Chapter 13: Probability.

Exercise 13.4

1. State which of the following are not the probability distribution of a random variable. Give reasons for your answer.
(i)

X	0	1	2
$\mathrm{P}(\mathrm{X})$	0.4	0.4	0.2

(ii)

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	0.1	0.5	0.2	-0.1	0.3

(iii)

Y	-1	0	1
$\mathrm{P}(\mathrm{Y})$	0.6	0.1	0.2

(iv)

Z	3	2	1	0	-1
$\mathrm{P}(\mathrm{Z})$	0.3	0.2	0.4	0.1	0.05

Solution:

Since the sum of all the probabilities in a probability distribution is one.
(i) Sum of the probabilities $=0.4+0.4+0.2=1$

Thus, the given table is a probability distribution of random variable.
(ii) For $\mathrm{X}=3, \mathrm{P}(\mathrm{X})=-0.1$

Since probability of any observation is not negative. Therefore, the given table is not a probability distribution of random variables.
(iii) Sum of the probabilities $=0.6+0.1+0.2=0.9 \neq 1$

Thus, the given table is not a probability distribution of random variables
(iv) Sum of the probabilities $=0.3+0.2+0.4+0.1+0.05=1.05 \neq 1$

Thus, the given table is not a probability distribution of random variable.
2. An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X ? Is X a random variable?

Solution:

Let B represents a black ball and R represents a red ball.
The two balls selected can be represented as BB, BR, RB, RR
X represents the number of black balls.
Thus, the possible values of X are 0,1 and 2 .
Yes, X is a random variable
3. Let X represents the difference between the number of heads and the number of tails obtained when a coin is tossed 6 times. What are possible values of X?

Solution:

A coin is tossed six times and X represents the difference between the number of heads and the number of tails.

$$
\begin{aligned}
& \therefore X(6 H, 0 T)=|6-0|=6 \\
& X(5 H, 1 T)=|5-1|=4 \\
& X(4 H, 2 T)=|4-2|=2 \\
& X(3 H, 3 T)=|3-3|=0 \\
& X(2 H, 4 T)=|2-4|=2 \\
& X(1 H, 5 T)=|1-5|=4
\end{aligned}
$$

$$
X(0 H, 6 T)=|0-6|=6
$$

Therefore, the possible values of X are $6,4,2$ and 0
4. Find the probability distribution of
(i) Number of heads in two tosses of a coin
(ii) Number of tails in the simultaneous tosses of three coins
(iii) Number of heads in four tosses of a coin

Solution:

i) The sample space is $\{H H, H T, T H, T T\}$

Let X represent the number of heads.
$\therefore X(H H)=2, X(H T)=1, X(T H)=1, X(T T)=0$

Thus, X can take the value of 0,1 or 2
Since,

$$
\begin{aligned}
& P(H H)=P(H T)=P(T H)=P(T T)=\frac{1}{4} \\
& P(X=0)=P(T T)=\frac{1}{4} \\
& P(X=1)=P(H T)+P(T H)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& P(X=2)=P(H H)=\frac{1}{4}
\end{aligned}
$$

Therefore, the required probability distribution is as follows

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

(ii) The sample space is $\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$

Let X represents the number of tails.

Since, X can take the value of $0,1,2$ or 3

$$
\begin{aligned}
& P(X=0)=P(H H H)=\frac{1}{8} \\
& P(X=1)=P(H H T)+P(H T H)+P(T H H)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8} \\
& P(X=2)=P(H T T)+P(T H T)+P(T T H)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8} \\
& P(X=3)=P(T T T)=\frac{1}{8}
\end{aligned}
$$

Therefore, the probability distribution is as follows..

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

(iii) The sample space is

Let X be the random variable, which represents the number of heads.
Since, X can take the value of $0,1,2,3$ or 4

$$
\begin{aligned}
& P(X=0)=P(T T T T)=\frac{1}{16} \\
& P(X=1)=P(T T T H)+P(T T H T)+P(\text { THTT })+P(H T T T)=\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}=\frac{4}{16}=\frac{1}{4}
\end{aligned}
$$

$$
P(X=2)=P(H H T T)+P(T H H T)+P(T T H H)+P(H T T H)+P(H T H T)+P(T H T H)
$$

$$
=\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}=\frac{6}{16}=\frac{3}{8}
$$

$$
P(X=4)=P(H H H H)=\frac{1}{16}
$$

Therefore, the probability distribution is as follows.

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{16}$

5. Find the probability distribution of the number of success in two tosses of die, where a success is defined as
(i) Number greater than 4
(ii) Six appears on at least one die

Solution:

Let X be the random variable, which represents the number of success
(i) Here, success refers to the number greater than 4
$P(X=0)=P$ (number less than or equal to 4 on both the tosses) $=\frac{4}{6} \times \frac{4}{6}=\frac{4}{9}$
$P(X=1)=P$ (number less than or equal to 4 on first toss and greater than 4 on second toss) +P (number greater than 4 on first toss and less than or equal to 4 on second toss)
$=\frac{4}{6} \times \frac{2}{6}+\frac{4}{6} \times \frac{2}{6}=\frac{4}{9}$
$P(X=2)=P$ (number greater than 4 on both the tosses)
$=\frac{2}{6} \times \frac{2}{6}=\frac{1}{9}$

Therefore, the probability distribution is as follows.

X	1	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

(ii) Here, success means six appears on at least one die
$\mathrm{P}(\mathrm{Y}=0)=\mathrm{P}($ six does not appear on any of the dice $)=\frac{5}{6} \times \frac{5}{6}=\frac{25}{36}$
$\mathrm{P}(\mathrm{Y}=1)=\mathrm{P}($ six appears on at least one of the dice $)=\frac{1}{6} \times \frac{5}{6}+\frac{5}{6} \times \frac{1}{6}=\frac{5}{36}+\frac{5}{36}=\frac{10}{36}$
Therefore, the required probability is as follows.

Y	0	1
$\mathrm{P}(\mathrm{Y})$	$\frac{25}{36}$	$\frac{10}{36}$

6. From a lot of 30 bulbs which includes 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.

Solution:

Given, out of 30 bulbs, 6 are defective.
\Rightarrow Number of non - defective bulbs $=30-6=24$

4 bulbs are drawn from the lot with replacement
Let X be the random variable that denotes the number of defective bulbs in the selected

Bulbs
$\therefore P(X=0)=P(4$ non - defective and 0 defective $)={ }^{4} C_{0} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5}=\frac{256}{625}$
$P(X=1)=P(3$ non - defective and 1 defective $)={ }^{4} C_{1} \cdot\left(\frac{1}{5}\right) \cdot\left(\frac{4}{5}\right)^{3}=\frac{256}{625}$
$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(2$ non - defective and 2 defective $)={ }^{4} C_{2} \cdot\left(\frac{1}{5}\right)^{2} \cdot\left(\frac{4}{5}\right)^{2}=\frac{96}{625}$
$P(X=3)=P(1$ non - defective and 3 defective $)={ }^{4} C_{3} \cdot\left(\frac{1}{5}\right)^{3} \cdot\left(\frac{4}{5}\right)=\frac{16}{625}$
$\mathrm{P}(\mathrm{X}=4)=\mathrm{P}(0$ non - defective and 4 defective $)={ }^{4} C_{4} \cdot\left(\frac{1}{5}\right)^{4} \cdot\left(\frac{4}{5}\right)^{0}=\frac{1}{625}$
Thus, the required probability distribution is as follows

X	0	1	2	3	4
$\mathrm{P}(\mathrm{X})$	$\frac{256}{625}$	$\frac{256}{625}$	$\frac{96}{625}$	$\frac{16}{625}$	$\frac{1}{625}$

7. A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.

Solution:

Let the probability of getting a tail in the biased coin be x .
$\therefore P(T)=x$
$\Rightarrow P(H)=3 x$
For a biased coin, $P(T)+P(H)=1$
$\Rightarrow x+3 x=1$
$\Rightarrow 4 x=1$
$\Rightarrow x=\frac{1}{4}$
$\therefore P(T)=\frac{1}{4}$ and $P(H)=\frac{3}{4}$
When the coin is tossed twice, the sample space is $\{H H, T T, H T, T H\}$.

Let X be the random variable representing the number of tails.

$$
\begin{aligned}
& \therefore P(X=0)=P(\text { no tail })=P(H) \times P(H)=\frac{3}{4} \times \frac{3}{4}=\frac{9}{16} \\
& \mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\text { one tail })=\mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH}) \\
& =\frac{3}{4} \cdot \frac{1}{4}+\frac{1}{4} \cdot \frac{3}{4} \\
& =\frac{3}{16}+\frac{3}{16}
\end{aligned}
$$

$$
=\frac{3}{8}
$$

$$
\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\text { two tails })=P(T T)=\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}
$$

Thus, the required probability distribution is as follows

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{9}{16}$	$\frac{3}{8}$	$\frac{1}{16}$

8. A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X})$	0	k	2 k	2 k	3 k	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Determine
(i) k
(ii) $P(X<3)$
(iii) $P(X>6)$
(iv) $P(0<X<3)$

Solution:

(i) Since, the sum of probabilities of a probability distribution of random variable is one

$$
\begin{aligned}
& \therefore 0+k+2 k+3 k+k^{2}+2 k^{2}+\left(7 k^{2}+k\right)=1 \\
& \Rightarrow 10 k^{2}+9 k-1=0 \\
& \Rightarrow(10 k-1)(k+1)=0 \\
& \Rightarrow k=-1, \frac{1}{10}
\end{aligned}
$$

(ii) $\mathrm{P}(\mathrm{X}<3)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)$
$=0+\mathrm{k}+2 \mathrm{k}$
$=3 \mathrm{k}$
$=3 \times \frac{1}{10}$
$=\frac{3}{10}$
(iii) $\mathrm{P}(\mathrm{X}>6)=\mathrm{P}(\mathrm{X}=7)$
$=7 k^{2}+k$
$=7 \times\left(\frac{1}{10}\right)^{2}+\frac{1}{10}$
$=\frac{7}{100}+\frac{1}{10}$
$=\frac{17}{100}$
(iv) $P(0<x<3)=P(x=1)+P(x=2)$
$=k+2 k$
$=3 \mathrm{k}$
$=3 \times \frac{1}{10}$
$=\frac{3}{10}$
9. The random variable X has probability $\mathrm{P}(\mathrm{X})$ of the following form, where k is some number $P(X)= \begin{cases}k, & \text { if } x=0 \\ 2 k, & \text { if } x=1 \\ 3 k, & \text { if } x=2 \\ 0 & \text { otherwise }\end{cases}$
(a) Determine the value of k
(b) Find $P(X<2), P(X \geq 2), P(X \geq 2)$

Solution:

(a) Since, the sum of probabilities of a probability distribution of random variable is one.
$\therefore k+2 k+3 k+0=1$
$\Rightarrow 6 k=1$
$\Rightarrow k=\frac{1}{6}$
(b) $P(X<2)=P(X=0)+P(X=1)$
$\therefore k+2 k$

$$
\begin{aligned}
& =3 k=\frac{3}{6}=\frac{1}{2} \\
& P(X \leq 2)=P(X=0)+P(X=1)+P(X=2) \\
& =k+2 k+3 k \\
& =6 k=\frac{6}{6}=1 \\
& P(X \geq 2)=P(X=2)+P(X>2) \\
& =3 k+0 \\
& =3 k=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

10. Find the mean number of heads in three tosses of a fair coin

Solution:

Let X denote the success of getting heads.
Thus, the sample space is $S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}$
Here, X can take the value of $0,1,2$ or 3

$$
\begin{aligned}
& \therefore P(X=0)=P(T T T) \\
& =P(T) \cdot P(T) \cdot P(T) \\
& =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\
& =\frac{1}{8} \\
& \therefore P(X=1)=P(H H T)+P(H T H)+P(T H H) \\
& =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{3}{8} \\
& \therefore P(X=2)=P(H H T)+P(H T H)+P(T H H) \\
& =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{3}{8} \\
& \therefore P(X=2)=P(H H T)+P(H T H)+P(T H H) \\
& =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{3}{8} \\
& \therefore P(X=3)=P(H H H)
\end{aligned}
$$

$$
=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}
$$

Thus, the required probability is as follows

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Mean $E(X)=\sum X_{i} P\left(X_{i}\right)$
$=0 \times \frac{1}{8}+1 \times \frac{3}{8}+2 \times \frac{3}{8}+3 \times \frac{1}{8}$
$=\frac{3}{8}+\frac{3}{4}+\frac{3}{8}$
$=\frac{3}{2}=1.5$
11. Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X .

Solution:

Here, X represents the number of sixes obtained when two dice are thrown simultaneously. Thus, X can be take the value of 0,1 or 2
$\therefore P(X=0)=P($ not getting six on any of the dice $)=\frac{25}{26}$
$P(X=1)=P($ six on first die and no six on second die $)+\mathrm{P}($ no six on first die and six on second die)

$$
=2 \times\left(\frac{1}{6} \times \frac{5}{6}\right)=\frac{10}{36}
$$

$P(X=2)=P($ six on both the dice $)=\frac{1}{36}$
Thus, the required probability distribution is as follows

X	0	1	2

$\mathrm{P}(\mathrm{X})$	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$

Then, expectation of $X=E(X)=\sum X_{i} P\left(X_{i}\right)$
$=0 \times \frac{25}{36}+1 \times \frac{10}{36}+2 \times \frac{1}{36}$
$=\frac{1}{3}$
12. Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of two numbers obtained. Find $\mathrm{E}(\mathrm{X})$

Solution:

The two positive integers can be selected from the first six positive integers without replacement in $6 \times 5=30$ ways

X represents the larger of the two numbers obtained
Thus, X can take the value of $2,3,4,5$ or 6
For $\mathrm{X}=2$, the possible observations are $(1,2)$ and $(2,1)$

$$
\therefore P(x=2)=\frac{2}{30}=\frac{1}{15}
$$

For $\mathrm{X}=3$, the possible observations are $(1,3),(2,3),(3,1)$ and $(3,2)$
$\therefore P(X=3)=\frac{4}{30}=\frac{2}{15}$
For $\mathrm{X}=4$, the possible observations are $(1,4),(2,4),(3,4),(4,3),(4,2)$ and $(4,1)$
$\therefore P(X=4)=\frac{6}{36}=\frac{1}{5}$
For $\mathrm{X}=5$, the possible observations are

$$
(1,5),(2,5),(3,5),(4,5),(5,4),(5,3),(5,2) \text { and }(5,1)
$$

For $\mathrm{X}=6$, the possible observations are

$$
\begin{aligned}
& (1,6),(2,6),(3,6),(4,6),(5,6),(6,4),(6,3),(6,2) \text { and }(6,1) \\
& \therefore P(X=6)=\frac{10}{30}=\frac{1}{3}
\end{aligned}
$$

Thus, the required probability distribution is as follows

X	2	3	4	5	6
$\mathrm{P}(\mathrm{X})$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{5}$	$\frac{4}{15}$	$\frac{1}{3}$

Then, $E(x)=\sum X_{i} P\left(X_{i}\right)$

$$
\begin{aligned}
& =2 \cdot \frac{1}{15}+3 \cdot \frac{2}{15}+4 \cdot \frac{1}{5}+5 \cdot \frac{4}{15}+6 \cdot \frac{1}{3} \\
& =\frac{2}{15}+\frac{2}{5}+\frac{4}{5}+\frac{4}{3}+2 \\
& =\frac{70}{15}=\frac{14}{3}
\end{aligned}
$$

13. Let X denotes the sum of the number obtained when two fair dice are rolled. Find the variance and standard deviation of X .

Solution:

Here, X can take values $2,3,4,5,6,7,8,9,10,11$ and 12

$$
\begin{aligned}
& P(X=2)=P(1,1)=\frac{1}{36} \\
& P(X=3)=P(1,2)+P(2,1)=\frac{2}{36}=\frac{1}{18} \\
& P(X=4)=P(1,3)+P(2,2)+P(3,1)=\frac{3}{36}=\frac{1}{12} \\
& P(X=5)=P(1,4)+P(2,3)+P(3,2)+P(4,1)=\frac{4}{36}=\frac{1}{9} \\
& P(X=6)=P(1,5)+P(2,4)+P(3,3)+P(4,2)+P(5,1)=\frac{5}{36}
\end{aligned}
$$

$$
\begin{aligned}
& P(X=7)=P(1,6)+P(2,5)+P(3,4)+P(4,3)+P(5,2)+P(6,1)=\frac{6}{36}=\frac{1}{6} \\
& P(X=8)=P(2,6)+P(3,5)+P(4,4)+P(5,3)+P(6,2)=\frac{5}{36} \\
& P(X=9)=P(3,6)+P(4,5)+P(5,4)+P(6,3)=\frac{4}{36}=\frac{1}{9} \\
& P(X=10)=P(4,6)+P(5,5)+P(6,4)=\frac{3}{36}=\frac{1}{12} \\
& P(X=11)=P(5,6)+P(6,5)=\frac{2}{36}=\frac{1}{18} \\
& P(X=12)=P(6,6)=\frac{1}{36}
\end{aligned}
$$

Thus, the required probability distribution is as follows.

X	2	3	4	5	6	7	8	9	10	11	12
$\mathrm{P}(\mathrm{X})$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

Then, $E(X)=\sum X_{i} \cdot P\left(X_{i}\right)$

$$
\begin{aligned}
& =2 \times \frac{1}{36}+3 \times \frac{1}{18}+4 \times \frac{1}{12}+5 \times \frac{1}{9}+6 \times \frac{5}{36}+7 \times \frac{1}{6}+8 \times \frac{5}{36}+9 \times \frac{1}{9}+10 \times \frac{1}{12}+11 \times \frac{1}{18}+12 \times \frac{1}{36} \\
& =\frac{1}{18}+\frac{1}{6}+\frac{1}{3}+\frac{5}{9}+\frac{7}{6}+\frac{10}{9}+1+\frac{5}{6}+\frac{11}{18}+\frac{1}{3} \\
& =7 \\
& E\left(X^{2}\right)=\sum X_{i}^{2} \cdot P\left(X_{i}\right)
\end{aligned}
$$

$=4 \times \frac{1}{36}+9 \times \frac{1}{18}+16 \times \frac{1}{12}+25 \times \frac{1}{9}+36 \times \frac{5}{36}+49 \times \frac{1}{6}+64 \times \frac{5}{36}+81 \times \frac{1}{9}+100 \times \frac{1}{12}+121 \times \frac{1}{18}+144 \times \frac{1}{36}$
 $=\frac{1}{9}+\frac{1}{2}+\frac{4}{3}+\frac{25}{9}+5+\frac{49}{6}+\frac{80}{9}+9+\frac{25}{3}+\frac{121}{18}+4$
 $=\frac{987}{18}=\frac{329}{6}=54.833$
 Then, $\operatorname{Var}(X)=E(X)^{2}-[E(X)]^{2}$

$=54.833-(7)^{2}$
$=54.833-49$
$=5.833$
\therefore Standard deviation $=\sqrt{\operatorname{Var}(X)}$
$=\sqrt{5.833}$
$=2.415$
14. A class has 15 students whose ages are $14,17,15,14,21,17,19,20,16,18,20,17$, 16,19 and 20 years. One students is selected in such a manner that each has the same chance of being chosen and the age X of the selected student is recorded. What is the probability distribution of the random variable X? Find mean, variance and standard deviation of X

Solution:

There are 15 students in the class. Each student has the same chance to be chosen
Thus, the probability of each student to be selected is $\frac{1}{15}$
The given information can be shown in the frequency table as follows

x	14	15	16	17	18	19	20	21
f	2	1	2	3	1	2	3	1

$$
\begin{aligned}
& P(X=14)=\frac{2}{15}, P(X=15)=\frac{1}{15}, P(X=16)=\frac{2}{15}, P(X=16)=\frac{3}{15}, \\
& P(X=18)=\frac{1}{15}, P(X=19)=\frac{2}{15}, P(X=20)=\frac{3}{15}, P(X=21)=\frac{1}{15}
\end{aligned}
$$

Thus, the probability distribution of random variable X is as follows.

x	14	15	16	17	18	19	20	21
f	$\frac{2}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{3}{15}$	$\frac{1}{15}$

Then, mean $\mathrm{X}=\mathrm{E}(\mathrm{X})$

$$
\begin{aligned}
& \sum X_{i} P\left(X_{i}\right) \\
& =14 \times \frac{2}{15}+15 \times \frac{1}{15}+16 \times \frac{2}{15}+17 \times \frac{3}{15}+18 \times \frac{1}{15}+19 \times \frac{2}{15}+20 \times \frac{3}{15}+21 \times \frac{1}{15} \\
& =\frac{1}{15}(28+15+32+51+18+38+60+21) \\
& =\frac{263}{15}=17.53 \\
& E\left(X^{2}\right)=\sum X_{i}^{2} P\left(X_{i}\right) \\
& =(14)^{2} \cdot \frac{2}{15}+(15)^{2} \cdot \frac{1}{15}+(16)^{2} \cdot \frac{2}{15}+(17)^{2} \cdot \frac{3}{15}+(18)^{2} \cdot \frac{1}{15}+(19)^{2} \cdot \frac{2}{15}+(20)^{2} \cdot \frac{3}{15}+(21)^{2} \frac{1}{15} \\
& =\frac{1}{15}(392+225+512+867+324+722+1200+441) \\
& =\frac{4683}{15}=312.2 \\
& \therefore \text { Variance }(X)=E(X)^{2}-[E(X)]^{2} \\
& =312.2-\left(\frac{263}{15}\right)^{2} \\
& =312.2-307.4177
\end{aligned}
$$

$$
=4.7823=4.78
$$

Standard deviation $=\sqrt{\text { Variance }(X)}$
$=\sqrt{4.78}$
$=2.816 \approx 2.19$
15. In a meeting, 70% of the members favour and 30% oppose a certain proposal. A member is selected at random and we take $\mathrm{X}=0$ if he opposed, and $\mathrm{X}=1$ if he is in favour. Find $E(X)$ and var (X)

Solution:

Given, $P(X=0)=30 \%=\frac{30}{100}=0.3$

$$
P(X=1)=70 \%=\frac{70}{100}=0.7
$$

Thus, the probability distribution is as follows.

X	0	1
$\mathrm{P}(\mathrm{X})$	0.3	0.7

Then, $E(X)=\sum X_{i} P\left(X_{i}\right)$
$=0 \times 0.3+1 \times 0.7$
$=0.7$

$$
\begin{aligned}
& E\left(X^{2}\right)=\sum X_{i}^{2} P\left(X_{i}\right) \\
& =0^{2} \times 0.3+(1)^{2} \times 0.7=0.7
\end{aligned}
$$

Since, $\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
$=0.7-(0.7)^{2}$
$=0.7-0.49=0.21$
16. The mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face is
A) 1
B) 2
C) 5
D) $\frac{8}{3}$

Solution:

Let X be the random variable representing a number on the die.
The total number of observations is six.
$\therefore P(X=1)=\frac{3}{6}=\frac{1}{2}$
$P(X=2)=\frac{2}{6}=\frac{1}{3}$
$P(X=5)=\frac{1}{6}$

Thus, the probability distribution is as follows.

$$
\begin{aligned}
& \text { Mean }=E(X)=\sum X_{i} P\left(X_{i}\right) \\
& =\frac{1}{2} \times 1+\frac{1}{3} \times 2+\frac{1}{6} .5 \\
& =\frac{1}{2}+\frac{2}{3}+\frac{5}{6} \\
& =\frac{3+4+5}{6}=\frac{12}{6}=2
\end{aligned}
$$

17. Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of $\mathrm{E}(\mathrm{X})$ is
A) $\frac{37}{221}$
B) $\frac{5}{13}$
C) $\frac{1}{13}$
D) $\frac{2}{13}$

Solution:

Let X denote the number of aces obtained.

Thus, X can be take any of the value of 0,1 or 2 .
Since, in a deck of 52 cards, 4 cards are aces. Thus, there are 48 non - ace cards.
$\therefore P(X=0)=P(0$ ace and 2 non - ace cards $)=\frac{{ }^{4} C_{0} \times{ }^{48} C_{2}}{{ }^{52} C_{2}}=\frac{1128}{1326}$
$\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(1$ ace and 1 non - ace cards $)=\frac{{ }^{4} C_{1} \times{ }^{48} C_{1}}{{ }^{5} C_{2}}=\frac{192}{1326}$
$\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(2$ ace and 0 non - ace cards $)=\frac{{ }^{4} C_{2} \times{ }^{48} C_{0}}{{ }^{52} C_{2}}=\frac{6}{1326}$

Thus, the probability distribution is as follows

X	0	1	2
$\mathrm{P}(\mathrm{X})$	$\frac{1128}{1326}$	$\frac{192}{1326}$	$\frac{6}{1326}$

Then, $E(X)=\sum X_{i} P\left(X_{i}\right)$
$=0 \times \frac{1128}{1326}+1 \times \frac{192}{1326}+2 \times \frac{6}{1326}$
$=\frac{204}{1326}=\frac{2}{13}$

