

Chapter 2: Relations and Functions

Exercise 2.2

Question 1. Let $A = \{1, 2, 3, \dots, 14\}$. Define a relation R from A to A by $R = \{(x, y) : 3x - y = 0\}$, where $x, y \in A$. Write down its domain, codomain and range.

Solution : The relation R from A to A is given as $R = \{(x, y) : 3x - y = 0\}$, where $x, y \in A$

That is, $R = \{(x, y) : 3x = y\}$, where $x, y \in A$

Thus, $R = \{(1, 3), (2, 6), (3, 9), (4, 12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

Therefore, Domain of $R = \{1, 2, 3, 4\}$

The complete set A is the codomain of the relation R .

Therefore, Codomain of $R = A = \{1, 2, 3, \dots, 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

Therefore, Range of $R = \{3, 6, 9, 12\}$

Question 2. Define a relation R on the set N of natural numbers by $R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4; x, y \in N\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution : $R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\}$ The natural numbers less than 4 are 1, 2, and 3.

Thus, the relation is $R = \{(1, 6), (2, 7), (3, 8)\}$.

The domain of R is the set of all first elements of the ordered pairs in the relation.

Therefore, Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation. Therefore, Range of $R = \{6, 7, 8\}$

Question 3. $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by

$R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd; } x \in A, y \in B\}$. Write R in roster form.

Solution : Given that, $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$.

$R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd; } x \in A, y \in B\}$

Therefore, $R = \{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$

Question 4. The given figure shows a relationship between the sets P and Q . Write this relation (i) in set-builder form (ii) in roster form. What is its domain and range?

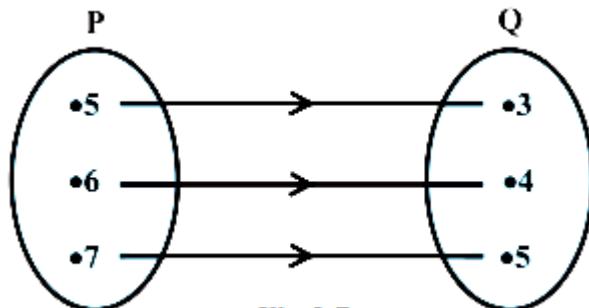


Fig 2.7

Solution : From the figure, $P = \{5, 6, 7\}$ and $Q = \{3, 4, 5\}$.

(i) The relation in set-builder form is,

$$R = \{(x, y) : y = x - 2; x \in P\} \text{ or } R = \{(x, y) : y = x - 2 \text{ for } x = 5, 6, 7\}$$

(ii) The relation in roster form is,

$$R = \{(5, 3), (6, 4), (7, 5)\}$$

$$\text{Domain of } R = \{5, 6, 7\}$$

$$\text{Range of } R = \{3, 4, 5\}$$

Question 5. Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a, b) : a, b \in A, b$ is exactly divisible by $a\}$.

(i) Write R in roster form

(ii) Find the domain of R

(iii) Find the range of R .

Solution : Given that, $A = \{1, 2, 3, 4, 6\}$ and $R = \{(a, b) : a, b \in A, b$ is exactly divisible by $a\}$.

(i) R in roster form is,

$$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)\},$$

(ii) The domain of R is the set of all first elements of the ordered pairs in the relation.

$$\text{Therefore, Domain of } R = \{1, 2, 3, 4, 6\}$$

(iii) The range of R is the set of all second elements of the ordered pairs in the relation.

Therefore, Range of $R = \{1, 2, 3, 4, 6\}$

Question 6. Determine the domain and range of the relation R defined by $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$.

Solution : Given that, $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$

Thus, $R = \{(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation. Therefore, Domain of $R = \{0, 1, 2, 3, 4, 5\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

Therefore, Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7. Write the relation $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$ in roster form.

Solution : The relation is $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$.

The prime numbers less than 10 are 2, 3, 5, and 7.

Therefore, the relation in roster form is $R = \{(2, 8), (3, 27), (5, 125), (7, 343)\}$.

Question 8. Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B .

Solution : Given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Now, $A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$

Here, $n(A \times B) = 6$.

So, the number of subsets of $A \times B$ is 2^6 .

Therefore, the number of relations from A to B is 2^6 .

Question 9. Let R be the relation on \mathbf{Z} defined by $R = \{(a, b) : a, b \in \mathbf{Z}, a - b \text{ is an integer}\}$. Find the domain and range of R .

Solution : Given that, $R = \{(a, b) : a, b \in \mathbf{Z}, a - b \text{ is an integer}\}$

It is known that the difference between any two integers will be an integer.

Therefore, Domain of $R = \mathbf{Z}$ and Range of $R = \mathbf{Z}$.