Chapter 3: Trigonometric Functions

Example 1

Convert $40^{\circ} 20^{\prime}$ into radian measure.

Solution

Given that $40^{\circ} 20^{\prime}=40 \frac{1}{3}$ degree
We know that $180^{\circ}=\pi$ radian.
$=\frac{\pi}{180} \times \frac{121}{3}$ radian
$=\frac{121 \pi}{540}$ radian.
Therefore $\quad 40^{\circ} 20^{\prime}=\frac{121 \pi}{540}$ radian.

Example 2

Convert 6 radians into degree measure.

Solution

Given that π radian $=180^{\circ}$
Hence
6 radians $=\frac{180}{\pi} \times 6$ degree
$=\frac{1080 \times 7}{22}$ degree
Take $1^{\circ}=60^{\prime}$
$=343 \frac{7}{11}$ degree $=343^{\circ}+\frac{7 \times 60}{11}$ minute
$=343^{\circ}+38^{\prime}+\frac{2}{11}$ minute
$=343^{\circ} 38^{\prime} 11^{\prime \prime}$ The answer

Example 3

Find the radius of the circle in which a central angle of 60° intercepts an arc of length 37.4 cm (use $\pi=\frac{22}{7}$).

Solution

Given that
$l=37.4 \mathrm{~cm}$ and $\theta=60^{\circ}=\frac{60 \pi}{180}$
radian $=\frac{\pi}{3}$
The value $r=\frac{l}{\theta}$,
Solving we get
$r=\frac{37.4 \times 3}{\pi}=\frac{37.4 \times 3 \times 7}{22}=35.7 \mathrm{~cm}$

Example 4

The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes?
(Use $\pi=3.14$).

Solution

Given that
Watch is 1.5 cm long
It complete 60 revolution in one minute.
in 40 minute,

$$
\text { minute hand will turn } \frac{2}{3} \text { of a revolution }
$$

ie, $\theta=\frac{2}{3} \times 360^{\circ}$
or $\frac{4 \pi}{3}$ radian.
The distance $l=r \theta=1.5 \times \frac{4 \pi}{3} \mathrm{~cm}=2 \pi \mathrm{~cm}=2 \times 3.14 \mathrm{~cm}=6.28 \mathrm{~cm}$

Learn

Example 5

If the arcs of the same lengths in two circles subtend angles 65° and 110° at the centre, find the ratio of their radii.

Solution

Given that 65° and 110°
Let r_{1} and r_{2} be the radii of the two circles.
Given that $\theta_{1}=65^{\circ}=\frac{\pi}{180} \times 65=\frac{13 \pi}{36}$ radian and $\theta_{2}=110^{\circ}=\frac{\pi}{180} \times 110=\frac{22 \pi}{36}$ radian
Let l be the length of each of the arc. Then $l=r_{1} \theta_{1}=r_{2} \theta_{2}$, which gives
$\frac{13 \pi}{36} \times r_{1}=\frac{22 \pi}{36} \times r_{2}$, i.e., $\frac{r_{1}}{r_{2}}=\frac{22}{13}$
Hence $\quad r_{1}: r_{2}=22: 13$.

