Chapter 13: Probability.

Exercise 13.1

1. Given that E and F are events such that $P(E)=0.6, P(F)=0.3$ and $P(E \cap F)=0.2$ then find the values of $P(E \mid F)$ and $P(F \mid E)$

Solution: Given $P(E)=0.6, P(F)=0.3$ and $P(E \cap F)=0.2$
The conditional probability states that

$$
P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{0.2}{0.3}=\frac{2}{3}
$$

Therefore, $P(E \mid F)=\frac{2}{3}$
The conditional probability states that

$$
P(F \mid E)=\frac{P(E \cap F)}{P(E)}=\frac{0.2}{0.6}=\frac{1}{3}
$$

Therefore, $P(F \mid E)=\frac{1}{3}$
2. Compute $P(A \mid B)$ if $P(B)=0.5$ and $P(A \cap B)=0.32$

Solution: Given, $P(B)=0.5$ and $P(A \cap B)=0.32$

The conditional probability states that

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=\frac{16}{25}
$$

Therefore, $P(A \mid B)=\frac{16}{25}$
3. If $P(A)=0.8, P(B)=0.5$ and $P(B \mid \mathrm{A})=0.4$ find
i) $P(A \cap B)$
ii) $P(A \mid B)$
iii) $P(A \cup B)$

Solution: Given, $P(A)=0.8, P(B)=0.5$ and $P(B \mid \mathrm{A})=0.4$
The conditional probability states that

$$
P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}
$$

(i) Hence, $0.4=\frac{P(A \cap B)}{0.8} \Rightarrow P(A \cap B)=0.32$
(ii) Use conditional probability

$$
\begin{aligned}
P\left(\frac{A}{B}\right) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{0.32}{0.5} \\
& =0.64
\end{aligned}
$$

(iii) Use addition theorem on probability

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =0.8+0.5-0.32 \\
& =0.98
\end{aligned}
$$

Hence, $P(A \cup B)=0.98$
4. Evaluate $P(A \cup B)$, if $2 P(A)=P(B)=\frac{5}{13}$ and $P(A \mid B)=\frac{2}{5}$

Solution: Given, $2 P(A)=P(B)=\frac{5}{13}$

It implies that $P(A)=\frac{5}{26}$ and

Use the conditional probability $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
Substitute the appropriate values in the above equation.

$$
\begin{aligned}
\frac{2}{5} & =\frac{P(A \cap B)}{\frac{5}{13}} \\
P(A \cap B) & =\frac{5}{13} \times \frac{2}{5} \\
& =\frac{2}{13}
\end{aligned}
$$

Use the Addition theorem on probability

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{5}{26}+\frac{5}{13}-\frac{2}{13} \\
& =\frac{5+10-4}{26} \\
& =\frac{11}{26}
\end{aligned}
$$

Therefore, $P(A \cup B)=\frac{11}{26}$
5. If $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$ and $P(A \cup B)=\frac{7}{11}$, find
i. $\quad P(A \cap B)$
ii. $\quad P(A \mid B)$
iii. $P(B \mid A)$

Solution: Given, $P(A)=\frac{6}{11}, P(B)=\frac{5}{11}$ and $P(A \cup B)=\frac{7}{11}$
i. Addition theorem of probability states that

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Substitute the appropriate values

$$
\begin{aligned}
\frac{7}{11} & =\frac{6}{11}+\frac{5}{11}-P(A \cap B) \\
P(A \cap B) & =\frac{4}{11}
\end{aligned}
$$

Therefore, $P(A \cap B)=\frac{4}{11}$
ii. The conditional probability states that

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{\frac{4}{\frac{11}{5}}}{11} \\
& =\frac{4}{5}
\end{aligned}
$$

Therefore, $P(A \mid B)=\frac{4}{5}$
iii. The conditional probability states that

$$
\begin{aligned}
P(B \mid A) & =\frac{P(A \cap B)}{P(A)} \\
& =\frac{\frac{4}{11}}{\frac{1}{11}} \\
& =\frac{2}{3}
\end{aligned}
$$

Therefore, $P(B \mid A)=\frac{2}{3}$
6. A coin is tossed three times, where
i. E : head on third toss, F : heads on first two tosses
ii. E : At least two heads, F : At most two heads
iii. $E:$ At most two heads, $F:$ At least one tail.

Find the value of $P(E \mid F)$ in each part.

Solution: The sample space S is $S=\{H H H, H H T, H T H, T H H, T T H, T H T, H T T, T T T\}$
i. Given that E :head on third toss, F : heads on first two tosses

$$
E=\{H H H, H T H, T H H, T T H\} \text { and } F=\{H H H, H H T\}
$$

Hence, $E \cap F=\{H H H\}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{1}{4}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{4}$
ii. Given that E : At least two heads, F : At most two heads

$$
\begin{aligned}
& E=\{H H H, H T H, T H H, H H T\} \text { and } \\
& F=\{T T T, T T H, T H T, H T T, H T H, T H H, H H T\}
\end{aligned}
$$

Hence, $E \cap F=\{H H H, H T H, T H H, H H T\}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{4}{7}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{4}{7}$
iii. Given that E : At most two tails, F : At least one tail.
$E=\{H H H, T T H, T H T, H T T, T H H, H T H, H H T\}$ and

$$
F=\{T T T, H H T, T H H, H T H, T T H, T H T, H T T\}
$$

Hence, $E \cap F=\{H H T, T H H, H T H, T T H, T H T, H T T\}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{6}{7}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{6}{7}$
7. Two coins are tossed once, where
i. $\quad E$: tail appears on one coin, F : one coin shows head
ii. E : no tail appears, $F:$ no head appears.

Find the value of $P(E \mid F)$ in each part.
Solution: The sample space S is $S=\{H H, H T, T H, T T\}$
i. Given that E : tail appears on one coin, F : one coin shows head

$$
E=\{H T, T H\} \text { And } F=\{H T, T H\}
$$

Hence, $E \cap F=\{H T, T H\}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

Therefore, $P(E \mid F)=1$
ii. Given that E : no tail appears, $F:$ no head appears.

$$
E=\{H H\} \text { And } F=\{T T\}
$$

Hence, $E \cap F=\{ \}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{0}{1} \\
& =0
\end{aligned}
$$

Therefore, $P(E \mid F)=0$
8. A die is thrown three times, suppose that E : Appear 4 on third toss, $F: 6,5$ appear on first two tosses. Then find $P(E \mid F)$

Solution: The number of possible cases for the event E : Appear 4 on third toss:
First two tosses any one of first six numbers, so that $n(E)=6 \times 6=36$

For the event $F: 6,5$ appear on first two tosses

$$
F=\{(6,5,1),(6,5,2),(6,5,3),(6,5,4),(6,5,5),(6,5,6)\}
$$

Hence, $E \cap F=\{(6,5,4)\}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{1}{6}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{6}$
9. Mother, Father and son line up at random for a family picture E : Son on one end, F : Father in middle

Then find $P(E \mid F)$
Solution: Suppose that A :Mother, $B:$ Father, C : Son
Given that E : Son on one end, F : Father in middle
It implies that $E=\{A B C, B A C, C A B . C B A\}$ and $F=\{A B C, C B A\}$

Hence, $E \cap F=\{A B C, C B A\}$

Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

Therefore, $P(E \mid F)=1$
10. A black and a red dice are rolled.
a. Find the conditional probability of obtaining a sum greater than 9 , given that the black die results 5
b. Find the conditional probability of obtaining the sum 8 , given that the red die resulted in a number less than 4.

Solution: Given that one black and one red dice thrown.
a. Suppose that E be the event of getting total 9 and F be the event of getting 5 on the black die

The set of favourable cases to the event E is

$$
E=\left\{\left(B_{4}, R_{6}\right),\left(B_{5}, R_{5}\right),\left(B_{5}, R_{6}\right),\left(B_{6}, R_{4}\right),\left(B_{6}, R_{5}\right),\left(B_{6}, R_{6}\right)\right\}
$$

The set of favourable cases to the event F is

$$
F=\left\{\left(B_{5}, R_{1}\right),\left(B_{5}, R_{2}\right),\left(B_{5}, R_{3}\right),\left(B_{5}, R_{4}\right),\left(B_{5}, R_{5}\right),\left(B_{5}, R_{6}\right)\right\}
$$

Hence, $E \cap F=\left\{\left(B_{5}, R_{5}\right),\left(B_{5}, R_{6}\right)\right\}$

Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{2}{6} \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{3}$
b. Suppose that E be the event of getting sum 8 and F be the event of getting number less than 4 on the red dice

The set of favourable cases to the event E is

$$
E=\left\{\left(B_{2}, R_{6}\right),\left(B_{3}, R_{5}\right),\left(B_{4}, R_{4}\right),\left(B_{5}, R_{3}\right),\left(B_{6}, R_{2}\right)\right\}
$$

The set of favourable cases to the event F is

$$
F=\left\{\begin{array}{l}
\left(B_{1}, R_{1}\right),\left(B_{2}, R_{1}\right),\left(B_{3}, R_{1}\right),\left(B_{4}, R_{1}\right),\left(B_{5}, R_{1}\right),\left(B_{6}, R_{1}\right), \\
\left(B_{1}, R_{1}\right),\left(B_{2}, R_{1}\right),\left(B_{3}, R_{1}\right),\left(B_{4}, R_{2}\right),\left(B_{5}, R_{2}\right),\left(B_{6}, R_{2}\right), \\
\left(B_{1}, R_{3}\right),\left(B_{2}, R_{3}\right),\left(B_{3}, R_{3}\right),\left(B_{4}, R_{3}\right),\left(B_{5}, R_{3}\right),\left(B_{6}, R_{3}\right)
\end{array}\right\}
$$

Hence, $E \cap F=\left\{\left(B_{5}, R_{3}\right),\left(B_{6}, R_{2}\right)\right\}$
Conditional probability states that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{2}{18} \\
& =\frac{1}{9}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{9}$
11. A fair die is rolled. Consider the events $E=\{1,3,5\}, F=\{2,3\}, G=\{2,3,4,5\}$ then find the following
i) $\quad P(E \mid F)$ and $P(F \mid E)$
ii) $\quad P(E \mid G)$ and $P(G \mid E)$
iii) $\quad P(E \cup F \mid G)$ and $P(E \cap F \mid G)$

Solution: Given that $E=\{1,3,5\}, F=\{2,3\}, G=\{2,3,4,5\}$
i) Conditional probability states that $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$

Here $E \cap F=\{3\}$.

It implies that

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{1}{2}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{2}$
Conditional probability states that $P(F \mid E)=\frac{P(E \cap F)}{P(E)}$
Here $E \cap F=\{3\}$.
It implies that

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \cap F)}{P(E)} \\
& =\frac{n(E \cap F)}{n(E)} \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, $P(F \mid E)=\frac{1}{3}$
ii) Conditional probability states that $P(E \mid G)=\frac{P(E \cap G)}{P(G)}$

Here $E \cap G=\{3,5\}$.
It implies that

$$
\begin{aligned}
P(E \mid \mathrm{G}) & =\frac{P(E \cap G)}{P(G)} \\
& =\frac{n(E \cap G)}{n(G)} \\
& =\frac{2}{4}
\end{aligned}
$$

Therefore, $P(E \mid G)=\frac{1}{2}$

Conditional probability states that $P(G \mid E)=\frac{P(E \cap G)}{P(E)}$
Here $E \cap G=\{3,5\}$.
It implies that

$$
\begin{aligned}
P(G \mid E) & =\frac{P(E \cap G)}{P(E)} \\
& =\frac{n(E \cap G)}{n(E)} \\
& =\frac{2}{3}
\end{aligned}
$$

Therefore, $P(G \mid E)=\frac{2}{3}$
iii) Conditional probability states that $P(E \cup F \mid G)=\frac{P(E \cup F \cap G)}{P(G)}$

Here $E \cup F=\{1,2,3,5\} E \cup F \cap G=\{2,3,5\}$.
It implies that

$$
P(E \cup F \mid G)=\frac{P(E \cup F \cap G)}{P(G)}=\frac{n(E \cup F \cap G)}{n(G)}=\frac{3}{4}
$$

Therefore, $P(E \cup F \mid G)=\frac{3}{4}$
Conditional probability states that $P(E \cap F \mid G)=\frac{P(E \cap F \cap G)}{P(G)}$
Here $E \cap F \cap G=\{3\}$
It implies that

$$
P(E \cap F \mid G)=\frac{P(E \cap F \cap G)}{P(G)}=\frac{n(E \cap F \cap G)}{n(G)}=\frac{1}{4}
$$

Therefore, $P(E \cap F \mid G)=\frac{1}{4}$
12. Assume that each born child is equally like to be a boy or a girl. If a family had two children. What is the conditional probability that both are girls given that
i) The youngest is a girl
ii) At least one is girl.

Solution: Suppose that B : boy and G : girl.
Sample space for the experiment is $S=\{(B B),(B G),(G B),(G G)\}$
i) Let E be the event of getting family having both are girl children

$$
E=\{G G\}
$$

Let F be the event of getting a family having youngest is a girl

$$
F=\{(G G),(G B)\}
$$

Hence, $E \cap F=\{(G G)\}$
The conditional probability states that $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{1}{2}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{2}$
ii) Let E be the event of getting family having both are girl children

$$
E=\{G G\}
$$

Let F be the event of getting at least one girl

$$
F=\{(G G),(G B),(B G)\}
$$

Hence, $E \cap F=\{(G G)\}$

The conditional probability states that $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{3}$
13. An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions If a question is selected at random from the question bank, what is the probability that it will be an easy question that it is a multiple choice questions?
Solution: The given data can be tabulated as below

	True/False (T)	Multiple (M)	Total
Easy (E)	300	500	800
Difficult (D)	200	400	600
Total	500	900	1400

We want to find the probability getting an easy question that it is a multiple choice question.

Conditional probability states that $P(E \mid M)=\frac{P(E \cap M)}{P(M)}$

$$
P(E \mid M)=\frac{P(E \cap M)}{P(M)}=\frac{n(E \cap M)}{n(M)}=\frac{500}{900}=\frac{5}{9}
$$

Therefore, $P(E \mid M)=\frac{5}{9}$
14. Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event " The sum of the numbers on the dice is 4 "

Solution: Let E be the event of getting different numbers on two dice
The number of favourable cases to the event E is $n(E)=36-6($ doublet $)=30$

Let F be the event of getting the sum of the numbers on the dice is 4 .

$$
F=\{(1,3),(2,2),(3,1)\}
$$

Hence, $E \cap F=\{(1,3),(3,1)\}$

Conditional probability states that $P(F \mid E)=\frac{P(E \cap F)}{P(E)}$

$$
\begin{aligned}
P(F \mid E) & =\frac{P(E \cap F)}{P(E)} \\
& =\frac{2}{30} \\
& =\frac{1}{15}
\end{aligned}
$$

Therefore, $P(E \mid F)=\frac{1}{15}$
15. Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event the coin shows a tail, given that at least one die shows as 3

Solution: The sample space of the experiment is

$$
S=\left\{\begin{array}{l}
(1, H),(1, T),(2, H),(2, T),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\
(4, H),(4, T),(5, H),(5, T),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)
\end{array}\right\}
$$

Here $n(S)=20$

Let E be the event of showing tail on the coin

$$
E=\{(1, T),(2, T),(4, T),(5, T)\}
$$

Here, $n(E)=4$

Let F be the event of getting 3 at least on one dice

$$
F=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(6,3)\}
$$

Here, $n(F)=7$

Consider $E \cap F=\varphi$

Hence, $n(E \cap F)=0$

Conditional probability states that $P(E \mid F)=\frac{P(E \cap F)}{P(F)}$

Hence,

$$
\begin{aligned}
P(E \mid F) & =\frac{P(E \cap F)}{P(F)} \\
& =\frac{n(E \cap F)}{n(F)} \\
& =\frac{0}{7} \\
& =0
\end{aligned}
$$

Therefore, the probability of the event the coin shows a tail, given that at least one die shows as 3 is zero.
16. If $P(A)=\frac{1}{2}, P(B)=0$ then the value of $P(A \mid B)$
A) 0
B) $\frac{1}{2}$
C) Not defined
D) 1

Solution: Given $P(A)=\frac{1}{2}, P(B)=0$

Conditional probability states that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& =\frac{n(A \cap B)}{n(B)} \\
& =\text { Not defined }
\end{aligned}
$$

This is matching with the option (C)
17. If A and B are the events such that $P(A \mid B)=P(B \mid A)$ then
A) $A \neq B$
B) $A=B$
C) $A \cap B$ is an empty set
D) $P(A)=P(B)$

Solution: Given $P(A \mid B)=P(B \mid A)$
Conditional probability states that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
It implies that $P(A)=P(B)$
This is matching with the option (D)

