

Chapter 1: Sets

EXERCISE 1.4

1. Find the union of each of the following pairs of sets:

- (i) $X = \{1, 3, 5\}$ $Y = \{1, 2, 3\}$
- (ii) $A = \{a, e, i, o, u\}$ $B = \{a, b, c\}$
- (iii) $A = \{x : x \text{ is a natural number and multiple of } 3\}$ $B = \{x : x \text{ is a natural number less than } 6\}$
- (iv) $A = \{x : x \text{ is a natural number and } 1 < x \leq 6\}$ $B = \{x : x \text{ is a natural number and } 6 < x < 10\}$
- (v) $A = \{1, 2, 3\}$, $B = \emptyset$

Solution

(i) $X = \{1, 3, 5\}$ $Y = \{1, 2, 3\}$

The combination of two sets

$$\begin{aligned} X \cup Y &= \{1, 3, 5\} \cup \{1, 2, 3\} \\ &= \{1, 2, 3, 5\} \end{aligned}$$

(ii) $A = \{a, e, i, o, u\}$ $B = \{a, b, c\}$

Combination of two sets

$$\begin{aligned} A \cup B &= \{a, e, i, o, u\} \cup \{a, b, c\} \\ &= \{a, b, c, e, i, o, u\} \end{aligned}$$

(iii) $A = \{3, 6, 9, 12, \dots\}$ $B = \{1, 2, 3, 4, 5\}$

$$A \cup B = \{3, 6, 9, 12, \dots\} \cup \{1, 2, 3, 4, 5\}$$

$$= \{1, 2, 3, 4, 5, 6, 9, 12, \dots\}$$

$$= \{x : x = 1, 2, 4, 5 \text{ or a multiple of } 3\}$$

(iv)

$$A = \{2, 3, 4, 5, 6\}$$

$$B = \{7, 8, 9\}$$

$$A \cup B = \{2, 3, 4, 5, 6\} \cup \{7, 8, 9\}$$

$$= \{2, 3, 4, 5, 6, 7, 8, 9\}$$

$$= \{x : 1 < x < 10 \text{ and } x \in \mathbb{N}\}$$

(v)

$$A \cup B = \{1, 2, 3\} \cup \emptyset$$

$$= \{1, 2, 3\}$$

$$= A$$

The result of this is true in general also.

$$A \cup \emptyset = A \text{ for every set } A.$$

2. Let $A = \{a, b\}$, $B = \{a, b, c\}$. Is $A \subset B$? What is $A \cup B$?

Solution

$$\text{Given, } A = \{a, b\}$$

$$B = \{a, b, c\}$$

Every element of A is in B .

So, A is a subset of B

That is $A \subset B$.

$$A \cup B = \{a, b\} \cup \{a, b, c\}$$

$$= \{a, b, c\}$$

$$\text{Yes. } A \cup B = \{a, b, c\} = B$$

3. If A and B are two sets such that $A \subset B$, then what is $A \cup B$?

Solution

Let's take an example

$$A = \{1, 2\}$$

$$B = \{1, 2, 3\}$$

Every element of A is in B .

Hence, A is a subset of B

That is $A \subset B$.

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

$$= \{x : x \in B\}$$

4. If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, $C = \{5, 6, 7, 8\}$ and $D = \{7, 8, 9, 10\}$; find

- (i) $A \cup B$
- (ii) $A \cup C$
- (iii) $B \cup C$
- (iv) $B \cup D$
- (v) $A \cup B \cup C$
- (vi) $A \cup B \cup D$
- (vii) $B \cup C \cup D$

Solution

Given, $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, $C = \{5, 6, 7, 8\}$ and $D = \{7, 8, 9, 10\}$;

(i) The combination of sets A and B

$$\begin{aligned} A \cup B &= \{1, 2, 3, 4\} \cup \{3, 4, 5, 6\} \\ &= \{1, 2, 3, 4, 5, 6\} \end{aligned}$$

(ii) The combination of sets A and C

$$\begin{aligned} A \cup C &= \{1, 2, 3, 4\} \cup \{5, 6, 7, 8\} \\ &= \{1, 2, 3, 4, 5, 6, 7, 8\} \end{aligned}$$

(iii) The combination of sets B and C

$$\begin{aligned} B \cup C &= \{3, 4, 5, 6\} \cup \{5, 6, 7, 8\} \\ &= \{3, 4, 5, 6, 7, 8\} \end{aligned}$$

(iv) The combination of sets B and D

$$\begin{aligned} B \cup D &= \{3, 4, 5, 6\} \cup \{7, 8, 9, 10\} \\ &= \{3, 4, 5, 6, 7, 8, 9, 10\} \end{aligned}$$

(v) The combination of sets

$$\begin{aligned} A \cup B \cup C &= (A \cup B) \cup C \\ &= \{1, 2, 3, 4, 5, 6\} \cup \{5, 6, 7, 8\} \\ &= \{1, 2, 3, 4, 5, 6, 7, 8\} \end{aligned}$$

(vi) The combination of sets

$$\begin{aligned} A \cup B \cup D &= (A \cup B) \cup D \\ &= \{1, 2, 3, 4, 5, 6\} \cup \{7, 8, 9, 10\} \end{aligned}$$

$$= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

(vii) The combination of sets

$$B \cup C \cup D = (B \cup C) \cup D = \{3, 4, 5, 6, 7, 8\} \cup \{7, 8, 9, 10\}$$

$$= \{3, 4, 5, 6, 7, 8, 9, 10\}$$

5. Find the intersection of each pair of sets of question 1 above.

Solution

From exercise 1

(i) The intersection of sets

$$X \cap Y = \{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\}.$$

(ii) The intersection of sets

$$A \cap B = \{a, e, i, o, u\} \cap \{a, b, c\} = \{a\}.$$

(iii) $A = \{3, 6, 9, 12, \dots\}$

$$B = \{1, 2, 3, 4, 5\}$$

The intersection of sets

$$A \cap B = \{3, 6, 9, 12, \dots\} \cap \{1, 2, 3, 4, 5\} = \{3\}$$

(iv) $A = \{2, 3, 4, 5, 6\}$

$$B = \{7, 8, 9\}$$

The intersection of sets

$$A \cap B = \{2, 3, 4, 5, 6\} \cap \{7, 8, 9\} = \emptyset$$

(v) The intersection of sets

$$A \cap B = \{1, 2, 3\} \cap \emptyset = \emptyset$$

The result of this part is true in general also.

$$A \cap \emptyset = \emptyset \text{ for every set } A.$$

6. If $A = \{3, 5, 7, 9, 11\}$, $B = \{7, 9, 11, 13\}$, $C = \{11, 13, 15\}$ and $D = \{15, 17\}$; find

(i) $A \cap B$

(ii) $B \cap C$

- (iii) $A \cap C \cap D$
- (iv) $A \cap C$
- (v) $B \cap D$
- (vi) $A \cap (B \cup C)$
- (vii) $A \cap D$
- (viii) $A \cap (B \cup D)$
- (ix) $(A \cap B) \cap (B \cup C)$

Solution

Given $A = \{3, 5, 7, 9, 11\}$, $B = \{7, 9, 11, 13\}$, $C = \{11, 13, 15\}$ and $D = \{15, 17\}$

Intersection of sets

(i) $A \cap B = \{3, 5, 7, 9, 11\} \cap \{7, 9, 11, 13\}$
 $= \{7, 9, 11\}$

(ii) Intersection of sets
 $B \cap C = \{7, 9, 11, 13\} \cap \{11, 13, 15\} = \{11, 13\}$

(iii) Intersection of sets
 $A \cap C \cap D = (A \cap C) \cap D$
 $= (\{3, 5, 7, 9, 11\} \cap \{11, 13, 15\}) \cap \{15, 17\}$
 $= \{11\} \cap \{15, 17\} = \emptyset$

(iv) Intersection of sets
 $A \cap C = \{3, 5, 7, 9, 11\} \cap \{11, 13, 15\} = \{11\}$

(v) Intersection of sets
 $B \cap D = \{7, 9, 11, 13\} \cap \{15, 17\} = \emptyset$

(vi) Intersection of sets
 $A \cap (B \cup C) = \{3, 5, 7, 9, 11\} \cap (\{7, 9, 11, 13\} \cup \{11, 13, 15\})$
 $= \{3, 5, 7, 9, 11\} \cap \{7, 9, 11, 13, 15\}$
 $= \{7, 9, 11\}$

(vii) Intersection of sets
 $A \cap D = \{3, 5, 7, 9, 11\} \cap \{15, 17\} = \emptyset$

(viii) Intersection of sets

$$A \cap (B \cup D) = \{3, 5, 7, 9, 11\} \cap (\{7, 9, 11, 13\} \cup \{15, 17\})$$

$$= \{3, 5, 7, 9, 11\} \cap \{7, 9, 11, 13, 15, 17\}$$

$$= \{7, 9, 11\}$$

(ix) Intersection of sets

$$(A \cap B) \cap (B \cup C) = (\{3, 5, 7, 9, 11\} \cap \{7, 9, 11, 13\}) \cap (\{7, 9, 11, 13\} \cup \{11, 13, 15\})$$

$$= \{7, 9, 11\} \cap \{7, 9, 11, 13, 15\} = \{7, 9, 11\}$$

(x) Intersection of sets

$$(A \cup D) \cap (B \cup C) = (\{3, 5, 7, 9, 11\} \cup \{15, 17\}) \cap (\{7, 9, 11, 13\} \cup \{11, 13, 15\})$$

$$= \{3, 5, 7, 9, 11, 15, 17\} \cap \{7, 9, 11, 13, 15\}$$

$$= \{7, 9, 11, 15\}$$

7. If $A = \{x : x \text{ is a natural number}\}$, $B = \{x : x \text{ is an even natural number}\}$, $C = \{x : x \text{ is an odd natural number}\}$ and $D = \{x : x \text{ is a prime number}\}$, find

(i) $A \cap B$

(ii) $A \cap C$

(iii) $A \cap D$

(iv) $B \cap C$

(v) $B \cap D$

(vi) $C \cap D$

Solution

Given

$$A = \{x : x \text{ is a natural number}\} = \{1, 2, 3, 4, 5, \dots\}$$

$$B = \{x : x \text{ is an even natural number}\} = \{2, 4, 6, 8, \dots\}$$

$$C = \{x : x \text{ is an odd natural number}\} = \{1, 3, 5, 7, 9, \dots\}$$

$$D = \{x : x \text{ is a prime number}\} = \{2, 3, 5, 7, \dots\}$$

(i) $A \cap B = B$

Because, $B \subset A$

Every even natural number is a natural number

(ii) $A \cap C = C$

Because, $C \subset A$

Every odd natural number is a natural number

(iii) $A \cap D = D$

Because $D \subset A$

Every prime number is a natural number

(iv) $B \cap C = \emptyset$ There is no natural number which is both even and odd

(v) $B \cap D = \{2\}$, 2 is only even prime number.

(vi) $C \cap D = \{x : x \text{ is an odd prime number}\}$.

8. Which of the following pairs of sets are disjoint

(i) $\{1, 2, 3, 4\}$ and $\{x : x \text{ is a natural number and } 4 \leq x \leq 6\}$

(ii) $\{a, e, i, o, u\}$ and $\{c, d, e, f\}$

(iii) $\{x : x \text{ is an even integer}\}$ and $\{x : x \text{ is an odd integer}\}$

Solution

(i) Let $A = \{1, 2, 3, 4\}$ and

$B = \{x : x \in \mathbb{N} \text{ and } 4 \leq x \leq 6\} = \{4, 5, 6\}$

$A \cap B = \{4\} \neq \emptyset \therefore$ Sets A and B are not disjoint.

(ii) e is a common element of the two sets.

\therefore Sets are not disjoint.

(iii) Given sets are disjoint sets because there is no natural number which is both even and odd.

9. If $A = \{3, 6, 9, 12, 15, 18, 21\}$, $B = \{4, 8, 12, 16, 20\}$ $C = \{2, 4, 6, 8, 10, 12, 14, 16\}$,

$D = \{5, 10, 15, 20\}$; find

(i) $A - B$

(ii) $A - C$

(iii) $A - D$

(iv) $B - A$

(v) $C - A$

(vi) $D - A$

(vii) $B - C$

(viii) $B - D$

(ix) $C - B$

(x) $D - B$

(xi) $C - D$

(xii) $D - C$

Solution

Given,

$$A = \{3, 6, 9, 12, 15, 18, 21\},$$

$$B = \{4, 8, 12, 16, 20\}$$

$$C = \{2, 4, 6, 8, 10, 12, 14, 16\},$$

$$D = \{5, 10, 15, 20\};$$

(i) The sets in difference

$$A - B = \{3, 6, 9, 12, 15, 18, 21\} - \{4, 8, 12, 16, 20\}$$

$$= \{3, 6, 9, 15, 18, 21\}$$

(ii) The difference of two sets

$$A - C = \{3, 6, 9, 12, 15, 18, 21\} - \{2, 4, 6, 8, 10, 12, 14, 16\}$$

$$= \{3, 9, 15, 18, 21\}$$

(iii) The difference of two sets

$$A - D = \{3, 6, 9, 12, 15, 18, 21\} - \{5, 10, 15, 20\}$$

$$= \{3, 6, 9, 12, 18, 21\}$$

(iv) The difference of two sets

$$B - A = \{4, 8, 12, 16, 20\} - \{3, 6, 9, 12, 15, 18, 21\}$$

$$= \{4, 8, 16, 20\}$$

(v) The difference of two sets

$$C - A = \{2, 4, 6, 8, 10, 12, 14, 16\} - \{3, 6, 9, 12, 15, 18, 21\}$$

$$= \{2, 4, 8, 10, 14, 16\}$$

(vi) The difference of two sets

$$D - A = \{5, 10, 15, 20\} - \{3, 6, 9, 12, 15, 18, 21\}$$

$$= \{5, 10, 20\}$$

(vii) The difference of two sets

$$B - C = \{4, 8, 12, 16, 20\} - \{2, 4, 6, 8, 10, 12, 14, 16\}$$

$$= \{20\}$$

(viii) The difference of two sets

$$B - D = \{4, 8, 12, 16, 20\} - \{5, 10, 15, 20\}$$

$$= \{4, 8, 12, 16\}$$

(ix) The difference of two sets

$$C - B = \{2, 4, 6, 8, 10, 12, 14, 16\} - \{4, 8, 12, 16, 20\}$$

$$= \{2, 6, 10, 14\}$$

(x) The difference of two sets

$$D - B = \{5, 10, 15, 20\} - \{4, 8, 12, 16, 20\}$$

$$= \{5, 10, 15\}$$

(xi) The difference of two sets

$$C - D = \{2, 4, 6, 8, 10, 12, 14, 16\} - \{5, 10, 15, 20\}$$

$$= \{2, 4, 6, 8, 12, 14, 16\}$$

(xii) The difference of two sets

$$D - C = \{5, 10, 15, 20\} - \{2, 4, 6, 8, 10, 12, 14, 16\}$$

$$= \{5, 15, 20\}$$

10. If $X = \{a, b, c, d\}$ and $Y = \{f, b, d, g\}$, find

(i) $X - Y$

(ii) $Y - X$

(iii) $X \cap Y$

Solution

Given

$$X = \{a, b, c, d\}$$

$$Y = \{f, b, d, g\}$$

(i) The difference of two sets

$$X - Y = \{a, b, c, d\} - \{f, b, d, g\}$$

$$= \{a, c\}$$

(ii) The difference of two sets

$$Y - X = \{f, b, d, g\} - \{a, b, c, d\}$$

$$= \{f, g\}$$

(iii) The intersection of two sets

$$X \cap Y = \{a, b, c, d\} \cap \{f, b, d, g\}$$

$$= \{b, d\}.$$

11. If R is the set of real numbers and Q is the set of rational numbers, then what is $R - Q$?

Solution

The Set $R = \{x : x \text{ is a real number}\}$

The Set $Q = \{x : x \text{ is a rational number}\}$

$$R - Q = \{x : x \in R \text{ and } x \notin Q\}$$

$= \{x : x \text{ is a real number and } x \text{ is not a rational}$

$= \{x : x \text{ is an irrational number}\}$

$= T$

Each real number is either rational or irrational but not both

12. State whether each of the following statement is true or false. Justify your answer.

(i) $\{2, 3, 4, 5\}$ and $\{3, 6\}$ are disjoint sets.

(ii) $\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.

(iii) $\{2, 6, 10, 14\}$ and $\{3, 7, 11, 15\}$ are disjoint sets.

(iv) $\{2, 6, 10\}$ and $\{3, 7, 11\}$ are disjoint sets.

Solution

(i) Given sets are

$$\{2, 3, 4, 5\} \text{ and } \{3, 6\}$$

Intersection sets are:

$$\{2, 3, 4, 5\} \cap \{3, 6\} = \{3\}$$

Hence these are not disjoint sets.

The given disjoint sets are false.

(ii) Given sets is

$$\{a, e, i, o, u\} \text{ and } \{a, b, c, d\}$$

Intersection sets are:

$$\{a, e, i, o, u\} \cap \{a, b, c, d\} = \{a\}$$

Hence these are not disjoint sets.

The given disjoint sets are false

(iii) Given sets is

$$\{2, 6, 10, 14\} \text{ and } \{3, 7, 11, 15\}$$

Intersection sets are:

$$\{2, 6, 10, 14\} \cap \{3, 7, 11, 15\} = \emptyset$$

Then, $A \cap B$ is an empty set.

Hence these are disjoint sets.

The given disjoint sets are True.

(iv) Given sets is

$$\{2, 6, 10\} \text{ and } \{3, 7, 11\}.$$

Intersection sets are:

$$\{2, 6, 10\} \cap \{3, 7, 11\} = \emptyset$$

Then, $A \cap B$ is an empty set.

Hence these are disjoint sets.

The given disjoint sets are True.

Example 20

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A = \{1, 3, 5, 7, 9\}$. Find A' .

Solution

Given,

$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$A = \{1, 3, 5, 7, 9\}$$

The value of $A' = U - A = \{2, 4, 6, 8, 10\}$

2, 4, 6, 8, 10 are the elements of U which does not belong to A .

Example 21

Let U be universal set of all the students of Class XI of a coeducational school and A be the set of all girls in Class XI. Find A' .

Solution

In a coeducational school, there can be only boys and girls in a school.

A is the set of all girls,

$A' = \text{Set of all Students} - \text{Set of all girls}$

$A' = \text{Set of all boys in class XI.}$

Since A is the set of all girls, A' is clearly the set of all boys in the class.

Example 22

Let $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3\}$ and $B = \{3, 4, 5\}$

Find A' , B' , $A' \cap B'$, $A \cup B$ and hence show that $(A \cup B)' = A' \cap B'$.

Solution

Given

$U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3\}$

$B = \{3, 4, 5\}$

The complement of Set A

$$A' = U - A = \{1, 2, 3, 4, 5, 6\} - \{2, 3\}$$

$$= \{1, 4, 5, 6\}$$

Clearly $A' = \{1, 4, 5, 6\}$,

Similarly

$$B' = U - B = \{1, 2, 3, 4, 5, 6\} - \{3, 4, 5\}$$

$$= \{1, 2, 6\}$$

$$B' = \{1, 2, 6\}$$

Now,

$$A' \cap B' = \{1, 4, 5, 6\} \cap \{1, 2, 6\}$$

$$= \{1, 6\}$$

$$\text{Hence } A' \cap B' = \{1, 6\}$$

Also,

$$A \cup B = \{2, 3\} \cup \{3, 4, 5\}$$

$$= \{2, 3, 4, 5\}$$

$$\text{Also } A \cup B = \{2, 3, 4, 5\},$$

$$\text{So that } (A \cup B)' = \{1, 6\}$$

$$\text{Now, to prove } (A \cup B)' = A' \cap B'$$

$$(A \cup B)' = U - (A \cup B) = \{1, 2, 3, 4, 5, 6\} - \{2, 3, 4, 5\}$$

$$= \{1, 6\}$$

$$\text{Now, } A' \cap B' = \{1, 6\}$$

$$(A \cup B)' = \{1, 6\}$$

$$\text{Thus, } (A \cup B)' = A' \cap B'$$

Hence proved