

Chapter 2: Relations and Functions

Exercise 2.1

Question 1. If
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of x and y.

Solution : It is given that,

 $\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Thus,
$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$

Consider $\frac{x}{3} + 1 = \frac{3}{3}$,

Subtract 1 from both sides,

$$\frac{x}{3} = \frac{5}{3} - 1$$

Subtract the numbers,

$$\frac{x}{3} = \frac{2}{3}$$

Multiple both sides by 3,

$$x = 2$$

Now, $y - \frac{2}{3} = \frac{1}{3}$

Add $\frac{2}{3}$ to both sides,

$$y = \frac{1}{3} + \frac{2}{3}$$

Add the numbers,

y = 1

Therefore, x = 2 and y = 1.

Question 2. If the set A has 3 elements and the set $B=\{3,4,5\}$, then find the number of elements in (A×B) ?

Solution : It is given that set A has 3 elements and $B = \{3, 4, 5\}$

Number of elements in set B = 3

Number of elements in $(A \times B) = ($ Number of elements in $A) \times ($ Number of elements in B)

$$= 3 \times 3 = 9$$

Therefore, the number of elements in $(A \times B)$ is 9.

Question 3. If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$

Solution : Given that, $G = \{7, 8\}$ and $H = \{5, 4, 2\}$

It is known that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as $P \times Q = \{(p,q) : p \in P, q \in Q\}$.

Therefore, $G \times H = \{(7,5), (7,4), (7,2), (8,5), (8,4), (8,2)\}$

 $H \times G = \{(5,7), (5,8), (4,7), (4,8), (2,7), (2,8)\}$

Question 4. State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

(i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.

(ii) If A and B are non-empty sets, then A×B is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

(iii) If $A = \{1,2\}, B = \{3,4\}$, then $A \times (B \cap \Phi) = \Phi$.

Solution :

(i) The Cartesian product of two sets X and Y, denoted $X \times Y$, is the set of all ordered pairs where x is in X and y is in Y.

If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, m), (m, n), (n, m), (n, n)\}$.

So, the statement is false.

(ii) The Cartesian product of two sets X and Y, denoted $X \times Y$, is the set of all ordered pairs where x is in X and y is in Y.

If A and B are non-empty sets, then A×B is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.

So, the statement is true.

Then, $A \times (B \cap \Phi) = \Phi$.

So, the statement is true.

Question 5. If $A = \{-1, 1\}$, find $A \times A \times A$.

Solution : It is given that $A = \{-1, 1\}$.

It is known that for any non-empty set A, A×A×A is defined as $A \times A \times A = \{(a, b, c) : a, b, c \in A\}$

Therefore, $A \times A \times A = \{(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)\}$

Question 6. If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Solution : It is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$.

It is known that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p,q) : p \in P, q \in Q\}$

Thus, A is the set of all first elements and B is the set of all second elements. Therefore, $A = \{a, b\}$ and $B = \{x, y\}$.

Question 7. Let $A = \{1,2\}, B = \{1,2,3,4\}, C = \{5,6\}$ and $D = \{5,6,7,8\}$. Verify that

- (i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- (ii) $A \times C$ is a subset of $B \times D$

Solution :

(i) To verify: $A \times (B \cap C) = (A \times B) \cap (A \times C)$

It is given that, $B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \Phi$

Thus, L.H.S = $A \times (B \cap C) = A \times \Phi = \Phi$

 $A \times B = \{(1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (2,4)\}$

 $A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$

Therefore, R.H.S = $(A \times B) \cap (A \times C) = \Phi$

Thus, L.H.S = R.H.S

Hence, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

(ii) To verify : $A \times C$ is a subset of $B \times D$

Given that, $A = \{1,2\}, B = \{1,2,3,4\}, C = \{5,6\}$ and $D = \{5,6,7,8\}.$

Then, $A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$

 $A \times D = \{(1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8)\}$

It is seen that all the elements of set $A \times C$ are the elements of set $B \times D$.

Therefore, $A \times C$ is a subset of $B \times D$.

Question 8. Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Solution : $A = \{1, 2\}$ and $B = \{3, 4\}$

Thus, $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$

 \Rightarrow n(A×B) = 4

It is known that if C is a set with n(C)=m, then $n[P(C)]=2^m$

Therefore, the set $A \times B$ has $2^4 = 16$ subsets.

These are,

 $\Phi, \{(1,3)\}, \{(1,4)\}, \{(2,3)\}, \{(2,4)\}, \{(1,3), (1,4)\}, \{(1,3), (2,3)\}, \{(1,3), (2,4)\}, \\ \{(1,4), (2,3)\}, \{(1,4), (2,4)\}, \{(2,3), (2,4)\}, \{(1,3), (1,4), (2,3)\}, \{(1,3), (1,4), (2,4)\}, \\ \{(1,3), (2,3), (2,4)\}, \{(1,4), (2,3), (2,4)\}, \{(1,3), (1,4), (2,3), (2,4)\}$

Question 9. Let A and B be two sets such that n(A)=3 and n(B)=2. If (x,1), (y,2), (z,1) are in A×B, find A and B, where x, y and z are distinct elements.

Solution : Given that, n(A)=3 and n(B)=2.

It is also given that, (x,1), (y,2), (z,1) are in A×B.

It is known that, A is the set of first elements of the ordered pair elements of $A \times B$.

B is the set of second elements of the ordered pair elements of $A \times B$.

Thus, x, y, and z are the elements of A and 1, 2 are the elements of B.

Since n(A)=3 and n(B) = 2, it is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10. The Cartesian product $A \times A$ has 9 elements among which are found (-1, 0) and (0,1). Find the set A and the remaining elements of $A \times A$.

Solution : It is known that if n(A) = p and n(B) = q, then $n(A \times B) = pq$

 $n(A \times A) = n(A) \times n(A)$

It is given that $n(A \times A) = 9$.

Thus, $n(A) \times n(A) = 9$

 \Rightarrow n(A)=3

Thus, the ordered pairs (-1,0) and (0,1) are two of the nine elements of A×A.

It is also known that $A \times A = \{(a, a) : a \in A\}$.

So, -1, 0, and 1 are elements of A.

Since n(A)=3, it is clear that $A=\{-1,0,1\}$.

Therefore, the remaining elements of set A×A are (-1,-1), (-1,1), (0,-1), (0,0), (1,-1), (1,0), and (1,1).