Chapter: Three-dimensional Geometry.

Exercise: 11.3

1. Determine the direction cosines of the normal to the plane and the distance from the origin.
(a) $\mathrm{z}=2$

Solution: It is given that equation of the plane is $\mathrm{z}=2$
Now we can tell that the direction ratios are $0,0,1$.
Which means $\sqrt{0+0+1^{2}}=1$
Now we will divide both sides of equation by 1 , we get
$0+0+\frac{z}{1}=2$
Therefore, the direction cosines and distance of the plane is $(0,0,1)$ and 2 units respectively.
(b) $x+y+z=1$

Ans: $x+y+z=1$ is the equation of the normal
Now, from the equation given we can say that the direction ratios of normal are 1 ,
1 and 1.
Which means $\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$
Now we will divide the equation by $\sqrt{3}$, we get
$\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=\frac{1}{\sqrt{3}}$
Therefore, the direction cosines and distance from the origin $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
And $\frac{1}{\sqrt{3}}$ units respectively.
(c). $2 x+3 y-z=5$

Solution: $2 x+3 y-z=5$ is the equation of the normal
Now, from the given equation we get the direction ratios of normal as $2,3,-1$.

Which means $\sqrt{2^{2}+3^{2}+(-1)^{2}}=\sqrt{14}$
Now, we will divide the equation by $\sqrt{14}$, we get
$\frac{2}{\sqrt{14}} x+\frac{3}{\sqrt{14}} y-\frac{1}{\sqrt{14}} z=\frac{5}{\sqrt{14}}$
Therefore, the direction cosines and the distance from the origin of the normal are $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}$ and $\frac{5}{\sqrt{14}}$ units respectively.
(d) $5 y+8=0$.

Solution: $5 y+8=0 \Rightarrow 0 x+5 y+0 z=-8$ is the given equation
Now, from the equation we can tell that the direction ratios of normal are $0,-5$ and 0 .

Which means $\sqrt{0^{2}+(-5)^{2}+0^{2}}=5$
Now, we will divide the equation by 5 , we get
$-y=\frac{8}{5}$
Therefore, the direction cosines and the distance from the origin of the normal are $0,-$
1,0 and $\frac{8}{5}$ units respectively.
2. Find the vector equation of plane which is at the distance of 7 units from the origin and the normal vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$

Solution: Let us consider the normal vector be $\vec{a}=3 \hat{i}+5 \hat{j}-6 \hat{k}$
We know that $\hat{n}=\frac{\vec{n}}{|\vec{n}|}=\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{3^{2}+5^{2}+6^{2}}}=\frac{3 \hat{i}+5 \hat{j}-6 \hat{\hat{k}}}{\sqrt{70}}$
As we know the equation of the plane with position vector is shown in form $\vec{r} \cdot \hat{n}=d$, Therefore,
$\Rightarrow \vec{r} \cdot\left(\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{70}}\right)=7$
Therefore, the vector equation is in the form $\vec{r} \cdot\left(\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{70}}\right)=7$.
3. Find the Cartesian equation of planes
(a) $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

Solution: We have been given equation of the plane as $\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$
As we know, the position vector is $\vec{r}=x \hat{i}+y \hat{j}-z \hat{k}$
Putting the values of ${ }^{r}$ in equation, we get
$(x \hat{i}+y \hat{j}-z \hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})=2$
$\Rightarrow x+y-z=2$
Therefore, the cartesian equation will be $x+y-z=2$
(b) $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$

Solution: We have been given equation of the plane as $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1$
As we know the position vector \vec{r} is given by,

$$
\vec{r}=x \hat{i}+y \hat{j}-z \hat{k}
$$

Putting the values of \vec{r} in equation, we get

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}-z \hat{k}) \cdot(2 i+3 \hat{j}-4 \hat{k})=1 \\
& \Rightarrow 2 x+3 y-4 z=1
\end{aligned}
$$

Therefore, the Cartesian equation will be $2 x+3 y-4 z=1, x+y-z=2$
(c) $\vec{r} \cdot((s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k})=15$

Solution: We have been given equation of the plane as

$$
\vec{r} \cdot((s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k})=15
$$

As the position vector is in form as $\vec{r}=x \hat{i}+y \hat{j}-z \hat{k}$
Putting the values of \vec{r} in equation, we get

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}-z \hat{k}) \cdot((s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k})=15 \\
& \Rightarrow(s-2 t) x+(3-t) y+(2 s+t) z=1
\end{aligned}
$$

Therefore, the cartesian equation will be $(s-2 t) x+(3-t) y+(2 s+t) z=1$
4. Find the coordinates of the foot of the perpendicular drawn from the origin.
a) $2 x+3 y+4 z-12=0$

Solution: Let us consider the coordinates of the foot be $\left(x_{1}, y_{1}, z_{1}\right)$
Now, we have been given equation as $2 x+3 y+4 z-12=0$
As we can tell the direction ratios will be 2, 3 and 4 .
Which means, $\sqrt{2^{2}+3^{2}+4^{2}}=\sqrt{29}$
Now, we will divide the equation by $\sqrt{29}$, we get
$\frac{2}{\sqrt{29}} x+\frac{3}{\sqrt{29}} y+\frac{4}{\sqrt{29}} z=\frac{12}{\sqrt{29}}$
The coordinates of the foot of the perpendicular will be,
$\left(\frac{2}{\sqrt{29}} \cdot \frac{12}{\sqrt{29}}, \frac{3}{\sqrt{29}} \cdot \frac{12}{\sqrt{29}}, \frac{4}{\sqrt{29}} \cdot \frac{12}{\sqrt{29}}\right)$
$\Rightarrow\left(\frac{24}{29}, \frac{36}{49}, \frac{48}{29}\right)$
Therefore, the coordinates of the foot of the perpendicular will be $\left(\frac{24}{29}, \frac{36}{49}, \frac{48}{29}\right)$
(b) $3 y+4 z-6=0$

Solution: Let us take the coordinates of the foot of perpendicular be $\left(x_{1}, y_{1}, z_{1}\right)$
Now, we have been given equation as $3 y+4 z-6=0$
As we can tell the direction ratios will be 0,3 and 4 .

Which means, $\sqrt{0+3^{2}+4^{2}}=5$
Now, we will divide the equation by 5 , we get
$0 x+\frac{3}{5} y+\frac{4}{5} z=\frac{6}{5}$
Now, the coordinates of the foot of the perpendicular will be,
$\left(0, \frac{3}{5} \cdot \frac{6}{5}, \frac{4}{5} \cdot \frac{6}{5}\right)$
$\Rightarrow\left(0, \frac{18}{25}, \frac{24}{25}\right)$
Therefore, the coordinates of the foot of the perpendicular will be $\left(0, \frac{18}{25}, \frac{24}{25}\right)$
(c) $x+y+z=1$

Solution: Let us consider the coordinates of the foot of perpendicular be $\left(x_{1}, y_{1}, z_{1}\right)$
Now, we have been given equation $x+y+z=1$
As we can tell the direction ratios will be 1,1 and 1 .
Which means, $\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$
Now, we will divide the equation by $\sqrt{3}$, we get
$\frac{2}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=\frac{1}{\sqrt{3}}$
Now, the foot of the perpendicular will be,
$\left(\frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}}\right)$
$\Rightarrow\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
Therefore, the coordinates of the foot of the perpendicular will be $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
(d) $\Rightarrow 5 y+8=0 \backslash$

Solution: Let us consider the coordinates of the foot of perpendicular be $\left(x_{1}, y_{1}, z_{1}\right)$
Now, we have been given equation as $5 y+8=0 \Rightarrow 0 x-5 y+0 z=8$

Now, we can tell that the direction ratios will be 0,5 and 0 .
Which means, $\sqrt{0+5^{2}+0=5}$
Now, we will divide the equation by 5 , we get
$-y=\frac{8}{5}$
Therefore, the foot of the perpendicular will be $\left(0,(-1) \cdot \frac{8}{5}, 0\right)$
Therefore, the coordinates of the foot of the perpendicular is $\left(0,-\left(\frac{8}{5}\right), 0\right)$.
5. Find the vector and Cartesian equation of the planes
(a) That passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$

Solution: Now, according to the question, the position vector of point $(1,0,-2)$ be $\vec{a}=\hat{i}-2 \hat{k}$
Now, the normal vector \vec{N} perpendicular to the plane will be $\vec{N}=\hat{i}+\hat{j}-\hat{k}$
Now, the vector equation of the plane will be in form $(\vec{r}-\vec{a}) \cdot \vec{N}=0$

$$
[\vec{r}-(\hat{i}-2 \hat{k})] \cdot(\hat{i}+\hat{j}-\hat{k})=0
$$

As, ${ }^{r}$ is the positive vector of any point $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, we get

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Now,

$$
\begin{aligned}
& {[(x \hat{i}+y \hat{j}+z \hat{k})-(\hat{i}-2 \hat{k})] \cdot(\hat{i}+\hat{j}-\hat{k})=0 \Rightarrow[(x-1) \hat{i}+y \hat{j}+(z+2) \hat{k}] \cdot(\hat{i}+\hat{j}-\hat{k})=0} \\
& \Rightarrow(x-1)+y-(z-2)=0 \\
& \Rightarrow x+y-z=3
\end{aligned}
$$

Therefore, the equation will be $x+y-z=3$.
(b) That passes through the point $(1,4,6)$ and the normal to the plane is $\hat{i}-2 \hat{j}+\hat{k}$

Solution: Now, according to question, the position vector of point vector of point (1,
4,6) will be
$\vec{a}=\hat{i}+4 \hat{j}+6 \hat{k}$

As we know that the normal vector \vec{N} perpendicular to the plane, $\vec{N}=\hat{i}-2 \hat{j}+\hat{k}$
So, the vector equation of the plane is will be in form,
$[\vec{r}-(\hat{i}+4 \hat{j}+6 \hat{k})] \cdot(\hat{i}-2 \hat{j}+\hat{k})=0$
As, \vec{r} is the positive vector of any point $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in the plane,
Now,
$[(x \hat{i}+y \hat{j}+z \hat{k})-(\hat{i}+4 \hat{j}+6 \hat{k})] \cdot(i-2 \hat{j}+\hat{k})=0 \Rightarrow[(x-1) \hat{i}+(y-4) \hat{j}+(z+6) \hat{k}] \cdot(\hat{i}-2 \hat{j}=\hat{k})=0$
$\Rightarrow(x-1)-2(y-4)+(z-6)=0$
$\Rightarrow(x-1)-2(y-4)+(z-6)=0$
$\Rightarrow x-2 y+z+1=0$

Therefore, the equation of the plane will be $\mathrm{x}-2 \mathrm{y}+\mathrm{z}+1=0$.
6. If the plane passes through the given points, Find the equations of the plane.
(a) $(1,1,-1),(6,4,-5),(-4,-2,3)$

Solution: Now, let us consider the points be $A(1,1,-2), B(6,4,-5), C(-4,-2,3)$
Now, $\left|\begin{array}{ccc}1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3\end{array}\right|=(12-10)-(18-20)-(12+16)=2+2-4=0$

Therefore, A,B,C are collinear points,
The number of planes passing through will be infinite
(b) $(1,1,0),(1,2,1),(-2,2,-1)$

Solution: Now, let consider the points be $A(1,1,0)), B(1,2,1), C(-2,2,1)$
Now, $\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1\end{array}\right|=(-2-2)-(2+2)=-8 \neq 0$
From this we get to know that a plane will pass through the points A, B, C Now, the equation of the plane through the points will be, $\left|\begin{array}{lll}x-x_{1} & y-y_{1} & z-z_{1} \\ x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}\end{array}\right|=0 \Rightarrow\left|\begin{array}{ccc}x-1 & y-1 & z \\ 0 & 1 & 1 \\ -3 & 1 & -1\end{array}\right|=0$
$\Rightarrow(-2)(x-1)-3(y-1)+3 z=0 \Rightarrow-2 x-3 y+3 z+2+3=0$
$\Rightarrow-2 x-3 y+3 z=-5 \Rightarrow 2 x+3 y-3 z=5$

Therefore, the equation of the plane is $2 x+3 y-3 z=5$.
7. Find the intercepts cut off by the plane $2 x+y-z=5$

Solution: Now, the equation of the plane is given as $2 x+y-z=5$

Now we will divide both sides by 5 , we get intercepts,

$$
\frac{2 x}{5}+\frac{y}{5}-\frac{z}{5}=1 \Rightarrow \frac{x}{\frac{5}{2}}+\frac{y}{5}+\frac{z}{-5}=1
$$

Now, as we know the equation of a plane in intercepts form is $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$, As
We can see that we got $a=\frac{5}{2}, b=5, c=-5$ as the intercepts of the plane.
Therefore, the intercepts of the plane will be $\frac{5}{2}, 5$ and 5 .
8. Find the equation of the plane parallel to ZOX plane and having intercept 3 on the y axis.

Solution: We have been given plane ZOX with intercept 3
As we know, if the plane is parallel to the equation, it will be in the form $\mathrm{y}=\mathrm{a}$
Since the y-intercept of the plane is 3 , we get
A=3
Therefore, the equation of the required plane is $\mathrm{y}=3$.
9. Find the equation of the plane through the point $(2,2,1)$ and the intersection of the plane $3 x-y+2 z-4=0$ and $x+y+z-2=0$

Solution: As it's given that the equation of the plane pass through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$, and passes through the point $(2,2,1)$

We know that $(3 x-y+2 z-4)+\alpha(x+y+z-2)=0, \alpha \in R$
Therefore, $(3 \times 2-2+2 \times 1-4)+\alpha(2+2+1-2)=0$
$\Rightarrow 2+3 \alpha=0 \Rightarrow \alpha=-\frac{2}{3}$
Now, putting $\alpha=-\frac{2}{3}$, we get
$(3 x-y+2 z-4)-\frac{2}{3}(x+y+z-2)=0$
$\Rightarrow 3(3 x-y+2 z-4)-2(x+y+z-2)=0$
$\Rightarrow(6 x-3 y+6 z-12)-2(x+y+z-2)=0$
$\Rightarrow 7 x-5 y+4 z-8=0$

Learn
Educational Institutions

Therefore, the equation of the plane will be $7 x-5 y+4 z-8=0$
10. Find the vector equation of the plane passing through the point $(2,1,3)$ and the intersection of the planes $\vec{r} \cdot(2 \hat{i}+\hat{j} 2-3 \hat{k})=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$

Solution: It is given that the equations for planes passes through $(2,1,3)$ and the intersection of the given planes,

$$
\Rightarrow \vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})-7=0 \text { and } \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})-9=0
$$

Now, the equation of the required plane will be

$$
\begin{aligned}
& {[\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})-7]+\lambda[\vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})-9]=0, \lambda \in R} \\
& \vec{r} \cdot[(2 \hat{i}+2 \hat{j}-3 \hat{k})+\lambda(2 \hat{i}+5 \hat{j}+3 \hat{k})]=9 \lambda+7 \\
& \vec{r} \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(3 \lambda-3) \hat{k}]=9 \lambda+7
\end{aligned}
$$

As plane passes through $(2,1,3)$, the position vector will be, $\vec{r}=2 \hat{i}+2 \hat{j}+-3 \hat{k}$

Putting this in equation $\vec{r} \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(3 \lambda-3) \hat{k}]=9 \lambda+7$ we get,

$$
\begin{aligned}
& (2 \hat{i}+2 \hat{j}+-3 \hat{k}) \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(3 \lambda-3) \hat{k}]=9 \lambda+7 \\
& \Rightarrow(2+2 \lambda)+(2+5 \lambda)+(3 \lambda-3)=9 \lambda+7 \\
& \Rightarrow 18 \lambda-3=9 \lambda+7
\end{aligned}
$$

$\Rightarrow 9 \lambda=10 \Rightarrow \lambda=\frac{10}{9}$
After putting this value in equation $\vec{r} \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(3 \lambda-3) \hat{k}]=9 \lambda+7$ we Will get,
$\vec{r} .\left[\frac{38}{9} \hat{i}+\frac{68}{9} \hat{j}+\frac{3}{9} \hat{k}\right]=17$
$\Rightarrow \vec{r} \cdot[38 \hat{i}+68 \hat{j}+3 \hat{k}]=153$
Therefore, the vector equation will be $\vec{r} \cdot[38 \hat{i}+68 \hat{j}+3 \hat{k}]=153$
11. Find the equation of the plane perpendicular to the plane $x-y+z=0$.

And through the line of intersection of the plane $x+y+z=1$ and $2 x+3 y+4 z=5$
Solution: It is given that the equation of the plane is perpendicular to $x-y+z=0$ and pass through the intersection of planes, we got
$(x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0$
$\Rightarrow(2 \lambda+1) x+(3 \lambda+1) y+(4 \lambda+1) z-(5 \lambda+1)=0$
From this we can tell that $a_{1}=(2 \lambda+1), b_{1}(3 \lambda+1), c_{1}=(4 \lambda+1)$
Now, according to the question the plane is perpendicular to $x-y+z=0$
We got, $a_{2}=1, b_{2}=-1, c_{2}=1$
We know that if planes are perpendicular, then,
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow(2 \lambda+1)-(3 \lambda+1)+(4 \lambda+1)=0$
$\Rightarrow 3 \lambda+1=0 \Rightarrow \lambda=-\frac{1}{3}$
By putting the value in equation $(2 \lambda+1) x+(3 \lambda+1) y+(4 \lambda+1) z-(5 \lambda+1)=0$, we got
$\frac{1}{3} x+\frac{1}{3} z+\frac{2}{3}=0$
$\Rightarrow x-z+2=0$

Therefore, the equation of the plane will be $x-z+2=0$
12. For these vectors equations of planes $\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$, find the angle between them.

Solution: According to the question we have been given two equation of planes,

$$
\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5 \text { and } \vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3
$$

Now, we know that if \vec{n}_{1} and \vec{n}_{2} are normal to the planes, then,

$$
\vec{r} \cdot \vec{n}_{1}=d_{1} \text { and } \vec{r} \cdot \vec{n}_{2}=d_{2} \text {, }
$$

As we know, we can find the angle by $\cos \theta=\left|\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\overrightarrow{n_{1}}\right|\left|\vec{n}_{2}\right|}\right|$
We got,

$$
\begin{aligned}
& \vec{n}_{1}=2 \hat{i}+2 \hat{j}-3 \hat{k} \text { and } \vec{n}_{2}=3 \hat{i}-3 \hat{j}+5 \hat{k} \\
& \therefore \vec{n}_{1} \cdot \vec{n}_{2}=(2 \hat{i}+2 \hat{j}-3 \hat{k})(3 \hat{i}-3 \hat{j}+5 \hat{k})=2.3+2(-3)+(-3) 5=-15, \\
& \left|\vec{n}_{1}\right|=\sqrt{2^{2}+2^{2}+(-3)^{2}}=\sqrt{17}
\end{aligned}
$$

$\left|\vec{n}_{2}\right|=\sqrt{3^{2}+(-3)^{2}+(5)^{2}}=\sqrt{43}$
Now, by putting all these values in equation $\cos \theta=\left|\frac{\vec{n}_{1} \cdot \vec{n}_{2}}{\left|\overrightarrow{n_{1}}\right|\left|\vec{n}_{2}\right|}\right|$
$\cos \theta=\left|\frac{-15}{\sqrt{17} \sqrt{43}}\right|$
$\Rightarrow \cos \theta=\frac{15}{\sqrt{731}} \Rightarrow \theta=\cos ^{-1}\left[\frac{15}{\sqrt{731}}\right]$
Therefore, the angle between them is $\theta=\cos ^{-1}\left[\frac{15}{\sqrt{731}}\right]$.
13. Determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

Solution: We know that the direction ratios of normal to the plane are a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2},
We know that if lines are parallel then, $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ and if lines are

Perpendicular then $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

The angle between the planes can be found by, $\theta=\cos ^{-1}\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|$
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$

Solution: The equations are given as $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
From the equations we got $a_{1}=7, b_{1}=5, c_{1}=6$ and $a_{2}=3, b_{2}=-1, c_{2}=-10$
Now we will check whether the planes are perpendicular or parallel, then
Now, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=7 \times 3+5 \times(-1)+6 \times(-10)=-44 \neq 0$
Therefore, the planes are not perpendicular.

Now, $\frac{a_{1}}{a_{2}}=\frac{7}{3}, \frac{b_{1}}{b_{2}}=\frac{5}{-1}, \frac{c_{1}}{c_{2}}=\frac{-3}{5}$

It can be seen that $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

Therefore, the given planes are not parallel.
The angle between them is given by

$$
\theta=\cos ^{-1}\left|\frac{7 \times 3+5 \times(-1)+6 \times(-10)}{\sqrt{7^{2}+5^{2}+6^{2}} \sqrt{3^{2}+(-1)^{2}+(-10)^{2}}}\right|
$$

$$
\theta=\cos ^{-1} \frac{44}{110}=\cos ^{-1}=\frac{2}{5}
$$

(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$

Solution: The equations are given as $2 x+y+3 z-2=0$ and $x-2 y+5=0$
From this we got, $a_{1}=2, b_{1}=1, c_{1}=3$ and $a_{2}=1, b_{2}=2, c_{2}=0$
Now, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 1+1 \times(-2)+3 \times 0 \neq 0$
Therefore, the planes are not perpendicular to each other.
Now, $\frac{a_{1}}{a_{2}}=\frac{2}{1}, \frac{b_{1}}{b_{2}}=\frac{1}{2}, \frac{c_{1}}{c_{2}}=\frac{-3}{0}$
It can be seen that $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Now, the angle between them will be

$$
\begin{aligned}
& \theta=\cos ^{-1}\left|\frac{2 \times 1+1 \times(2)+3 \times(0)}{\sqrt{2^{2}+1^{2}+3^{2}} \sqrt{1^{2}+(2)^{2}+0^{2}}}\right| \\
& \theta=\cos ^{-1} \frac{4}{\sqrt{70}}=\cos ^{-1}=\frac{2}{5}
\end{aligned}
$$

(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

Solution: The equations are given as $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

From this we got, $a_{1}=2, b_{1}=-2, c_{1}=4$ and $a_{2}=3, b_{2}=-3, c_{2}=6$

Now, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 3+(-2) \times(-3)+4 \times(6)=36 \neq 0$
Therefore, the given planes are not perpendicular.
Now, $\frac{a_{1}}{a_{2}}=\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{2}{3}, \frac{c_{1}}{c_{2}}=\frac{2}{3}$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

Therefore, the given planes are parallel to each other.
(d) $2 x-y+3 z-1=0$ and $2 x-y+3 z+3=0$

Solution: The equations are given as $2 x-y+3 z-1=0$ and $2 x-y+3 x+3=0$
From this we got, $a_{1}=2, b_{1}=-1, c_{1}=3$ and $a_{2}=2, b_{2}=-1, c_{2}=3$
Now, as we can see $\frac{a_{1}}{a_{2}}=\frac{2}{2}=1, \frac{b_{1}}{b_{2}}=\frac{-1}{-1}=1, \frac{c_{1}}{c_{2}}=\frac{-1}{1-}=1$
$\therefore \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Therefore, the given planes are parallel to each other.
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$

Solution: The equations are given as $4 x+8 y+z-8=0$ and $y+z-4=0$
From this we get, $a_{1}=4, b_{1}=8, c_{1}=1$ and $a_{2}=0, b_{2}=1, c_{2}=1$

Now, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=4 \times 0+8 \times(1)+1=9 \neq 0$
Therefore, the given planes are not perpendicular.
Now, $\frac{a_{1}}{a_{2}}=\frac{4}{0}, \frac{b_{1}}{b_{2}}=\frac{8}{1}=8, \frac{c_{1}}{c_{2}}=\frac{1}{1}=1$
It can be seen that $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$

Therefore, the given planes are not parallel.

Therefore, the angle between them will be,
$\theta=\cos ^{-1}\left|\frac{4 \times 0+8 \times(1)+1 \times 1}{\sqrt{4^{2}+8^{2}+1^{2}} \sqrt{0+(1)^{2}+(1)^{2}}}\right|$
$\theta=\cos ^{-1} \frac{9}{9 \sqrt{2}}=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}$
Therefore, the angle between them is 45°.
14. In the following cases, find the distance of each of the given points from the corresponding given plane.

Solution: The distance between a point and a plane is given by,
$d=\left|\frac{A x_{1}+B y_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$
(a) $(0,0,0) 3 x-4 y+12 z=3$

Ans: The given point is $(0,0,0)$ and the plane is $3 x-4 y+12 z=3$
Now the distance will be,

$$
d=\left|\frac{3 \times 0-4 \times 0+12 \times 0-3}{\sqrt{(-3)^{2}+(-4)^{2}+12^{2}}}\right|=\frac{3}{\sqrt{169}}=\frac{3}{13}
$$

Therefore, the distance will be $\frac{3}{13}$.
(b) $(3,-2,1) 2 x-y+2 z+3=0$

Ans: The given point is $(3,-2,1)$ and the plane is $2 x-y+2 z+3=0$

Now the distance will be $d=\left|\frac{2 \times 3-(-2) 2 \times 1+3}{\sqrt{(2)^{2}+(-1)^{2}+2^{2}}}\right|=\left|\frac{13}{3}\right|=\frac{13}{3}$
Therefore, the distance will be $\frac{3}{13}$.
(c) $(2,3,-5) x+2 y-2 z=9$

Ans: The given point is $(2,3,-5)$ and the plane is $\mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=9$

Now the distance will be,
$d=\left|\frac{2+2 \times 3-2 \times(-5)-3}{\sqrt{(1)^{2}+(2)^{2}+(-2)^{2}}}\right|=\frac{9}{3}=3$
Therefore, the distance will be 3 .
(d) $(-6,0,0) 2 x-3 y+6 z-2=0)$

Ans: The given point is $(-6,0,0)$ and the plane is $2 x-3 y+6 z-2=0$
Now, the distance will be,
$d=\left|\frac{2 \times(-6)-3 \times 0+6 \times 0-2}{\sqrt{(2)^{2}+(-3)^{2}+6^{2}}}\right|=\left|\frac{-14}{\sqrt{49}}\right|=\frac{14}{7}=2$
Therefore, the distance will be $\frac{3}{13}$.

