Chapter 3: Matrices.

Exercise Miscellaneous

1. Let
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, show that $(aI + bA)^n = a^nI + na^{n-1}bA$, where I is the identity matrix of order 2 and $n \in N$

Solution:

Given,
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

By using the principle of mathematical induction

For n = 1

$$P(1):(aI+bA)=aI+ba^{\circ}A=aI+bA$$

Therefore, the result is true for n = 1

Let the result be true for n = k

That is,
$$P(k): (aI + bA)^k = a^k I + ka^{k-1}bA$$

Now, we have to prove that the result is true for n = k + 1

$$(aI + bA)^{k-1} = (aI + bA)^{k} (aI + bA)$$

$$= (a^{k}I + ka^{k-1}bA)(aI + bA)$$

$$= a^{k-1} + ka^{k}bAI + a^{k}bIA + ka^{k-1}b^{2}A^{2}$$

$$= a^{k-1}I + (k+1)a^{k}bA + ka^{k-1}b^{2}A^{2} \qquad(1)$$

Now,
$$A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$

From (1), we have

$$(aI + bA)^{k+1} = a^{k+1} + (k+1)a^kbA + 0$$
$$= a^{k+1} + (k+1)a^kbA$$

Thus, the result is true for n = k + 1

By the principal of mathematical induction, we have

$$(aI + bA)^n = a^nI + na^{n-1}bA$$
 where $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, n \in N$

2. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
, prove that $A^n \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}$, $n \in \mathbb{N}$

Solution:

Given,
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

By using the principles of mathematical induction

For n = 1, we have

$$P(1) = \begin{bmatrix} 3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1} \\ 3^{1-1} & 3^{1-1} & 3^{1-1} \end{bmatrix} = \begin{bmatrix} 3^0 & 3^0 & 3^0 \\ 3^0 & 3^0 & 3^0 \\ 3^0 & 3^0 & 3^0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = A$$

Thus, the result is true for n = 1

Let the result be true for n = k

$$P(k): A^{k} = \begin{bmatrix} 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \end{bmatrix}$$

Now, we have to prove that the result is true for n = k + 1

Now,
$$A^{k+1} = A.A^k$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \\ 3^{k-1} & 3^{k-1} & 3^{k-1} \end{bmatrix}$$

$$= \begin{bmatrix} 3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \\ 3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \\ 3.3^{k-1} & 3.3^{k-1} & 3.3^{k-1} \end{bmatrix}$$

$$= \begin{bmatrix} 3.3^{(k+1)-1} & 3.3^{(k+1)-1} & 3.3^{(k+1)-1} \\ 3.3^{(k+1)-1} & 3.3^{(k+1)-1} & 3.3^{(k+1)-1} \\ 3.3^{(k+1)-1} & 3.3^{(k+1)-1} & 3.3^{(k+1)-1} \end{bmatrix}$$

Thus, the result is true for n = k + 1

By the principal of mathematical induction, we have

$$A^{n} = \begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}, n \in \mathbb{N}$$

3. If
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, then prove $A^n = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}$ where n is any positive integer

Solution:

Given,
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$

By using the principle of mathematical induction

For n = 1, we have

$$P(1): A^{1} = \begin{bmatrix} 1+2 & -4 \\ 1 & 1-2 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} A$$

Thus, the result is true for n = 1

Let the result be true for n = k

$$P(k): A^{k} = \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix}, n \in N$$

Now, we have to prove that the result is true for n = k + 1

$$A^{k+1} = A^{k} . A$$

$$= \begin{bmatrix} 1+2k & -4k \\ k & 1-2k \end{bmatrix} \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 3(1+2k)-4k & -4(1+2k)+4k \\ 3k+1-2k & -4k-1(1-2k) \end{bmatrix}$$

$$= \begin{bmatrix} 3+6k-4k & -4-8k+4k \\ 3k+1-2k & -4k-1+2k \end{bmatrix}$$

$$= \begin{bmatrix} 3+2k & -4-4k \\ 1+k & -1-2k \end{bmatrix}$$

$$= \begin{bmatrix} 1+2(k+1) & -4(k+1) \\ 1+k & 1-2(k+1) \end{bmatrix}$$

Thus, the result is true for n = k + 1

By the principal of mathematical induction, we have

$$A^{n} = \begin{bmatrix} 1+2n & -4n \\ n & 1-2n \end{bmatrix}, n \notin N$$

4. If A and B are symmetric matrices, prove that AB - BA is a skew symmetric matrix

Solution:

Given, A and B are symmetric matrices. Therefore, we have

$$A' = A \text{ and } B' = B \qquad \dots (1)$$

Now,
$$(AB-BA)' = (AB)' - (BA)'$$

$$= B'A' - A'B'$$

$$= BA - AB \qquad [Using (1)]$$

$$=-(AB-BA)$$

$$\therefore (AB - BA)' = -(AB - BA)$$

Hence, (AB-BA) is a skew-symmetric matrix

5. Show that the matrix *B'AB* is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Solution:

Let A is a symmetric matrix, then A' = A(1)

$$(B'AB)' = \{B'(AB)\}'$$

$$= (AB)'(B)'$$

$$= B'A'(B)$$

$$= B'(AB) \qquad [Using (1)]$$

$$\therefore (B'AB)' = B'AB$$

Thus, if A is symmetric matrix, then B'AB is a symmetric matrix.

Let A is a skew – symmetric matrix

Then, A' = A

$$(B'AB)' = [B'(AB)]' = (AB)'(B)'$$

$$= (B'A')B = B'(-A)B$$

$$= -B'AB$$

$$\therefore (B'AB)' = -B'AB$$

Thus, A is skew – symmetric matrix then B'AB is a skew – symmetric matrix

Therefore, if A is a symmetric or skew – symmetric matrix, then B'AB is a symmetric or skew – symmetric matrix accordingly.

6. Solve system of linear equations, using matrix method.

$$2x - y = -2$$

$$3x + 4y = 3$$

Solution:

The given system of equation can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}$$
 and
$$B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

Now,
$$|A| = 8 + 3 = 11 \neq 0$$

Thus, A is non – singular. Therefore, its inverse exists

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix}$$

$$\therefore X = A^{-1}B = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -8+3 \\ 6+6 \end{bmatrix}$$

$$=\frac{1}{11}\begin{bmatrix} -5\\12\end{bmatrix}$$

$$= \begin{bmatrix} \frac{-5}{11} \\ \frac{12}{11} \end{bmatrix}$$

Thus,
$$x = \frac{-5}{11}$$
 and $y = \frac{12}{11}$

7. For what values of
$$x$$
, $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$?

Given,
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 6 & 2 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$$

$$\Rightarrow \lceil 6(0) + 2(2) + 4(x) \rceil = 0$$

$$\Rightarrow [4+4x]=[0]$$

$$\therefore 4 + 4x = 0$$

$$\Rightarrow x = -1$$

Thus, the required value of x is -1

8. If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = 0$

Given,
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$\therefore A^2 = A.A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3(3)+1(-1) & 3(1)+1(2) \\ -1(3)+2(-1) & -1(1)+2(2) \end{bmatrix}$$

$$= \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

$$L.H.S = A^2 - 5A + 7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= 0 = R.H.S$$

$$\therefore A^2 - 5A + 7I = 0$$

9. Find X, if
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

Solution:

Given,
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

$$\Rightarrow \left[x(x-2)-40+2x-8\right]=0$$

$$\Rightarrow \left[x^2 - 2x - 40 + 2x - 8\right] = \left[0\right]$$

$$\Rightarrow [x^2-48]=[0]$$

$$\Rightarrow x^2 - 48 = 0$$

$$\Rightarrow x^2 = 48$$

$$\Rightarrow x = \pm 4\sqrt{3}$$

10. A manufacture produces three products X, Y, Z which he sells in two markets. Annual sales are indicated below

Market	Products		
I	10000	2000	18000
II	6000	20000	8000

- a) If unit sale prices of X, Y and Z are Rs 2.50, Rs 1.50 and Rs 1.00, respectively, find the total revenue in each market with the help of matrix algebra.
- b) If the unit costs of the above three commodities are Rs 2.00, Rs 1.00 and 50 paise respectively. Find the gross profit.

Solution:

a. Here, the total revenue in market I can be represented in the form of matrix as

$$\begin{bmatrix} 10000 & 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix}$$

$$=10000 \times 2.50 + 2000 \times 1.50 + 18000 \times 1.00$$

$$= 25000 + 3000 + 18000$$

=46000

And, the total revenue in market II can be represented in the form of a matrix as

$$=6000 \times 2.50 + 20000 \times 1.50 + 8000 \times 1.00$$

$$=15000+30000+8000$$

=53000

Thus, the total revenue in market I is Rs 46000 and the same in market II is Rs 53000 b. Here, the total cost prices of all the products in the market I can be represented in the form of a matrix as

$$\begin{bmatrix} 10000 & 2000 & 180000 \end{bmatrix} \begin{bmatrix} 2.50 \\ 1.00 \\ 0.50 \end{bmatrix}$$

$$=10000\times2.00+2000\times1.00+18000\times0.50$$

$$= 20000 + 2000 + 9000 = 31000$$

As, the total revenue in market I is Rs 46000, the gross profit in this market is Rs 46000 - Rs 31000 = Rs 150000

The total cost prices of all the products in market II can be represented in the form of a matrix as

$$\begin{bmatrix} 6000 & 2000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00 \\ 1.00 \\ 0.50 \end{bmatrix}$$

$$=6000\times2.00+20000\times1.00+8000\times0.50$$

$$=12000+20000+4000$$

=36000

Since the total revenue in market II is Rs 53000, the gross profit in this market is Rs $53000 - \text{Rs}\ 36000 = \text{Rs}\ 170000$

11. Find the matrix X so that
$$X\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$$

Solution:

Given,
$$X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$$

Here, X has to be a 2×2 matrix

Now, let
$$X = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Thus, we have
$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a+4c & 2a+5c & 3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$$

Comparing the corresponding elements of two matrices, we have

$$a+4c=-7$$
, $2a+5c=-8$ $3a+6c=-9$

$$b+4d=2$$
, $2b+5d=4$, $3b+6d=6$

Now,
$$a+4c=-7 \Rightarrow a=-7-4c$$

$$\therefore 2a + 5c = -8 \Rightarrow -14 - 8c + 5c = -8$$

$$\Rightarrow$$
 $-3c = 6$

$$\Rightarrow c = -2$$

$$\therefore a = -7 - 4(-2) = -7 + 8 = 1$$

Now,
$$b+4d=2 \Rightarrow b=2-4d$$

$$\therefore 2b + 5d = 4 \Rightarrow 4 - 8d + 5d = 4$$

$$\Rightarrow -3d = 0$$

$$\Rightarrow d = 0$$

$$b = 2 - 4(0) = 2$$

$$\therefore a = 1, b = 2, c = -2, d = 0$$

Thus, the required matrix X is $\begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$

12. If A and B are square matrices of the same order such that AB = BA, then prove by induction that $AB^n = B^n A$. Further, prove that $(AB)^n = A^n B^n$ for all $n \in N$

Solution:

Given, A and B are square matrices of the same order such that AB = BA

For n = 1, we have

$$P(1): AB = BA$$
 [Given]

$$\Rightarrow AB^1 = B^1A$$

Therefore, the result is true for n = 1

Let the result be true for n = k

$$P(k):AB^k=B^kA\qquad \dots (1)$$

Now, we have to prove that the result is true for n = k + 1

$$AB^{k+1} = AB^k.B$$

$$= (B^k A) B$$
 [By (1)]

$$=B^{k}(AB)$$

$$=B^{k}(BA)$$

$$=(B^kB)A$$

$$= B^{k+1}A$$

Therefore, the result is true for n = k + 1

By the principle of mathematical induction, we have $AB^n = B^n A, n \in \mathbb{N}$

13. Choose the correct answer in the following questions.

If
$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$$
 is such that $A^2 = I$ then

$$(A)1 + \alpha^2 + \beta \gamma = 0$$

$$(B)1-\alpha^2+\beta\gamma=0$$

$$(C)1-\alpha^2-\beta\gamma=0$$

$$(D)1 + \alpha^2 - \beta \gamma = 0$$

Given,
$$A\begin{bmatrix} \alpha & \beta \\ y & -\alpha \end{bmatrix}$$

$$\therefore A^{2} = A.A = \begin{bmatrix} \alpha & \beta \\ y & -\alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ y & -\alpha \end{bmatrix}$$

$$= \begin{bmatrix} \alpha^2 + \beta \gamma & \alpha \beta - \alpha \beta \\ \alpha \gamma - \alpha \gamma & \beta \gamma + \alpha^2 \end{bmatrix}$$

$$= \begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \beta \gamma + \alpha^2 \end{bmatrix}$$

Now,
$$A^2 = I$$

$$\Rightarrow \begin{bmatrix} \alpha^2 + \gamma & 0 \\ 0 & \beta \gamma + \alpha^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Equating the corresponding elements, we have

$$\alpha^2 + \beta \gamma = 1$$

$$\Rightarrow \alpha^2 + \beta \gamma - 1 = 0$$

$$\Rightarrow 1 - \alpha^2 - \beta \gamma = 0$$

- 14. If the matrix A is both symmetric and skew symmetric, then
 - (A) A is diagonal matrix
 - (B) A is a zero matrix
 - (C) A is a square matrix
 - (D) None of these

Solution:

If A is both symmetric and skew – symmetric matrix, then

$$A' = A$$
 and $A' = -A$

$$A' = A$$

$$A' = -A$$

$$\Rightarrow A = -A$$

$$\Rightarrow A + A = 0$$

$$\Rightarrow 2A = 0$$

$$\Rightarrow A = 0$$

- 15. If A is square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to
 - (A) A
- (B) I A
- (C) I
- (D) 3A

$$(I+A)^{3} - 7A = I^{3} + A^{3} + 3I^{2}A + 3A^{2}I - 7A$$

$$= I + A^{3} + 3A + 3A^{2} - 7A$$

$$= I + A^{2} \cdot A + 3A + 3A - 7A \qquad \qquad A^{2} = A$$

$$= I + A.A - A$$

$$= I + A^2 - A$$

$$=I+A-A$$

= I

$$\therefore (I+A)^3 - 7A = I$$