac{d}{d\theta} (\cos \theta) \right] = a \left[0 + (-\sin \theta) \right] = -a \sin \theta$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{-a\sin\theta}{a(1-\cos\theta)} = \frac{-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2}} = \frac{-\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}} = -\cot\frac{\theta}{2}$$

7. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = \frac{\sin^3 t}{\sqrt{\cos x 2t}}, y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$$

Solution:

The given equations are $x = \frac{\sin^3 t}{\sqrt{\cos x^2 t}}$ and $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$

Then,
$$\frac{dx}{dt} = \frac{d}{dt} \left[\frac{\sin^3 t}{\sqrt{\cos 2t}} \right]$$

$$= \frac{\sqrt{\cos 2t} - \frac{d}{dt} (\sin^3 t) - \sin^3 t - \frac{d}{dt} \sqrt{\cos 2t}}{\cos 2t}$$

$$= \frac{\sqrt{\cos 2t} \cdot 3\sin^2 t \cdot \frac{d}{dt} (\sin t) - \sin^3 tx \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} (\cos 2t)}{\cos 2t}$$

$$= \frac{3\sqrt{\cos 2t} \cdot \sin^2 t \cos t - \frac{\sin^3 t}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t\sqrt{\cos 2t}}$$

$$= \frac{3\cos 2t \sin^2 t \cot t + \sin^2 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$$

$$\frac{dy}{dt} = \frac{d}{dt} \left[\frac{\cos^3 t}{\sqrt{\cos 2t}} \right]$$

$$= \frac{\sqrt{\cos 2t} \cdot \frac{d}{dt} \left(\cos^3 t\right) - \cos^3 t \cdot \frac{d}{dt} \left(\sqrt{\cos 2t}\right)}{\cos 2t}$$

$$= \frac{\sqrt{\cos 2t} \cdot 3\cos^2 t \cdot \frac{d}{dt} (\cos t) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} (\cos 2t)}{\cos 2t}$$

$$= \frac{3\sqrt{\cos 2t}\cos^2 t \cdot (-\sin t) - \cos^3 t \cdot \frac{1}{\sqrt{\cos 2t}}(-2\sin 2t)}{\cos 2t}$$

$$=\frac{-3\cos 2t.\cos^2 t.\sin t + \cos^3 t\sin 2t}{\cos 2t.\sqrt{\cos 2t}}$$

$$\therefore \frac{dy}{dx} \left(\frac{dy}{dx} \right) = \frac{-3\cos 2t \cdot \cos^2 t + \cos^3 t \sin 2t}{3\cos 2t \sin^2 t \cos t + \sin^3 t \sin 2t}$$

$$= \frac{3\cos 2t \cdot \cos^2 t \sin t + \cos^3 t \left(2\sin t \cos t\right)}{3\cos 2 t \sin^2 t \cdot \cos t + \sin^3 t \left(2\sin t \cos t\right)}$$

$$= \frac{\sin t \cos t \left[-3\cos 2t \cdot \cos t + 2\cos^3 t \right]}{\sin t \cos t \left[3\cos 2t \sin t + 2\sin^3 t \right]}$$

$$= \frac{\left[-3(2\cos^2 t - 1)\cos t + 2\cos^3 t\right]}{\left[3(1 - 2\sin^2 t)\sin t + 2\sin^3 t\right]} \qquad \begin{bmatrix}\cos 2t = (2\cos^2 t - 1)\\\cos 2t = (1 - 2\sin^2 t)\end{bmatrix}$$

$$= \frac{-4\cos^3 t + 3\cos t}{3\sin t - 4\sin^3 t} \qquad \begin{bmatrix} \cos 3t = 4\cos^3 t - 3\cos t\\ \sin 3t = 3\sin t - 4\sin^2 t \end{bmatrix}$$

$$=\frac{-\cos 3t}{\sin 3t}$$

$$=-\cot 3t$$

8. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = a\left(\cot \log \frac{t}{2}\right), y = a\sin t$$

Solution:

The given equations are $x = a \left(\cosh + \log \frac{t}{2} \right)$ and $y = a \sin t$

Then,
$$\frac{d}{dx} = a \left[\frac{d}{dt} (\cos t) + \frac{d}{dt} \left(\log \tan \frac{t}{2} \right) \right]$$

$$= a \left[-\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{dt} \left(\tan \frac{t}{2} \right) \right]$$

$$= a \left[-\sin t + \cot \frac{t}{2} \cdot \sec^2 \frac{t}{2} \cdot \frac{d}{dt} \left(\frac{t}{2} \right) \right]$$

$$= a \left[-\sin t + \frac{\cot \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2} \right]$$

$$= a \left[-\sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}} \right]$$

$$= a \left(-\sin t + \frac{1}{\sin t} \right)$$

$$= a \left(\frac{-\sin^2 t + 1}{\sin t} \right)$$

$$= a \frac{\cos^2 t}{\sin t}$$

$$\frac{dy}{dt} = a\frac{d}{dt}(\sin t) = a\cos t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{a\cos t}{\left(a\frac{\cos^2 t}{\sin t}\right)} = \frac{\sin t}{\cos t} = \tan t$$

9. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$ $x = a \sec, y = b \tan \theta$

Solution:

The given equations are $x = a \sec$ and $y = b \tan \theta$

Then,
$$\frac{dx}{d\theta} = a \cdot \frac{d}{d\theta} (\sec \theta) = a \sec \theta \tan \theta$$

$$\frac{dy}{d\theta} = b \cdot \frac{d}{d\theta} (\tan \theta) = b \sec^2 \theta$$

$$\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{b\sec^2\theta}{a\sec\theta\tan\theta} = \frac{b}{a}\sec\theta\cot\theta = \frac{b\cos\theta}{a\cos\theta\sin\theta} = \frac{b}{a} \times \frac{1}{\sin\theta} = \frac{b}{a}\cos\theta\cot\theta$$

10. If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$$

Solution:

The given equations are $x = a(\cos\theta + \theta\sin\theta)$ and $y = a(\sin\theta - \theta\cos\theta)$

Then,
$$\frac{dx}{d\theta} = a \left[\frac{d}{d\theta} \cos \theta + \frac{d}{d\theta} (\theta \sin \theta) \right] = a \left[-\sin \theta + \theta \frac{d}{d\theta} (\sin \theta) + \sin \theta \frac{d}{d\theta} (\theta) \right]$$

$$=a[-\sin\theta+\theta\cos\theta+\sin\theta]=a\theta\cos\theta$$

$$\frac{dx}{d\theta} = a \left[\frac{d}{d\theta} (\sin \theta) - \frac{d}{d\theta} (\theta \cos \theta) \right] = a \left[\cos \theta - \left\{ \theta \frac{d}{d\theta} (\cos \theta) + \cos \theta \cdot \frac{d}{d\theta} (\theta) \right\} \right]$$

$$= a \left[\cos \theta + \theta \sin \theta - \cos \theta \right]$$

$$= a\theta \sin \theta$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{a\theta\sin\theta}{a\theta\sin\theta} = \tan\theta$$

11. If
$$x = \sqrt{a^{\sin - 1t}}$$
, $y = \sqrt{a^{\cos - 1t}}$, show that $\frac{dy}{dx} = -\frac{y}{x}$

Solution:

The given equation are $x = \sqrt{a^{\sin-1t}}$ and $y = \sqrt{a^{\cos-1t}}$

$$x = \sqrt{a^{\sin-1t}}$$
 and $y = \sqrt{a^{\cos-1t}}$

$$\Rightarrow x = (a^{\sin-1t})$$
 and $y = (a^{\cos-1t})^{\frac{1}{2}}$

$$\Rightarrow x = a^{\frac{1}{2}\sin-1t}$$
 and $y = a^{\frac{1}{2}\cos-1t}$

Consider
$$x = a^{\frac{1}{2}\sin-1t}$$

Taking logarithm on both sides, we obtain

$$\log x = \frac{1}{2}\sin^{-1}t\log a$$

$$\therefore \frac{1}{x} \frac{dx}{dt} = \frac{1}{2} \log a \cdot \frac{d}{dt} \left(\sin^{-1} t \right)$$

$$\Rightarrow \frac{dx}{dt} = \frac{x}{2} \log a \cdot \frac{1}{\sqrt{1 - t^2}}$$

$$\Rightarrow \frac{dx}{dt} = \frac{x \log a}{2\sqrt{1 - t^2}}$$

Then, consider

$$y = a^{\frac{1}{2}\cos^{-1}t}$$

Taking logarithm on both sides, we obtain

$$\log y = \frac{1}{2} \cos^{-1} t \log a$$

$$\therefore \frac{1}{y} \frac{dy}{dx} = \frac{1}{2} \log a \cdot \frac{d}{dt} \left(\cos^{-1} t \right)$$

$$\Rightarrow \frac{dy}{dt} = \frac{y \log a}{2} \left(\frac{-1}{\sqrt{1 - t^2}} \right)$$

$$\Rightarrow \frac{dy}{dt} = \frac{-y \log a}{2\sqrt{1 - t^2}}$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dx}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-y\log a}{2\sqrt{1-t^2}}\right)}{\frac{x\log a}{2\sqrt{1-t^2}}} = -\frac{y}{x}$$

Hence proved

Exercise 5.7

1. Find the second order derivatives of the function $x^2 + 3x + 2$

Solution:

Let
$$y = x^2 + 3x + 2$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x^{2}) + \frac{d}{dx}(3x) + \frac{d}{dx}(2) = 2x + 3 + 0 = 2x + 3$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} (2x+3) = \frac{d}{dx} (2x) + \frac{d}{dx} (3) = 2 + 0 = 2$$

2. Find the second order derivative of the function x^{20}

Solution:

Let
$$y = x^{20}$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x^{20}) = 20x^{19}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(20x^{19} \right) = 20 \frac{d}{dx} \left(x^{19} \right) = 20.19.x^{18} = 380x^{18}$$

3. Find the second order derivatives of the function $x \cdot \cos x$

Solution:

Let
$$y = x \cdot \cos x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x \cdot \cos x) = \cos x \cdot \frac{d}{dx}(x) + x \frac{d}{dx}(\cos x) = \cos x \cdot 1 + x(-\sin x) = \cos x - x \sin x$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\cos x - \sin x \right] = \frac{d}{dx} \left(\cos x \right) - \frac{d}{dx} \left(x \sin x \right)$$

$$= -\sin x - \left[\sin x \frac{d}{dx}(x) + x \frac{d}{dx}(\sin x)\right]$$

$$= -\sin x - \left(\sin x + \cos x\right)$$

$$= -\sin x - (\sin x + \cos x)$$

$$= -(x\cos x + 2\sin x)$$

4. Find the second order derivatives of the function $\log x$

Solution:

Let
$$y = \log x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} (\log x) = \frac{1}{x}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{1}{x} \right) = \frac{-1}{x^2}$$

Find the second order derivatives of the function $x^3 \log x$ 5.

Solution:

Let
$$y = x^3 \log x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left[x^3 \log x \right] = \log x \cdot \frac{d}{dx} \left(x^3 \right) + x^3 \frac{d}{dx} \left(\log x \right)$$

$$= \log x.3x^2 + x^3.\frac{1}{x} = \log x.3x^2 + x^2$$

$$= x^2 \left(1 + 3\log x \right)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[x^2 \left(1 + 3\log x \right) \right]$$

$$= \left(1 + 3\log x\right) \cdot \frac{d}{dx}\left(x^2\right) + x^2 \cdot \frac{d}{dx}\left(1 + 3\log x\right)$$

$$= (1 + 3\log x) \cdot 2x + x^3 \cdot \frac{3}{x}$$

$$=2x+6\log x+3x$$

$$=5x+6x\log x$$

$$= x(5 + 6\log x)$$

6. Find the second order derivative of the function $e^x \sin 5x$

Solution:

Let
$$y = e^x \sin 5x$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^x \sin 5x \right) = \sin 5x \frac{d}{dx} \left(e^x \right) + e^x \frac{d}{dx} \left(\sin 5x \right)$$

$$= \sin 5x \cdot e^{x} + e^{x} \cdot \cos 5x \cdot \frac{d}{dx} (5x) = e^{x} \sin 5x + e^{x} \cos 5x \cdot 5$$

$$=e^x(\sin 5x + 5\cos 5x)$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \Big[e^x \Big(\sin 5x + 5 \cos 5x \Big) \Big]$$

$$\left(\sin 5x + 5\cos 5x\right)\frac{d}{dx}\left(e^x\right) + e^x \cdot \frac{d}{dx}\left(\sin 5x + 5\cos 5x\right)$$

$$\left(\sin 5x + 5\cos 5x\right)e^x + e^x \left[\cos 5x \cdot \frac{d}{dx}(5x) + 5(-\sin 5x) \cdot \frac{d}{dx}(5x)\right]$$

$$= e^{x} (\sin 5x + 5\cos 5x) + e^{x} (5\cos 5x - 25\sin 5x)$$

Thus,
$$e^x (10\cos 5x - 24\sin 5x) = 2e^x (5\cos 5x - 12\sin 5x)$$

7. Find the second order derivatives of the function $e^{6x} \cos 3x$

Solution:

Let
$$y = e^{6x} \cos 3x$$

Then,

8. Find the second order derivatives of the function $tan^{-1}x$

Solution:

Let
$$y = \tan^{-1} x$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{1}{1+x^2} \right) = \frac{d}{dx} \left(1+x^2 \right)^{-1} = \left(-1 \right) \left(1+x^2 \right)^{-2} \frac{d}{dx} \left(1+x^2 \right) - \frac{1}{\left(1+x^2 \right)^2} \times 2x = -\frac{2x}{\left(1+x^2 \right)^2}$$

9. Find the second order derivative of the function $\log(\log x)$

Solution:

Let
$$y = \log(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log(\log x) \Big] = \frac{1}{\log x} \cdot \frac{d}{dx} \Big(\log x \Big) = \frac{1}{\log x} = (x \log x)^{-1}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\left(x \log x \right)^{-1} \right] = \left(-1 \right) \left(x \log x \right)^{-2} \frac{d}{dx} \left(x \log x \right)$$

$$= \frac{-1}{\left(x\log x\right)^2} \cdot \left[\log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x)\right]$$

$$= \frac{-1}{(x \log x)^2} \cdot \left[\log x \cdot 1x + \frac{1}{x} \right] = \frac{-1(1 + \log x)}{(x \log x)^2}$$

10. Find the second order derivatives of the function $\sin(\log x)$

Solution:

Let
$$y = \sin(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left[\sin(\log x) \right] = \cos(\log x) \cdot \frac{d}{dx} (\log x) = \frac{\cos(\log x)}{x}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{\cos(\log x)}{x} \right]$$

$$= \frac{x \cdot \frac{d}{dx} \left[\cos(\log x)\right] - \cos(\log x) \cdot \frac{d}{dx}(x)}{x^2}$$

$$= \frac{x \left[-\sin(\log x) \cdot \frac{d}{dx}(\log x)\right] - \cos(\log x) \cdot 1}{x^2}$$

$$= \frac{-x\sin(\log x) \cdot \frac{1}{x} - \cos(\log x)}{x^2}$$

$$= \frac{-\left[\sin\left(\log x\right) + \cos\left(\log x\right)\right]}{x^2}$$

11. If
$$y = 5\cos x - 3\sin x$$
, prove that $\frac{d^2y}{dx^2} + y = 0$

Solution:

It is given that, $y = 5\cos x - 3\sin x$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}(5\cos x) - \frac{d}{dx}(3\sin x) = 5\frac{d}{dx}(\cos x) - 3\frac{d}{dx}(\sin x)$$

$$=5(-\sin x)-3\cos x = -(5\sin x + 3\cos x)$$

$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx} \Big[- \big(5\sin x + 3\cos x \big) \Big]$$

$$= -\left[5.\frac{d}{dx}(\sin x) + 3.\frac{d}{dx}(\cos x)\right]$$

$$= \left[5\cos x + 3(-\sin x) \right]$$

$$= -[5\cos x - 3\sin x]$$

$$=-v$$

$$\therefore \frac{d^2y}{dx^2} + y = 0$$

Hence, proved

12. If
$$y = \cos^{-1} x$$
, find $\frac{d^2 y}{dx^2}$ in terms of y alone

Solution:

It is given that, $y = \cos^{-1} x$

Then,

$$\frac{dy}{dx} = \frac{d}{dx} \left(\cos^{-1} x \right) = \frac{-1}{\sqrt{1 - x^2}} = -\left(1 - x^2 \right)^{\frac{-1}{2}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left[-\left(1 - x^{2}\right)^{\frac{-1}{2}} \right]$$

$$= \left(-\frac{1}{2}\right) \cdot \left(1 - x^2\right)^{\frac{-3}{2}} \cdot \frac{d}{dx} \left(1 - x^2\right)$$

$$=\frac{1}{\sqrt{\left(1-x^2\right)^3}}\times\left(-2x\right)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-x}{\sqrt{\left(1-x^2\right)^3}}.....(i)$$

$$y = \cos^{-1} x \Rightarrow x = \cos y$$

Putting $x = \cos y$ in equation (1), we obtain

$$\frac{d^2y}{dx^2} = \frac{-\cos y}{\sqrt{\left(1-\cos^2 y\right)^3}}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{-\cos y}{\sqrt{\left(\sin^2 y\right)^3}}$$

$$\frac{-\cos y}{\sin^3 y}$$

$$= \frac{-\cos y}{\sin y} \times \frac{1}{\sin^2 y}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \cot y.\cos ec^2y$$

13. If
$$y = 3\cos(\log x) + 4\sin(\log x)$$
, show that $x^2y_2 + xy_1 + y = 0$

Solution:

It is given that
$$y = 3\cos(\log x) + 4\sin(\log x)$$
 and $x^2y_2 + xy_1 + y = 0$

Then,

$$y_1 = 3 \cdot \frac{d}{dx} \Big[\cos(\log x) \Big] + 4 \cdot \frac{d}{dx} \Big[\sin(\log x) \Big]$$

$$=3.\left[-\sin(\log x).\frac{d}{dx}(\log x)\right]+4.\left[\cos(\log x).\frac{d}{dx}(\log x)\right]$$

$$\therefore y_1 = \frac{-3\sin(\log x)}{x} + \frac{4\cos(\log x)}{x} = \frac{4\cos(\log x) - 3\sin(\log x)}{x}$$

$$\therefore y_2 = \frac{d}{dx} \left(\frac{4\cos(\log x) - 3\sin(\log x)}{x} \right)$$

$$= x \frac{\left[4\{\cos(\log x)\} - \{-3\sin(\log x)\}' - \{4\cos(\log x)\} - 3\sin(\log x)\right].1}{x^2}$$

$$= x \frac{\left[-4\sin(\log x)\cdot(\log x)' - 3\cos(\log x)(\log x)'\right] - 4\cos(\log x) + 3\sin(\log x)}{x^2}$$

$$= x \frac{\left[-4\sin(\log x)\frac{1}{x} - 3\cos(\log x)\frac{1}{x}\right] - 4\cos(\log x) + 3\sin(\log x)}{x^2}$$

$$= \frac{4\sin(\log x) - 3\cos(\log x) - 4\cos(\log x) + 3\sin(\log x)}{x^2}$$

$$= \frac{-\sin(\log x) - 7\cos(\log x)}{x^2}$$

$$\therefore x^2 y_2 + x y_1 + y$$

$$= x^2 \left(\frac{-\sin(\log x) - 7\cos(\log x)}{x^2} \right) + x \left(\frac{4\cos(\log x) - 3\sin(\log x)}{x} \right) + 3\cos(\log x) + 4\sin(\log x)$$

$$=\sin(\log x)-7\cos(\log x)+4\cos(\log x)-3\sin(\log x)+3\cos(\log x)+4\sin(\log x)$$

=0

Hence, proved

14. If
$$y = Ae^{mx} + Be^{nx}$$
, show that $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0$

Solution:

It is given that, $y = Ae^{mx} + Be^{nx}$

Then,

$$\frac{dy}{dx} = A \cdot \frac{d}{dx} \left(e^{mx} \right) + B \cdot \frac{d}{dx} \left(e^{nx} \right) = A \cdot e^{mx} \cdot \frac{d}{dx} \left(mx \right) + B \cdot e^{nx} \cdot \frac{d}{dx} \left(nx \right) = Ame^{mx} + Bne^{nx}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(Ame^{mx} + Bne^{nx}\right) = Am.\frac{d}{dx}\left(e^{mx}\right) + Bn.\frac{d}{dx}\left(e^{nx}\right)$$

$$=Am.e^{mx}.\frac{d}{dx}(mx)+bn.e^{nx}.\frac{d}{dx}(nx)=Am^2e^{mx}+Bn^2e^{nx}$$

$$\therefore \frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny$$

$$= Am^{2}e^{mx} + Bn^{2}e^{nx} - (m+n).(Ame^{mx} + Bne^{nx}) + mn(Ae^{mx} + Be^{mx})$$

$$=Am^{2}e^{mx}+Bn^{2}e^{nx}-Am^{2}ex^{mx}-Bmne^{mx}-Bn^{2}e^{mx}+Amne^{mx}+Bmne^{nx}$$

=0

Hence, proved

15. If
$$y = 500e^{7x} + 600e^{-7x}$$
, show that $\frac{d^2y}{dx^2} = 49y$

Solution:

It is given that, $y = 500e^{7x} + 600e^{-7x}$

Then,

$$\frac{dy}{dx} = 500. \frac{d}{dx} \left(e^{7x} \right) + 600. \frac{d}{dx} \left(e^{-7x} \right)$$

$$= 500.e^{7x} \cdot \frac{d}{dx} (7x) + 600.e^{-7x} \cdot \frac{d}{dx} (-7x)$$

$$=3500e^{7x}-4200e^{-7x}$$

$$\therefore \frac{d^2 y}{dx^2} = 3500. \frac{d}{dx} (e^{7x}) - 4200 \frac{d}{dx} (e^{-7x})$$

$$3500.e^{7x} \frac{d}{dx} (7x) - 4200.e^{-7x} \cdot \frac{d}{dx} (-7x)$$

$$=7\times3500.e^{7x}+7\times4200e^{-7x}$$

$$=49\times500e^{7x}+49\times600e^{-7x}$$

$$=49(500e^{7x}+600e^{-7x})$$

$$=49y$$

Hence, proved

16. If
$$e^y(x+1)=1$$
, show that $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$

Solution:

The given relationship is $e^{y}(x+1)=1$

$$e^{y}(x+1)=1$$

$$\Rightarrow e^y = \frac{1}{x+1}$$

Taking logarithm on both sides, we obtain

$$y = \log \frac{1}{(x+1)}$$

Differentiating this relationship with respect to x we obtain

$$\frac{dy}{dx} = (x+1)\frac{d}{dx}\left(\frac{1}{(x+1)}\right) = (x+1)\frac{-1}{(x+1)^2} = \frac{-1}{x+1}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{1}{x+1} \right) = -\left(\frac{-1}{\left(x+1 \right)^2} \right) = \frac{1}{\left(x+1 \right)^2}$$

$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{-1}{x+1}\right)^2$$

$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

Hence, proved

17. If
$$y = (\tan^{-1} x)^2$$
, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1) y_1 = 2$

Solution:

The given relationship is $y = (\tan^{-1} x)^2$

Then,

$$y_1 = 2 \tan^{-1} x \frac{d}{dx} \left(\tan^{-1} x \right)$$

$$\Rightarrow (1+x^2)y_1 = 2\tan^{-1}x$$

Again differentiating with respect to x on both sides, we obtain

$$(1+x^2)y_2 + 2xy_1 = 2\left(\frac{1}{1+x^2}\right)$$

$$\Rightarrow (1+x^2)y_2 + 2x(1+x^2) = 2$$

Hence proved

Exercise 5.8

1. Differentiate the following with respect to x. $\cos x \cdot \cos 2x \cdot \cos 3x$

Solution-1

Let $y = \cos x \cdot \cos 2x \cdot \cos 3x$

Taking logarithm or both the side, we obtain

$$\log y = \log(\cos x.\cos 2x.\cos 3x)$$

$$\Rightarrow \log y = \log(\cos x) + \log(\cos 2x) + \log(\cos 3x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) + \frac{1}{\cos 2x} \cdot \frac{d}{dx}(\cos 2x) + \frac{1}{\cos 3x} \cdot \frac{d}{dx}(\cos 3x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[-\frac{\sin x}{\cos x} - \frac{\sin 2x}{\cos 2x} \cdot \frac{d}{dx} (2x) - \frac{\sin 3x}{\cos 3x} \cdot \frac{d}{dx} (3x) \right]$$

$$\therefore \frac{dy}{dx} = -\cos x \cdot \cos 2x \cdot \cos 3x \left[\tan x + 2\tan 2x + 3\tan 3x \right]$$

2. Differentiate the function with respect to x. $\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$

Solution-2

Let
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Taking logarithm or both the side, we obtain

$$\log y = \log^{\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}}$$

$$\Rightarrow \log y = \frac{1}{2} \log \left[\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[\log \left\{ (x-1)(x-2) \right\} - \log \left\{ (x-3)(x-4)(x-5) \right\} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \Big[\log(x-1) + \log(x-2) - \log(x-3) - \log(x-4) - \log(x-5) \Big]$$

Differentiating both sides with respect to, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \begin{bmatrix} \frac{1}{x-1} \cdot \frac{d}{dx}(x-1) + \frac{1}{x-2} \cdot \frac{d}{dx}(x-2) - \frac{1}{x-3} \cdot \frac{d}{dx}(x-3) \\ -\frac{1}{1-4} \cdot \frac{d}{dx}(x-4) - \frac{1}{x-5} \cdot \frac{d}{dx}(x-5) \end{bmatrix}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{2} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{1-4} - \frac{1}{x-5} \right)$$

$$\therefore \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} \cdot \frac{1}{1-4} - \frac{1}{x-5} \right]$$

3. Differentiate the function with respect to *x*. $(\log x)^{\cos x}$ Solution-3

Let
$$y = (\log x)^{\cos x}$$

Taking logarithm or both the side, we obtain

$$\log y = \cos x \cdot \log(\log x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\cos x) \times \log(\log x) + \cos x \times \frac{d}{dx} \left[\log(\log x) \right]$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = -\sin x \log(\log x) + \cos x \times \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[-\sin x \log(\log x) + \frac{\cos x}{\log x} \times \frac{1}{x} \right]$$

$$\therefore \frac{dy}{dx} = (\log x)^{\cos x} \left[\frac{\cos x}{\log x} - \sin x \log(\log x) \right]$$

4. Differentiate the function with respect to x. $x^x - 2^{\sin x}$

Solution-4

Let
$$y = x^x - 2^{\sin x}$$

Also, let $x^x = u$ and $2^{\sin x} = v$

$$\therefore y = u - v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

$$u = x^{\lambda}$$

Taking logarithm on both sides, we obtain

$$\frac{1}{u}\frac{du}{dx} = \left[\frac{d}{dx}(x) \times \log x + x \times \frac{d}{dx}(\log x)\right]$$

$$\Rightarrow \frac{du}{dx} = u\left[1 \times \log x + x \times \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{x}(\log x + 1)$$

$$\Rightarrow \frac{du}{dx} = x^{x}(1 + \log x)$$

 $v = 2^{\sin x}$

Taking logarithm on both the sides with respect to x, we obtain $\log v = \sin x \cdot \log 2$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \log 2 \cdot \frac{d}{dx} (\sin x)$$

$$\Rightarrow \frac{dv}{dx} = v \log 2 \cos x$$

$$\Rightarrow \frac{dv}{dx} = 2^{\sin x} \cos x \log 2$$

$$\therefore \frac{dy}{dx} = x^2 (1 + \log x) - 2^{\sin x} \cos x \log 2$$

5. Differentiate the function with respect to x. $(x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$

Solution-5

Let
$$y = (x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$$

Taking logarithm on both sides, we obtain.

$$\log y = \log(x+3)^{2} + \log(x+4)^{3} + \log(x+5)^{4}$$

$$\Rightarrow \log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

$$\Rightarrow \frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3 \cdot \left[2(x^2+9x+20)+3(x^2+9x+15)+4(x^2+7x+12)\right]$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$
$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[\frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3 \cdot \left[2(x^2+9x+20)+3(x^2+9x+15)+4(x^2+7x+12)\right]$$

$$\therefore \frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3(9x^2+70x+133)$$

6. Differentiate the function with respect to x.
$$\left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Solutoin-6

Taking log on both sides

$$\Rightarrow \log u = \log \left(x + \frac{1}{x} \right)^{x}$$
$$\Rightarrow \log u = x \log \left(x + \frac{1}{x} \right)$$

Taking log on both sides, we obtain

$$\log v = \log x^{\left(1 + \frac{1}{x}\right)}$$

$$\Rightarrow \log v = \left(1 + \frac{1}{x}\right) \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \left[\frac{d}{dx}\left(1 + \frac{1}{x}\right)\right] \times \log x + \left(1 + \frac{1}{x}\right) \cdot \frac{d}{dx}\log x$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left(-\frac{1}{x^2}\right)\log x + \left(x + \frac{1}{x}\right) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = -\frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{-\log x + x + 1}{x^2} \right]$$

$$\Rightarrow \frac{dv}{dx} = x^{\left(1 + \frac{1}{x}\right)} \left[\frac{x + 1 - \log x}{x^2} \right] \qquad \dots (3)$$

Therefore from (1), (2) and (3), we obtain

$$\frac{dy}{dx} = \left(1 + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2} + \log x \left(x + \frac{1}{x}\right)\right] + x^{\left(x + \frac{1}{x}\right)} \left(\frac{x + 1 - \log x}{x^2}\right)$$

7. Differentiating both sides with respect to x. $(\log x)^x + x^{\log x}$

Solution-7

Let
$$y = (\log x)^x + x^{\log x}$$

Also, let $u = (\log x)^x$ and $v = x^{\log x}$
 $\therefore y = u + v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1)
 $u = (\log x)^x$
 $\Rightarrow \log u = \log[(\log x)]$
Differentiating both sides with respect to x , we obtain $\frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(x)x\log(\log x) + x \cdot \frac{d}{dx}[\log(\log x)]$
 $\Rightarrow \frac{du}{dx} = u[1x\log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{d}{dx}(\log x)]$
 $\Rightarrow \frac{du}{dx} = (\log x)^x \left[\log(\log x) + \frac{x}{\log x} \cdot \frac{1}{x}\right]$
 $\Rightarrow \frac{du}{dx} = (\log x)^x \left[\log(\log x) + \frac{1}{\log x}\right]$
 $\Rightarrow \frac{du}{dx} = (\log x)^x \left[\log(\log x) \cdot \log(\log x)\right]$ (2)
 $v = x^{\log x}$
 $\Rightarrow \log v = \log x \log x = (\log x)^2$
Differentiating both sides with respect to x , we obtain $\frac{1}{v} \cdot \frac{dv}{dx} = \frac{d}{dx} \left[(\log x) \cdot \frac{d}{dx}(\log x)\right]$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x - 1} \cdot \log x \qquad \dots (3)$$

Therefore, from (1), (2) and (3), we obtain

$$\frac{dv}{dx} = \left(\log x\right)^{x-1} \left[1 + \log x \cdot \log\left(\log x\right)\right] + 2x^{\log x - 1} \cdot \log x$$

8. Differentiating both sides with respect to x. $(\sin x)^x + \sin^{-1} \sqrt{x}$

Solution-8

Let
$$y = (\sin x)^x + \sin^{-1} \sqrt{x}$$

Also, let $u = (\sin x)^x$ and $v = \sin^{-1} \sqrt{x}$
 $\therefore y = u + v$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

$$u = (\sin x)^x$$
(1)

$$\Rightarrow \log u = \log(\sin x)^x$$

$$\Rightarrow \log u = x \log(\sin x)$$

Differentiating both sides with respect to x, we obtain

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(x)x\log(\sin x) + x \times \frac{d}{dx}[\log(\sin x)]$$

$$\Rightarrow \frac{du}{dx} = u\left[1.\log(\sin x) + x.\frac{1}{\sin x}.\frac{d}{dx}(\sin x)\right]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^x \left[\log(\sin x) + \frac{x}{\sin x}.\cos x\right]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^x \left(x\cot x + \log\sin x\right) \qquad(2)$$

$$v = \sin^{-1} \sqrt{x}$$

Differentiating both sides with respect to x, we obtain

$$\frac{dv}{dx} = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{d}{dx} (\sqrt{x})$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}}$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{x - x^2}} \qquad \dots (3)$$

Therefore, from (1), (2) and (3), we obtain

$$\frac{dy}{dx} = (\sin x)^2 \left(x \cot x + \log \sin x\right) + \frac{1}{2\sqrt{x - x^2}}$$

9. Differentiate the function with respect to x. $x^{\sin x} + (\sin x)^{\cos x}$

Solution-9

Let
$$y = x^{\sin x} + (\sin x)^{\cos x}$$

Also $u = x^{\sin x}$ and $v = (\sin x)^{\cos x}$
 $\therefore y = u + v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1)
 $u = x^{\sin x}$
 $\Rightarrow \log u = \log(x^{\sin x})$
 $\Rightarrow \log u = \sin x \log x$
Differentiating both sides with respect to x , we obtain
$$\frac{1}{u} \frac{du}{dx} = \frac{d}{dx} (\sin x) \cdot \log x + \sin x \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{du}{dx} = u = \left[\cos x \log x + \sin x \cdot \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{\sin x} = \left[\cos x \log x + \frac{\sin x}{x}\right]$$

$$v = (\sin x)^{\cos x}$$

$$\Rightarrow \log v = \log(\sin x)^{\cos x}$$

$$\Rightarrow \log v = \log(\sin x)$$
Differentiating both sided with respect to x , we obtain
$$\frac{1}{v} \frac{dv}{dx} = \frac{d}{dx} (\cos x) \times \log(\sin x) + \cos x \times \frac{d}{dx} \left[\log(\sin x)\right]$$

$$\Rightarrow \frac{dv}{dx} = v \left[-\sin x \cdot \log(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x)\right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[-\sin x \log \sin x + \cot x \cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[-\sin x \log \sin x + \cot x \cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[-\sin x \log \sin x + \cot x \cos x\right]$$

Therefore, from (1), (2) and (3), we obtain

$$\frac{dv}{dx} = x^{\sin x} \left(\cos x \log x + \frac{\sin x}{x}\right) + \left(\sin x\right)^{\cos x} \left[\cos x \cot x - \sin x \log \sin x\right]$$

10. Differentiate the function with respect to x. $x^{\cos x} + \frac{x^2 + 1}{x^2 - 1}$

Solution-10

Let
$$y = x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Also, let $u = x^{x\cos x}$ and $v = \frac{x^2 + 1}{x^2 - 1}$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dy}{dx}$$

$$\therefore y = u + v$$

$$u = x^{x\cos x}$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x).\cos x \log x + x.\frac{d}{dx}(\cos x).\log x + x\cos x.\frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[1.\cos x \log x + x.(-\sin x).\log x + x\cos x.\frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{x\cos x}(\cos x \log x - x\sin x.\log x + \cos x)$$

$$\Rightarrow \frac{du}{dx} = x^{x\cos x} \left[\cos x (1 + \log x) - x\sin x \log x \right] \qquad \dots (2)$$

$$v = \frac{x^2 + 1}{x^2 - 1}$$

$$\Rightarrow \log v = \log(x^2 + 1) - \log(x^2 - 1)$$

$$\frac{1}{v} = \frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{2x(x^2 - 2) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1} \times \left[\frac{-4x}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{-4x}{\left(x^2 - 1\right)^2} \qquad \dots (3)$$

Therefore, from (1), (2) and (3), we obtain

$$\frac{dy}{dx} = x^{x\cos x} \left[\cos x \left(1 + \log x\right) - x\sin x \log x\right] - \frac{4x}{\left(x^2 - 1\right)^2}$$

11. Differentiate the function with respect to $x \left(x\cos x\right)^x + \left(x\sin x\right)^{\frac{1}{x}}$

Solution-11

Let
$$y = (x\cos x)^x + (x\sin x)^{\frac{1}{x}}$$

Also, let $u = (x\cos x)^x$ and $v = (x\sin x)^{\frac{1}{x}}$

$$\therefore y = u + v$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dy}{dx}$$
(1)

$$u = (x\cos x)^2$$

$$\Rightarrow \log u = \log(x \cos x)^x$$

$$\Rightarrow \log u = x \log (x \cos x)^x$$

$$\Rightarrow \log u = x [\log x + \log \cos x]$$

$$\Rightarrow \log u = x \log x + x \log \cos x$$

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x + \log x) + \frac{d}{dx}(x\log\cos x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\left\{ \log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x) \right\} + \left\{ \log \cos x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log \cos x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x \cos x)^x \left[\left(\log x \cdot 1 + x \cdot \frac{1}{x} \right) + \left\{ \log \cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x \cos x)^x \left[\left(\log x + 1 \right) + \left\{ \log \cos x + \frac{x}{\cos x} \cdot (-\sin x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x \cos x)^x \left[(1 + \log x) + (1 + \log \cos x - x \tan x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x \cos x)^x \left[1 - x \tan x + (\log x + \log \cos x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \Big[1 - x\tan x + +\log(x\cos x) \Big] \qquad \dots$$

$$v = (x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log(x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \frac{1}{x}\log(x\sin x)$$

$$\Rightarrow \log v = \frac{1}{x}(\log x + \log \sin x)$$

$$\Rightarrow \log v = \frac{1}{x}\log x + \frac{1}{x}\log \sin x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{x}\log x\right) + \frac{d}{dx}\left(\frac{1}{x}\log(\sin x)\right)$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[\log x \cdot \frac{d}{dx} \left(\frac{1}{x} \right) + \frac{1}{x} \cdot \frac{d}{dx} (\log x) \right] + \left[\log(\sin x) \cdot \frac{d}{dx} \left(\frac{1}{x} \right) + \frac{1}{x} \cdot \frac{d}{dx} \left\{ \log(\sin x) \right\} \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[\log x \cdot \left(-\frac{1}{x^2} \right) + \frac{1}{x} \cdot \frac{1}{x} \right] + \left[\log(\sin x) \cdot \left(-\frac{1}{x^2} \right) + \frac{1}{x} \cdot \frac{1}{\sin x} \frac{d}{dx} (\sin x) \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \frac{1}{x^2} (1 - \log x) + \left[-\frac{\log(\sin x)}{x^2} + \frac{1}{x \sin x} \cdot \cos x \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left(x \sin x \right)^{\frac{1}{x}} \left[\frac{1 - \log x - \log(\sin x) + x \cot x}{x^2} \right]$$

$$\Rightarrow \frac{dv}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log x - \log(\sin x) + x \cot x}{x^2} \right]$$

$$\Rightarrow \frac{dv}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x \sin x) + x \cot x}{x^2} \right]$$
......(3)

Therefore, from (1), (2) and (3), we obtain

$$\frac{dv}{dx} = \left(x\cos x\right)^2 \left[1 - x\tan x + \log\left(x\cos x\right)\right] + \left(x\sin x\right)^{\frac{1}{x}} \left[\frac{x\cot x + 1 - \log\left(x\sin x\right)}{x^2}\right]$$

12. Find
$$\frac{dy}{dx}$$
 of function. $x^y + y^x = 1$

Solution-12

The given function is $x^y + y^x = 1$

Let
$$x^y = u$$
 and $y^x = v$

Then, the function becomes u + v = 1

$$\therefore \frac{du}{dx} + \frac{dv}{dx} = 0 \qquad \dots (1)$$

$$u = x^y$$

$$\Rightarrow \log u = \log(x^y)$$

$$\Rightarrow \log u = y \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x \frac{dy}{dx} + y \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log x \frac{dy}{dx} + y \cdot \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right)$$

$$v = y^x$$

$$\Rightarrow \log v = \log(y^x)$$

$$\Rightarrow \log v = x \log y$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \log y \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y)$$

$$\Rightarrow \frac{dv}{dx} = v \left[\log y.1 + x. \frac{1}{y}. \frac{dy}{dx} \right]$$

$$\Rightarrow \frac{dv}{dx} = y^x \left(\log y + \frac{x}{y} \frac{dy}{dx} \right) \qquad \dots (3)$$

Therefore, from (1), (2) and (3), we obtain

$$x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right) + y^{x} \left(\log y + \frac{x}{y} \frac{dy}{dx} \right) = 0$$

$$\Rightarrow \left(x^2 + \log x + xy^{y-1}\right) \frac{dy}{dx} = -\left(yx^{y-1} + y^x \log y\right)$$

$$\therefore \frac{dy}{dx} = -\frac{yx^{y-1} + y^x \log y}{x^y \log x + xy^{x-1}}$$

13. Find
$$\frac{dy}{dx}$$
 of function $y^x = x^y$

Solution:13

The given function $y^x = x^y$

Taking logarithm on both sides, we obtain $x \log y = y \log x$

Differentiating both sides with respect to x, we obtain

$$\log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y) = \log x \cdot \frac{d}{dx}(y) \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \log y.1 + x.\frac{1}{y}.\frac{dy}{dx} = \log x.\frac{dy}{dx} + y.\frac{1}{x}$$

$$\Rightarrow \log y + \frac{x}{y} \cdot \frac{dy}{dx} = \log x \cdot \frac{dy}{dx} + \frac{y}{x}$$

$$\Rightarrow \left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x} - \log y$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - \log y}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y}{x} \left(\frac{y - x \log y}{x - y \log x} \right).$$

14. Find
$$\frac{dy}{dx}$$
 of function $(\cos x)^y = (\cos y)^x$

Solution:14

The given function $(\cos x)^y = (\cos y)^x$

Taking logarithm on both sides, we obtain $y = \log \cos x = x \log \cos y$

$$\log \cos x \cdot \frac{d}{dx} + y \cdot \frac{d}{dx} (\log \cos x) = \log \cos y \cdot \frac{d}{dx} (x) \cdot + x \cdot \frac{d}{dx} (\log \cos y)$$

$$\Rightarrow \log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) = \log \cos y \cdot 1 + x \cdot \frac{1}{\cos y} \cdot \frac{d}{dx} (\cos y)$$

$$\Rightarrow \log \cos x \cdot \frac{dy}{dx} + \frac{y}{\cos x} \cdot (-\sin x) = \log \cos y + \frac{x}{\cos y} (-\sin y) \frac{dy}{dx}$$

$$\Rightarrow \log \cos x \cdot \frac{dy}{dx} - y \tan x = \log \cos y - x \tan y \frac{dy}{dx}$$

$$\Rightarrow (\log \cos x + x \tan y) \frac{dy}{dx} = y \tan x + \log \cos y$$

$$\therefore \frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

15. Find
$$\frac{dy}{dx}$$
 of function $xy = e^{(x-y)}$

Solution-15

The given function is $xy = e^{(x-y)}$

Taking logarithm on both sides, we obtain.

$$\log(xy) = \log(e^{x-y})$$

$$\Rightarrow \log x + \log y = (x - y) \log e$$

$$\Rightarrow \log x + \log y = (x - y) \times 1$$

$$\Rightarrow \log x + \log y = x - y$$

Differentiating both sides with respect to x, we obtain

$$\frac{d}{dx}(\log x) + \frac{d}{dx}(\log y) = \frac{d}{dx}(x) - \frac{dy}{dx}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{y}\frac{dy}{dx} = 1 - \frac{1}{x}$$

$$\Rightarrow \left(1 + \frac{1}{y}\right) \frac{dy}{dx} = \frac{x - 1}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y(x-1)}{x(y-1)}$$

16. Find the derivative of the function given by

$$f(x) = (1-x)(1+x^2)(1+x^4)(1+x^8)$$
 and hence find $f'(1)$

Solution-16

The given relationship is $f(x) = (1-x)(1+x^2)(1+x^4)(1+x^8)$

Taking logarithm on both sides, we obtain

$$\log f(x) = \log(1-x) + \log(1+x^2) + \log(1+x^4) + \log(1+x^8)$$

Differentiating both sides with respect to x, we obtain.

$$\frac{1}{f(x)} \cdot \frac{d}{dx} \Big[f(x) \Big] = \frac{d}{dx} \log(1-x) + \frac{d}{dx} \log(1+x^2) + \frac{d}{dx} \log(1+x^4) + \frac{d}{dx} \log(1+x^8)$$

$$\Rightarrow \frac{1}{f(x)} \cdot f'(x) = \frac{1}{1+x} \cdot \frac{d}{dx} (1-x) + \frac{1}{1+x^2} \cdot \frac{d}{dx} (1+x^2) + \frac{1}{1+x^4} \cdot \frac{d}{dx} \log(1+x^4) + \frac{1}{1+x^8} \cdot \frac{d}{dx} \log(1+x^4)$$

$$\Rightarrow f'(x) = f(x) \Big[\frac{1}{1+x} + \frac{1}{1+x^2} \cdot 2x + \frac{1}{1+x^4} + \frac{1}{1+x^8} \cdot 8x^7 \Big]$$

$$\therefore f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \Big[\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} \Big]$$
Hence, $f'(1) = (1+1)(1+1^2)(1+1^4)(1+1^8) \Big[\frac{1}{1+1} + \frac{2\times 1}{1+1^2} + \frac{4\times 1^3}{1+x^4} + \frac{8\times 1^7}{1+x^8} \Big]$

$$= 2\times 2\times 2\times 2\Big[\frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \Big]$$

$$= 16\Big[\frac{1+2+4+8}{2} \Big]$$

$$= 16\times \frac{15}{2} = 100$$

- 17. Differentiate $(x^2 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned below
 - i. By using product rule
 - ii. By expanding the product to obtain a single polynomial
 - iii. By
 - iii. By logarithm Differentiate

Do they all given the same answer?

Solution-17

Let
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

(i) Let $x = x^2 - 5x + 8$ and $u = x^3 + 7x + 9$
 \therefore $y = uv$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dv}v + u\frac{dv}{dx}$$
 (By using product rule)

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx}(x^2 - 5x + 8).(x^3 + 7x + 9) + (x^2 - 5x + 8).\frac{d}{dx}(x^3 + 7x + 9)$$

$$\Rightarrow \frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7x + 9) + x^2(3x^2 + 7) - 5x(3x^2 + 7) - 8(3x^2 + 7)$$

$$\Rightarrow \frac{dy}{dx} = (2x^4 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^4 + 7x^2) - 15x^3 - 35x + 24x^2 + 56$$

$$\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

(ii)
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

$$= x^{2}(x^{3} + 7x + 9) - 5x(x^{3} + 7x + 9) + 8(x^{3} + 7x + 9)$$

$$= x^5 + 7x^3 + 9x^2 - 5x^4 - 35x^2 - 45x + 8x^3 + 56x + 72$$

$$= x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} = \left(x^5 - 5x^4 + 15x^3 - 26x^2 + 11x + 72\right)$$

$$= \frac{d}{dx} = (x^5) - 5\frac{d}{dx}(x^4) + 15\frac{d}{dx}(x^3) - 26\frac{d}{dx}(x^2) + 11\frac{d}{dx}(x) + \frac{d}{dx}(72)$$

$$=5x^4 - 5 \times 4x^3 + 15 \times 3x^2 - 26 \times 2x + 11 \times 1 + 0$$

$$=5x^4-20x^3+45x^2-52x+11$$

(iii) Taking logarithm on both sides, we obtain.

$$\log y = \log(x^2 + 5x + 8) + \log(x^3 + 7x + 9)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\log(x^2 - 5x + 8) + \frac{d}{dx}\log(x^3 + 7x + 9)$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \log(x^2 - 5x + 8) \cdot \frac{d}{dx} \log(x^3 + 7x + 9)$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot \frac{d}{dx} \left(x^2 - 5x + 8 \right) + \frac{1}{x^3 + 7x + 9} \cdot \frac{d}{dx} \log \left(x^3 + 7x + 9 \right)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{1}{x^2 - 5x + 8} \times (2x - 5) + \frac{1}{x^3 + 7x + 9} \times (3x^2 + 7) \right]$$

$$\Rightarrow \frac{dy}{dx} = \left(x^2 - 5x + 8\right)\left(x^3 + 7x + 9\right)\left[\frac{2x - 5}{x^2 - 5x + 8} + \frac{3x^2 + 7}{x^3 + 7x + 9}\right]$$

$$\Rightarrow \frac{dy}{dx} = \left(x^2 - 5x + 8\right)\left(x^3 + 7x + 9\right) \left[\frac{(2x - 5)\left(x^3 + 7x + 9\right) + (3x^2 + 7)\left(x^2 - 5x + 8\right)}{\left(x^2 - 5x + 8\right) + \left(x^3 + 7x + 9\right)}\right]$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7x + 9) + 3x^2(x^2 - 5x + 8) + 7(x^2 - 5x + 8)$$

$$\Rightarrow \frac{dy}{dx} = (2x^4 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^4 - 15x^3 + 24x^2) + (7x^2 - 35x + 56)$$
$$\Rightarrow \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

From the above three observations, it can be concluded that all the result of $\frac{dy}{dx}$ are

same

18. If u, v and w are functions of x, then show that

$$\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u\frac{dv}{dx}.w + u.v\frac{dw}{dx}$$

In two ways-first by repeated application of product rule, second by logarithmic differentiation.

Solution - 18

Let
$$y = u.v.w = u.(v.w)$$

By applying product rule, we obtain

$$\frac{dy}{dx} = \frac{du}{dx}.(v.w) + u.\frac{d}{dx}.(v.w)$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx}v.w + u\left[\frac{dv}{dx}.w + v.\frac{dv}{dx}\right]$$
(Again applying product rule)
$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx}v.w + u.\frac{dv}{dx}.w + u.v.\frac{dw}{dx}$$

By taking logarithm on both sides of the equation y = u.v.w, we obtain

$$\log y = \log u + \log v + \log w$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\log u) + \frac{d}{dx} (\log v) + \frac{d}{dx} (\log w)$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \frac{d}{dx} + \frac{1}{v} \frac{d}{dx} + \frac{1}{w} \frac{d}{dx}$$

$$\Rightarrow \frac{dy}{dx} = y \left(\frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$

$$\Rightarrow \frac{dy}{dx} = u.v.w \left(\frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$
$$\therefore \frac{dy}{dx} = \frac{du}{dx} u.w + u \frac{dv}{dx} w + u.v \frac{dw}{dx}$$