Chapter 5: Continuity and differentiability.

Exercise 5.1

1. Prove that the function $f(x)=5 x-3$ is continuous at $x=0, x=-3$ and at $x=5$

Solution:

The given function is $f(x)=5 x-3$
At $x=0, f(0)=5 \times 0-3=3$
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}(5 x-3)=5 \times 0-3=3$
$\therefore \lim _{x \rightarrow \infty} f(x)=f(0)$
Therefore, f is continuous at $x=0$

At $x=-3, f(-3)=5 x(-3)-3=18$
$\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} f(5 x-3)=5 x(-3)-3=-18$
$\therefore \lim _{x \rightarrow 3} f(x)=f(-3)$

Therefore, f is continuous at $x=-3$

$$
\text { At } x=5, f(x)=f(5)=5 \times 5-3=25-3=22
$$

$$
\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(5 x-3)=5 \times 5-3=22
$$

$$
\therefore \lim _{x \rightarrow 5} f(x)=f(5)
$$

Therefore, is f continuous at $x=5$
2. Examine the continuity of the function at $f(x)=2 x^{2}-1 x=3$

Solution:

The given function is $f(x)=2 x^{2}-1$

At $x=3, f(x)=f(3)=2 \times 3^{2}-1=17$
$\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(2 x^{2}-1\right)=2 \times 3^{2}-1=17$
$\therefore \lim _{x \rightarrow 3} f(x)=f(3)$
Thus, f is continuous at $x=3$.
3. Examine the following functions for continuity
a) $f(x)=x-5$
b) $f(x)=\frac{1}{x-5}, x \neq 5$
c) $f(x)=\frac{x^{2}-25}{x+5}, x \neq 5$
d) $f(x)=|x-5|$

Solution:
a) The given function is $f(x)=x-5$

It is evident that f is defined at every real number k and its value at k is $k-5$
It is also observed that $\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k} f(x-5)=k=k-5=f(k)$
$\therefore \lim _{x \rightarrow k} f(x)=f(k)$

Hence, f is continuous at every real number and therefore, it is a continuous function.
b) The given function is $f(x)=\frac{1}{x-5}, x \neq 5$ for any real number $k \neq 5$, we obtain
$\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k} \frac{1}{x-5}=\frac{1}{k-5}$
Also, $f(k)=\frac{1}{k-5} \quad($ As $k \neq 5)$
$\therefore \lim _{x \rightarrow k} f(x)=f(k)$
Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.
c) The given function is $f(x)=\frac{x^{2}-25}{x+5}, x \neq 5$

For any real number $c \neq-5$, we obtain
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \frac{x^{2}-25}{x+5}=\lim _{x \rightarrow c} \frac{(x+5)(x-5)}{x+5}=\lim _{x \rightarrow c}(x-5)=(c-5)$
Also, $f(c)=\frac{(c+5)(c-5)}{c+5}=c(c-5)($ as $c \neq 5)$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Hence f is continuous at every point in the domain of f and therefore. It is continuous function.
d) The given function is $f(x)=|x-5|=\left\{\begin{array}{l}5-x, \text { if } x<5 \\ x-5, \text { if } x \geq 5\end{array}\right.$

This function f is defined at all points of the real line.
Let c be a point on a real time. Then, $c<5$ or $c=5$ or $c>5$
Case I: $c<5$
Then, $f(c)=5-c$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(5-x)=5-c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all real numbers less than 5 .
Case II : $c=5$
Then, $f(c)=f(5)=(5-5)=0$
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5}(5-x)=(5-5)=0$
$\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5}(x-5)=0$
$\therefore \lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}}(x)=f(c)$

Therefore, f is continuous at $x=5$
Case III : $c>5$
Then, $f(c)=f(5)=c-5$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} f(x-5)=c-5$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at real numbers greater than 5 .
Hence, f is continuous at every real number and therefore, it is a continuous function.
4. Prove that the function $f(x)=x^{n}$ is continuous at is a $x=n$ positive integer.

Solution:

The given function is $f(x)=x^{n}$

It is evident that f is defined at all positive integers, n, and its value at n is n^{n}.
Then, $\lim _{x \rightarrow n} f(n)=\lim _{x \rightarrow n} f\left(x^{n}\right)=n^{n}$
$\therefore \lim _{x \rightarrow n} f(x)=f(n)$

Therefore, f is continuous at n, where n is a positive integer.
5. Is the function f defined by $f(x)=\left\{\begin{array}{l}x, \text { if } x \leq 1 \\ 5, \text { if } x>1\end{array}\right.$

Continuous at $x=0$? At $x=1$? At $x=2$?
Solution:
The given function f is $f(x)=\left\{\begin{array}{l}x, \text { if } x \leq 1 \\ 5, \text { if } x>1\end{array}\right.$

At $x=0$
It is evident that f is defined at 0 and its value of 0 is 0

Then, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$

Therefore, f is continuous at $x=0$

At $x=1$
f is defined at 1 and its value at is 1 .

The left hand limit of at $f \mathrm{i} x=1 \mathrm{~s}$,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x=1$
The right hand limit of at f is $x=1$,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} f(5)$
$\therefore \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$

Therefore, is f is not continuous at $x=1$
At $x=2$
f is defined at 2 and its value at 2 is 5 .

Then, $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} f(5)=5$
$\therefore \lim _{x \rightarrow 2} f(x)=f(2)$

Therefore f is continuous at $x=2$
6. Find all points of discontinuous of f, where f is defined by

$$
f(x)= \begin{cases}2 x+3, & \text { if } x \leq 2 \\ 2 x-3 & \text { if } x>2\end{cases}
$$

Solution:

The given function f if $f(x)= \begin{cases}2 x+3, & \text { if } x \leq 2 \\ 2 x-3 & \text { if } x>2\end{cases}$
It is evident that the given function f is defined at all the points of the real time.

Let c be a point on the real line. Then, three cases arise.
I. $\quad c<2$
II. $\quad c>2$
III. $\quad c=2$

Case (i) $c<2$
Then, $f(x)=2 x+3$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2 x+3)=2 c+3$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore, f is continuous at all points x, such that $x<2$
Case (ii) $c>2$
Then, $f(c)=2 c-3$

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2 x-3)=2 c-3
$$

$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x>2$
Case (iii) $c=2$
Then, the left hand limit of f at $x=2$ is
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2^{-}}(2 x+3)=2 \times 2+3=7$

The right hand limit of f at is $x=2$

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(2 x+3)=2 \times 2-3=1
$$

It is observed that the left and right hand limit of f at $x=2$ do not coincide.
Hence, $x=2$ is the only point of discontinuity of f.
7. Find all points of discontinuity of f, where f is defined by

$$
f(x)= \begin{cases}|x|+3, & \text { if } x \leq-3 \\ -2 x, & \text { if }-3<x<3 \\ 6 x+2 & \text { if } x \geq 3\end{cases}
$$

Solution:

The given function f is defined at all the points at the real line.
Let c be a point on the real line.
Case I:
If $c<-3$, then $f(c)=-c+3$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-x+3)=-c+3$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x<-3$
Case II :
If , $c=-3$ then $f(-3)=-(-3)+3=6$
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(-x+3)=-(-3)+3=6$
$\therefore \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} f(-2 x)=2 x(-3)=6$
$\therefore \lim _{x \rightarrow 3} f(x)=f(-3)$

Therefore, f is continuous at $x=-3$

Case III :

If,$-3<c<3$ then $f(c)=-2 c$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow 3 c}(-2 x)=-2 c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous in $(-3,3)$

Case IV:
If $c=3$, then the left hand limit of f at $x=3$ is
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} f(-2 x)=-2 \times 3=6$
The right hand limit of f at $x=3$ is
$\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{-}} f(6 x+2)=6 \times 3+2=20$
It is observed that the left and right hand limit of f at $x=3$ do not coincide.
Case V:
If $c>3$, then $f(c)=6 c+2$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(6 x+2)=6 c+2$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore f is continuous at all points x, such that $x>3$.

Hence, $x=3$ is the only point of discontinuity of f.
8. Find all points of discontinuity of f, where f is defined by $f(x)= \begin{cases}\frac{|x|}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

Solution:

The given function f is $f(x)= \begin{cases}\frac{|x|,}{} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$

It is known that, $x<0 \Rightarrow|x|=-x$ and $x>0 \Rightarrow|x|=x$
Therefore, the given function can be rewritten as

$$
f(x) \begin{cases}\frac{|x|}{x}=\frac{-x}{x}=-1 & \text { if } x<0 \\ 0, & \text { if } x=0 \\ \frac{|x|}{x}=\frac{x}{x}=1 & \text { if } x>0\end{cases}
$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.
Case I:
If $c<0$, then $f(c)=1$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-1)=-1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore f is continuous at all points $x<0$
Case II:
If $c=0$, then the left hand limit of f at $x=0$ is,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-1)=-1$
The right hand limit of f at $x=0$ is

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1)=1
$$

It is observed that the left and right hand limit of f at $x=0$ do not coincide.
Therefore, f is not continuous at $x=0$.
Case III:
If $c>0, f(c)=1$

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(1)=1
$$

$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x>0$
Hence, $x=0$ is the only point of discontinuity of f.
9. Find all points of discontinuity of f, where f is defined by $f(x)= \begin{cases}\frac{x}{|x|}, & \text { if } x<0 \\ -1 & \text { if } x \geq 0\end{cases}$

Solution:

The given function f is $f(x)= \begin{cases}\frac{x}{|x|}, & \text { if } x<0 \\ -1, & \text { if } x \geq 0\end{cases}$
It is known that, $x<0 \Rightarrow|x|=x$
Therefore, the given function can be rewritten as

$$
f(x)=\left\{\begin{array}{ll}
\frac{x}{|x|}, & \text { if } x<0 \\
-1 & \text { if } x \geq 0
\end{array} \Rightarrow f(x)=-1 \text { for all } x \in R\right.
$$

Let c be any real number. Then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-1)=-1$
Also, $f(c)=-1=\lim _{x \rightarrow c} f(x)$

Therefore, the given function is continuous function.
Hence, the given function has no point of discontinuity.
10. Find all the points of discontinuity of f, where f is defined by

$$
f(x)= \begin{cases}x+1, & \text { if } x \geq 1 \\ x^{2}+1, & \text { if } x<1\end{cases}
$$

Solution:

The given function f is $f(x)= \begin{cases}x+1, & \text { if } x \geq 1 \\ x^{2}+1, & \text { if } x<1\end{cases}$
The given function f is defined at all the points of the real lime.

Let c be a point on the real time.
Case I :
If $c<1$, then $f(c)=c^{2}+1$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} f\left(x^{2}+1\right)=c^{2}+1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x<1$
Case II :
If $c=1$, then $f(c)=f(1)=1+1=2$

The left hand limit of f at $x=1$ is
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+1\right)=1^{2}+1=2$
The right hand limit of f at $x=1$ is
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}+1\right)=1^{2}+1=2$
$\therefore \lim _{x \rightarrow 1} f(x)=f(c)$
Therefore, f is continuous at $x=1$

Case III:
If $c>1$, then $f(c)=c+1$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x+1)=c+1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x>1$.

Hence, the given function f has no points of discontinuity.
11. Find all points of discontinuity of f, where f is defined by $f(x)= \begin{cases}x^{3}-3, & \text { if } x \leq 2 \\ x^{2}+1, & \text { if } x>2\end{cases}$

Solution:

The given function f is $f(x)= \begin{cases}x^{3}-3, & \text { if } x \leq 2 \\ \mathrm{x}^{2}+1, & \text { if } x>2\end{cases}$
The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I :

If $c<2$, then $f(c)=c^{3}-3$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{3}-3\right)=c^{3}-3$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such at that $x<2$
Case II :
If $c=2$, then $f(c)=f(2)=2^{3}-3=5$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}-3\right)=2^{3}-3=5$
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+1\right)=2^{2}+1=5$
$\therefore \lim _{x \rightarrow 2} f(x)=f(2)$

Therefore, f is continuous at $x=2$
Case III :
If $c>2$, then $f(c)=c^{2}+1$

$$
\begin{aligned}
& \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2}+1\right)=c^{2}+1 \\
& \therefore \lim _{x \rightarrow c} f(x)=f(c)
\end{aligned}
$$

Therefore, f is continuous at all points x, such that $x>2$

Thus, the given function f is continuous at every point on the real time.
Hence, f has no point of discontinuity.
12. Find all points of discontinuity of f, where f is define by $f(x)= \begin{cases}x^{10}-1, & \text { if } x \leq 1 \\ x^{2}, & \text { if } x>1\end{cases}$

Solution:

The given function f is $f(x)= \begin{cases}x^{10}-1, & \text { if } x \leq 1 \\ x^{2}, & \text { if } x>1\end{cases}$
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I :
If $c<1$, then $f(c)=c^{10}-1$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{10}-1\right)=c^{10}-1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x<1$

Case II :

If $c=1$, then the left hand limit of f at $x=1$ is
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{10}-1\right)=10^{10}-1=1-1=0$
The right hand limit of f at $x=1$ is,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}\right)=1^{2}=1$

It is observed that the left and right hand limit of f at $x=1$ do not coincide.

Therefore, f is not continuous at $x=1$

Case III :
If $c>1$, then $f(c)=c^{2}$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2}\right)=c^{2}$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore f is continuous at al points x, such that $x>1$

Thus, from the above observation, it can be concluded that $x=1$ is the only point of discontinuity of f.
13. Is the function define by $f(x)=\left\{\begin{array}{ll}x+5, & \text { if } x \leq 1 \\ x-5, & \text { if } x>1\end{array}\right.$ a continuous function?

Solution:

The given function is $f(x)= \begin{cases}x+5, & \text { if } x \leq 1 \\ x-5, & \text { if } x>1\end{cases}$

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I ;
If $c<1$, then $f(c)=c+5$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x+5)=c+5$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore, f is continuous at all points x, such that $x<1$
Case II :

If $c=1$, then $f(1)=1+5=6$

The left hand limit of f at $x=1$ is
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x+5)=1+5=6$

The right hand limit of f at $x=1$ is $\lim _{x \rightarrow \rightarrow^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x-5)=1-5=-4$
It is observed that the left and right hand limit of f at $x=1$ do not coincide.
Therefore f is not continuous at $x=1$

Case III :
If $c>1$, then $f(c)=c-5$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x-5)=c-5$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore f is continuous at all points x, such that $x>1$

Thus, from the above observations, it can be concluded that $x=1$ is the only point of discontinuity of f.
14. Discuss the continuity of the function f, where f is defined by

$$
f(x)= \begin{cases}3, & \text { if } 0 \leq x \leq 1 \\ 4, & \text { if } 1<x<3 \\ 5, & \text { if } 3 \leq x \leq 10\end{cases}
$$

Solution:
The given function is $f(x)= \begin{cases}3, & \text { if } 0 \leq x \leq 1 \\ 4, & \text { if } 1<x<3 \\ 5, & \text { if } 3 \leq x \leq 10\end{cases}$
The given function is defined at all the points of the interval $[0,10]$.
Let c be a point in the interval $[0,10]$

Case I ;

$$
\text { If, } 0 \leq c<1 \text { then } f(c)=c+5 f(c)=3 \text { and } \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(3)=3
$$

$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore, f is continuous in the interval $[0,1)$
Case II :
If $c=1$, then $f(3)=3$
The left hand limit of f at $x=1$ is
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow \rightarrow^{-}}(3)=3$
The left hand limit of f at $x=1$ is $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow l^{-}}(3)=3$
The right hand limit of f at $x=1$ is $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4)=4$
It is observed that the left and right hand limit of f at $x=1$ do not coincide.
Therefore f is not continuous at $x=1$

Case III :
If $c>1$, then $f(c)=4$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(4)=4$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore f is continuous at all points of the interval $(1,3)$

Case IV:

If $c=3$, then $f(c)=5$
The left hand limit of f at $x=3$ is $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(4)=4$
The right hand limit of f at $x=3$ is $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(5)=5$

It is observed that the left and right hand limit of f at $x=3$ do not coincide.
Therefore, f is not continuous at $x=3$

Case V :
If $3<c \leq 10$, then $f(c)=5$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(5)=5$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points of the interval $(3,10]$.

Hence, f is not continuous at $x=1$ and $x=3$
15. Discuss the continuity of the function f, where f is defined by $f(x)= \begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$

Solution:
The given function is $f(x)= \begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$
The given function is defined at all the points of the real line.
Let c be a point on the real line
Case I;
If, $c<0$ then $f(c)=2 c, \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2 x)=2 c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$

Therefore, f is continuous at all points, x such that $\mathrm{x}<0$

Case II :
If $c=0$, then $f(c)=f(0)=3$
The left hand limit of f at $x=0$ is $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(2 x)=2 \times 0=0$
The right hand limit of f at $x=0$ is $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(0)=0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$

Therefore, f is continuous at $x=0$
Case III :
If $0<c<1$, then $f(x)=0$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(0)=0$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore f is continuous at all points of the interval $(0,1)$
Case IV:
If $c=1$, then $f(c)=f(1)=0$

The left hand limit of f at $x=1$ is $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(0)=0$

The right hand limit of f at $x=1$ is $\lim _{x \rightarrow l^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4 x)=4 \times 1=4$
It is observed that the left and right hand limit of f at $x=1$ do not coincide.
Therefore, f is not continuous at $x=1$

Case V :
If $c<1$, then $f(c)=4 c$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(4 x)=4 c$

$$
\therefore \lim _{x \rightarrow c} f(x)=f(c)
$$

Therefore, f is continuous at all points x , such that $\mathrm{x}>1$

Hence, f is not continuous only at $x=1$
16. Discuss the continuity of the function f, where f is defined by

$$
f(x)=\left\{\begin{array}{cc}
-2, & \text { if } x \leq-1 \\
2 x, & \text { if }-1<x \leq 1 \\
2, & \text { if } x>1
\end{array}\right.
$$

Solution:

The given function f is $f(x)=\left\{\begin{array}{cc}-2, & \text { if } x \leq-1 \\ 2 x, & \text { if }-1<x \leq 1 \\ 2, & \text { if } x>1\end{array}\right.$
The given function is defined at all point of the real time. Let c be a point on the real time.

Case I :

If $c<-1$, then $f(c=-2)$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(-2)=-2$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x , such that $x<-1$
Case-II :
If $c=-1$, then $f(c)=f(-1)=-2$
The left hand limit of f at $x=-1$ is,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(-2)=-2$
The right hand limit of f at $x=-1$ is,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow+^{+}} 2 x(-1)=-2$

$$
\lim _{x \rightarrow 1} f(x)=f(-1)
$$

Therefore, f is continuous at $x=-1$
Case III :
If $-1<c<1$, then $f(c)=2 c$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(2 x)=2 c$
$\lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points of the interval $(-1,1)$.
Case - IV :
If $c=1$, then $f(c)=f(1)=2 \times 1=2$
The left hand limit of f at $x=1$ is,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(2 x)=2 \times 1=2$
The right hand limit of f at $x=1$ is,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2=2$

$$
\lim _{x \rightarrow 1} f(x)=f(c)
$$

Therefore, f is continuous at $x=2$
Case-V :
If $c>1, f(c)=2$ and $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2}(2)=2$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points, x, such that $x>1$
Thus, from the above observations, it can be concluded that f is continuous at all points of the real time.
17. Find the relationship be a and b so that the function f defined by $f(x)=$ $\left\{\begin{array}{l}a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3\end{array}\right.$ is continuous at $x=3$.

Solution: The given function f is $f(x)=\left\{\begin{array}{l}a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3\end{array}\right.$ If f is continuous at $x=3$, then
$\lim _{x \rightarrow 3^{3}} f(x)=\lim _{x \rightarrow 3} f(x)=f(3)$
Also,

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} f(a x+1)=3 a+1 \\
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} f(a x+1)=3 b+3 \\
& f(3)=3 a+1
\end{aligned}
$$

therefore, from (1), we obtain
$3 a+1=3 b+3=3 a+1$
$\Rightarrow 3 a+1=3 b+3$
$\Rightarrow 3 a=3 b+2$
$\Rightarrow a=b+\frac{2}{3}$
Therefore, the required relationship is given by, $a=b+\frac{2}{3}$
18. For what value of λ is the function defined by $f(x)=\left\{\begin{array}{cc}\lambda\left(x^{2}-2 x\right), & \text { if } x \leq 0 \\ 4 x+1, & \text { if } x>0\end{array}\right.$ continuous at $x=0$? What about continuity at $x=1$?

Solution: The given function f is $f(x)=\left\{\begin{array}{cc}\lambda\left(x^{2}-2 x\right), & \text { if } x \leq 0 \\ 4 x+1, & \text { if }\end{array} x>0\right.$
If f is continuous at $x=0$, then
$\lim _{x \rightarrow 0^{-}} f(x) \lim _{x \rightarrow 0^{-}} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0^{-}} \lambda\left(x^{2}-2 x\right)=\lim _{x \rightarrow 0^{+}}(4 x+1)=\lambda\left(0^{2}-2 \times 0\right)$
$\Rightarrow \lambda(02-2 \times 0)=4 \times 0+1=0$
$\Rightarrow 0=1=0$, which is not possible
Therefore, there is no value of λ for which f is continuous at $x=0$
At $x=1$,
$f(1)=4 x+1=4 \times 1+1=5$

$$
\lim _{x \rightarrow 1}(4 x+1)=4 \times 1+1=5
$$

19. Show that the function defined by $g(x)=x-[x]$ is discontinuous at all integral point. Here $[x]$ denoted the greatest integer less than or equal to x.

Solution:

The given function is $g(x)=x-[x]$
It is evident that g is defined at all integral points.
Let n be a integer
Then,
$g(n)=n-[n]=n-n=0$
The left hand limit of f at $x=n$ is

$$
\lim _{x \rightarrow n^{-}} g(x)=\lim _{x \rightarrow n^{-}}[x-[x]]=\lim _{x \rightarrow n^{-}} x-\lim _{x \rightarrow n^{-}}[x]=n-(n-1)=1
$$

The right hand limit of f at $x=n$ is

$$
\lim _{x \rightarrow n^{-}} g(x)=\lim _{x \rightarrow n^{-}}[x-[x]]=\lim _{x \rightarrow n^{-}} x-\lim _{x \rightarrow n^{-}}[x]=n-n=0
$$

It is observed that the left and right hand limits of f at $x=n$ do not coincide.
Therefore, f is not continuous at $x=n$
Hence, g is discontinuous at all integral points
20. Is the function defined by $f(x)=x^{2}-\sin x+5$ continuous at $x=\pi$?

The given function is $f(x)=x^{2}-\sin x+5$
It is evident that f is defined at $x=\pi$
At $x=\pi, f(x)=f(\pi)=\pi^{2}-\sin \pi+5=\pi^{2}-0+5=\pi^{2}+5$
Consider $\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} f\left(x^{2}-\sin x+5\right)$
Put $x=\pi+h$
If $x \rightarrow \pi$, then it is evident that $h \rightarrow 0$

$$
\begin{aligned}
\therefore \quad & \lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x\right)+5 \\
& =\lim _{h \rightarrow 0}\left[(\pi+h)^{2}-\sin (\pi+h)+5\right] \\
& =(\pi+0)^{2}-\lim _{h \rightarrow 0}[\sin \pi \cosh +\cos \pi+\sinh]+5 \\
& =\pi^{2}-\lim _{h \rightarrow 0} \sin \pi \cosh -\lim _{h \rightarrow 0} \cos \pi+\sinh +5 \\
& =\pi^{2}-\sin \pi \cos 0-\cos \pi \sin 0+5 \\
& =\pi^{2}-0 \times 1-(-1) \times 0+5 \\
& =\pi^{2}+5
\end{aligned}
$$

$\therefore \lim _{x \rightarrow x} f(x)=f(\pi)$
Therefore, the given function f is continuous at $x=\pi$
21. Discuss the continuity of the following functions.
A) $f(x)=\sin x+\cos x$
B) $f(x)=\sin x-\cos x$
C) $f(x)=\sin x \times \cos x$

Solution:
It is known that if g and h are two continuous functions, then $g+h, g-h$ and $g . h$ are also continuous.
It has to proved first that $g(x)=\sin x$ and $h(x)=\cos x$ are continuous functions.
Let $g(x)=\sin x$
It is evident that $g(x)=\sin x$ is defined for every real number.

Let c be a real number. Put $x=c+h$
If $x \rightarrow c$, then $h \rightarrow 0$
$g(c)=\sin c$

$$
\begin{aligned}
& \lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} g \sin x \\
& \quad=\lim _{h \rightarrow 0} \sin (c+h) \\
& =\lim _{h \rightarrow 0}[\sin c \cosh +\cos c \sinh] \\
& =\lim _{h \rightarrow 0}(\sin c \cosh)+\lim _{h \rightarrow 0}(\cos c \sinh) \\
& =\sin c \cos 0+\cos c \sin 0 \\
& =\sin c+0 \\
& =\sin c
\end{aligned}
$$

Therefore, g is a continuous function.
Let $h(x)=\cos x$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let c be a real number. $x=c+h$
If $x \rightarrow c$, then $h \rightarrow 0$
$h(c)=\cos c$
$\lim _{x \rightarrow c}(x)=\lim _{x \rightarrow c} \cos x$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \cos (c+h) \\
& =\lim _{h \rightarrow 0}[\cos c \cosh -\sin c \sinh] \\
& =\lim _{h \rightarrow 0} \cos c \cosh -\lim _{h \rightarrow 0} \sin c \sinh \\
& =\cos c \cos 0-\sin c \sin 0 \\
& =\cos c \times 1-\sin c \times 0
\end{aligned}
$$

$$
=\cos c
$$

$$
\therefore \lim _{h \rightarrow 0}(x)=h(c)
$$

Therefore, h is a continuous function.
Therefore, it can be concluded that
a) $f(x)=g(x)+h(x)=\sin x+\cos x$ is a continuous function
b) $f(x)=g(x)-h(x)=\sin x-\cos x$ is a continuous function
c) $f(x)=g(x) \times h(x)=\sin x \times \cos x$ is a continuous function
22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Solution:

It is known that if p and h are two continuous functions, then

Infinity Learn

i. $\quad \frac{h(x)}{g(x)} \cdot g(x) \neq 0$ is continuous
ii. $\frac{1}{g(x)} \cdot g(x) \neq 0$ is continuous
iii. $\frac{1}{h(x)} \cdot h(x) \neq 0$ is continuous

It has to be proved first that $g(x)-\sin x$ and $h(x)-\cos x$ are continuous functions.
Let $g(x)-\sin x$
It has evident that $g(x)-\sin x$ is defined foc every real number.
Let c be a real number. Put $x-c+h$
If $x \rightarrow C$, then $h \rightarrow 0$
$g(c)-\sin x$
$\lim _{x+c} g(c)-\lim _{x+c} \sin x$
$-\lim _{x+c} \sin (c+h)$
$-\lim _{x+c}[\sin c \cosh +\cos c \sinh]$
$-\lim _{x+c}(\sin c \cosh)+\lim _{x+c}(\cos c \sinh)$
$-\sin c \cos 0+\cos c \sin 0$
$-\sin c+0$
$-\sin c$
$\therefore \lim _{0+c} g(x)-g(c)$
Therefore, g is a continuous function.
Let $h(x)-\cos x$
It is evident that $h(x)-\cos x$ is defined for every real number.
Let c be a real number. Put $x-c+h$
If $x \rightarrow c$, then $h \rightarrow 0 x$
$h(c)-\cos c$
$-\lim _{x \rightarrow 0} \cos (c+h)$
$-\lim _{x \rightarrow 0}[\cos c \cosh -\sin c \sinh]$
$-\lim _{x \rightarrow 0} \cos c \cosh -\lim _{x \rightarrow 0} \sin c \sinh$
$-\cos c \cos 0-\sin c \sin 0$
$-\cos c x 1-\sin c x 0$
$=\cos c$
$\therefore \lim _{x+c} h(x)-h(c)$
Therefore, $h(x)-\cos x$ is continuous function.
It can be conclned that,
$\cos e x-\frac{1}{\sin x}, \sin x \neq 0$ is continuous
$\Rightarrow \cos \operatorname{ex} x, x \neq n x(n \in Z)$ is continuous
Therefore, secant is continuous except at $X-n p, n I Z$
$\sec x=\frac{1}{\cos x}, \cos x \neq 0$ is continuous
$\Rightarrow \sec x, x \neq(2 n+1) \frac{\pi}{2}(n \in Z)$ is continuous
Therefore, secant is continuous except at $x-(2 n+1) \frac{\pi}{2}(n \in Z)$
$\cot x=\frac{\cos x}{\sin x}, \sin x \neq 0$ is continuous
$\Rightarrow \cot x, x \neq n \pi(n \in Z)$ is continuous
Therefore, cotangent is continuous except at $x-n p, n I Z$
23. Find the points of discontinuity of f, where $f(x)=\left\{\begin{array}{lll}\frac{\sin x}{x,}, & \text { if } & x<0 \\ x+1, & \text { if } & x \geq 0\end{array}\right.$

Solution:
The given function f is $f(x)= \begin{cases}\frac{\sin x}{x,}, & \text { if } x<0 \\ x+1, & \text { if } x \geq 0\end{cases}$
It is evident that f is defined at all points of the real line.
Let c be a real number
Case I:
If $c<0$, then $f(c)=\frac{\sin c}{c}$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(\frac{\sin x}{x}\right)=\frac{\sin c}{c}$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x<0$
Case II:
If $c>0$, then $f(c)=c+1$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x+1)=c+1$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x>0$
Case III:
If $c=0$, then $f(c)=f(0)=0+1=1$
The left hand limit of f at $x=0$ is,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1$
The right hand limit of f at $x=0$ is,
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+1)=1$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
Therefore, f is continuous at $x=0$
From the above observations, it can be conducted that f is continuous at all points of the real line.
Thus, f has no point of discontinuity.
24. Determine if f defined by $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & \text { if } \neq 0 \\ 0, & \text { if } \neq 0\end{array}\right.$ is a continuous function?

Solution:
The given function f is $f(x)= \begin{cases}x^{2} \sin \frac{1}{x}, & \text { if } \neq 0 \\ 0, & \text { if } \neq 0\end{cases}$
It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
If $c \neq 0$, then $f(c)=c^{2} \sin \frac{1}{c}$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(x^{2} \sin \frac{1}{x}\right)=\left(\lim _{x \rightarrow c} x^{2}\right)\left(\lim _{x \rightarrow c} \sin \frac{1}{x}\right)=c^{2} \sin \frac{1}{c}$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all p [oints $x \neq 0$
Case II:
If $c=0$, then $f(0)=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{2}\right)$
It is known that, $-1 \leq \sin \frac{1}{x} \leq 1, x \neq 0$
$\Rightarrow-x^{2} \leq \sin \frac{1}{x} \leq x^{2}$
$\Rightarrow \lim _{x \rightarrow 0}\left(-x^{2}\right) \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq \lim _{x \rightarrow 0} x^{2}$
$\Rightarrow 0 \leq \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right) \leq 0$
$\Rightarrow \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\therefore \lim _{x \rightarrow 0} f(x)=0$

Similarly, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)=0$
Therefore, f is continuous at $x=0$
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus f is a continuous function.
25. Examine the continuity of f, where f is defined by

$$
f(x)=\left\{\begin{array}{ccc}
\sin x-\cos x, & \text { if } & x \neq 0 \\
1, & \text { if } & x=0
\end{array}\right.
$$

Solution:

The given function f is $f(x)=\left\{\begin{array}{ccc}\sin x-\cos x, & \text { if } x \neq 0 \\ 1, & \text { if } & x=0\end{array}\right.$
It is evident that f is defined at all points of the real line.
Let c be a real number.
Case I:
If $c \neq 0$, then $f(c)=\sin c-\cos c$
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(\sin x-\cos x)=\sin c-\cos c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$
Therefore, f is continuous at all points x, such that $x \neq 0$
Case II:
If $c=0$, then $f(0)=-1$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0}(\sin x-\cos x)=\sin 0-\cos 0=0-1=-1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0}(\sin x-\cos x)=\sin 0-\cos 0=0-1=-1$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
Therefore, f is continuous at $x=0$
From the above observations, it can be concluded that f is continuous at every point of the real line.
Thus, f is a continuous function.

Learn
26. Find the value of k so that the function f is continuous at the indicated point.

$$
f(x)\left\{\begin{array}{cc}
\frac{k \cos x}{\pi-2 x}, & \text { if } \quad x \neq \frac{\pi}{2} \\
3, & \text { if } \quad x=\frac{\pi}{2} \quad a t x=\frac{\pi}{2}
\end{array}\right.
$$

Solution:
The given function f is $f(x)\left\{\begin{array}{cl}\frac{k \cos x}{\pi-2 x}, & \text { if } x \neq \frac{\pi}{2} \\ 3, & \text { if } x=\frac{\pi}{2}\end{array}\right.$

The given function f is continuous at $x=\frac{\pi}{2}$, it is defined at $x=\frac{\pi}{2}$ and if the value of the f at $x=\frac{\pi}{2}$ equals the limit of f at $x=\frac{\pi}{2}$.
It is evident that f is defined at $x=\frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right)=3$
$\lim _{x \rightarrow 2} \frac{\pi}{2} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}$
Put $x=\frac{\pi}{2}+h$
Then, $x \rightarrow \frac{\pi}{2} \Rightarrow h \rightarrow 0$

$$
\begin{aligned}
& \therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=\lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}+h\right)}{\pi-2\left(\frac{\pi}{2}+h\right)} \\
& =k \lim _{x \rightarrow 0} \frac{-\sinh }{-2 h}=\frac{k}{2} \lim _{x \rightarrow 0} \frac{\sinh }{h}=\frac{k}{2} \cdot 1=\frac{k}{2} \\
& \therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right) \\
& \Rightarrow \frac{k}{2}=3 \\
& \Rightarrow k=6
\end{aligned}
$$

Therefore, the required value of k is 6 .
27. Find the value of k so that the function f is continuous at the indicated point.

$$
f(x)=\left\{\begin{array}{cl}
k x^{2}, & \text { if } x \leq 2 \\
3, & \text { if } x>2
\end{array} \text { at } x=2\right.
$$

Solution:
The given function is $f(x)=\left\{\begin{array}{cl}k x^{2}, & \text { if } x \leq 2 \\ 3, & \text { if } x>2\end{array}\right.$
The given function f is continuous at $x=2$, if f is defined at $x=2$ and if the value of f at $x=2$ equals the limit of f at $x=2$
It is evident that f is defined at $x=2$ and $f(2)=k(2)^{2}=4 k$
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow \lim _{x \rightarrow 2^{-}}(k x)^{2}=\lim _{x \rightarrow 2^{+}}(3)=4 k$
$\Rightarrow k \times 2^{2}=3=4 k$
$\Rightarrow 4 k=3=4 k$
$\Rightarrow 4 k=3$
$\Rightarrow k=\frac{3}{4}$
Therefore, the required value of k is $\frac{3}{4}$.
28. Find the values of k so that the function f is continuous at the indicated point.

$$
f(x)=\left\{\begin{array}{ll}
k x+1, & \text { if } x \leq \pi \\
\cos x, & \text { if } x>\pi
\end{array} \text { at } x=\pi\right.
$$

Solution:

The given function is $f(x)= \begin{cases}k x+1, & \text { if } x \leq \pi \\ \cos x, & \text { if } x>\pi\end{cases}$
The given function f is continuous at $x=\pi$ and, if f is defined at $x=\pi$ and if the
value of f at $x=\pi$ equals the limit of f at $x=\pi$
It is evident that f is defined at $x=\pi$ and $f(\pi)=k \pi+1$
$\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(\pi)$
$\Rightarrow \lim _{x \rightarrow \pi^{-}}(k x+1)=\lim _{x \rightarrow \pi^{+}} \cos x=k \pi+1$
$\Rightarrow k \pi+1=\cos \pi=k \pi+1$
$\Rightarrow k \pi+1=-1=k \pi+1$
$\Rightarrow k \pi+1=-1=k \pi+1$
$\Rightarrow k=-\frac{2}{\pi}$

Therefore, the required value of k is $-\frac{2}{\pi}$.
29. Find the values of k so that the function f is continuous at the indicated point.

$$
f(x)=\left\{\begin{array}{lll}
k x+1, & \text { if } & x \leq 5 \\
3 x-5, & \text { if } & x>5
\end{array}\right.
$$

Solution:
The given function of f is $f(x)=\left\{\begin{array}{lll}k x+1, & \text { if } & x \leq 5 \\ 3 x-5, & \text { if } & x>5\end{array}\right.$
The given function f is continuous at $x=5$, if f is defined at $x=5$ and if the value of f at $x=5$ equals the limit of f at $x=5$

It is evident that f is defined at $x=5$ and $f(5)=k x+1=5 k+1$
$\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x)=f(5)$
$\Rightarrow \lim _{x \rightarrow 5^{-}}(k x+1)=\lim _{x \rightarrow 5^{+}}(3 x-5)=5 k+1$
$\Rightarrow 5 k+1=15-5=5 k+1$
$\Rightarrow 5 k+1=10$
$\Rightarrow 5 k=9$
$\Rightarrow k=\frac{9}{5}$
Therefore, the required value of k is $\frac{9}{5}$
30. Find the vales of a and b such that the function defined

$$
f(x)=\left\{\begin{array}{clc}
5, & \text { if } & x \leq 2 \\
a x+b, & \text { if } & 2<x<10 \text { is continuous function. } \\
21 & \text { if } & x \geq 10
\end{array}\right.
$$

Solution:
The given function f is $f(x)=\left\{\begin{array}{clc}5, & \text { if } & x \leq 2 \\ a x+b, & \text { if } & 2<x<10 \\ 21 & \text { if } & x \geq 10\end{array}\right.$

It is evident that the given function f is defined at all points of the real line.
If f is a continuous function, then f is a continuous at all real numbers.
In a particular, f is continuous at $x=2$ and $x=10$
Since f is continuous at $x=2$, we obtain
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
$\Rightarrow \lim _{x \rightarrow 2^{-}}(5)=\lim _{x \rightarrow 2^{+}}(a x+b)=5$
$\Rightarrow 5=2 a+b=5$
$\Rightarrow 2 a+b=5$
Since f is continuous at $x=10$, we obtain
$\lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{+}} f(x)=f(10)$
$\Rightarrow \lim _{x \rightarrow 10^{-}}(a x+b)=\lim _{x \rightarrow 2^{+}}(21)=21$
$\Rightarrow 10 a+b-21=21$
$\Rightarrow 10 a+b=21$
On subtracting equation (1) from equation (2), we obtain
$8 a=16$
$\Rightarrow a=2$
By putting $a=2$ in equation (1), we obtain
$2 \times 2+b=5$
$\Rightarrow 4+b=5$
$\Rightarrow b=1$
Therefore, the values of a and b for which f is a continuous function are 2 and 1 respectively.
31. Show that the function defined by $f(x)=\cos \left(x^{2}\right)$ is a continuous function.

Solution:

The given function is $f(x)=\cos \left(x^{2}\right)$

This function f is defined for every real number and f can be written as the composition of two functions as,
$f=g o h$, where $g(x)=\cos x$ and $h(x)=x^{2}$
$\left[\because(g o h)(x)=g(h(x))=g\left(x^{2}\right)=\cos \left(x^{2}\right)=f(x)\right]$
It has to be first proves that $g(x)=\cos x$ and $h(x)=x^{2}$ are continuous functions.
It is evident that g is defined foe every real number.
Let c be a real number.
Then, $g(c)=\cos c$
Put $x=c+h$
If $x \rightarrow c$, then $h \rightarrow 0$
$\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} \cos x$
$=\lim _{h \rightarrow 0} \cos (c+h)$
$=\lim _{h \rightarrow 0}[\cos c \cosh -\sin c \sinh]$
$=\lim _{h \rightarrow 0} \cos c \cosh -\lim _{h \rightarrow 0} \sin c \sinh$
$=\cos c \cos 0-\sin c \sin 0$
$=\cos c \times 1-\sin c \times 0$
$=\cos c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, $g(x)=\cos x$ is a continuous function
$h(x)=x^{2}$
Clearly, h is defined for every real number.
Let k be a real number, then $h(k)=k^{2}$
$\lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k} x^{2}=k^{2}$
$\therefore \lim _{x \rightarrow k} h(x)=h(k)$

Therefore, h is a continuous function.
It is known that for real valued functions g and h, such that $(g o h)$ is defined at c, it g is continuous at c and it f is continuous at c.

Therefore, $\quad f(x)=(g o h)(x)=\cos \left(x^{3}\right)$ is a continuous function.
32. Show that the function defined by $f(x)=|\cos x|$ is a continuous function

Solution:

The given function is $f(x)=|\cos x|$
This function f is defined for every real number and f can be written as the composition of two functions as,
$f=g o h$, where $g(x)=|x|$ and $h(x)=\cos x$
$[\because(g o h)(x)=g(h(x))=g(\cos x)=|\cos x|=f(x)]$
It has to be first proves that $g(x)=|x|$ and $h(x)=\cos x$ are continuous functions.
$g(x)=|x|$, can be written as
$g(x)=\left\{\begin{array}{ccc}-x & \text { if } & x<0 \\ x & \text { if } & x \geq 0\end{array}\right.$
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
If $c<0$, then $g(c)=-c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c}(-x)=-c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x, such that $x<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c}(-x)=c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x, such that $x>0$

Case III:

If $c=0$, then $g(c)=g(0)=0$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c}(-x)=-c$
$\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0$
$\therefore \lim _{x \rightarrow c^{-}} g(x)=\lim _{x \rightarrow c^{+}} g(x)=g(0)$
Therefore, g is continuous at $x=0$
From the above three observations, it can be concluded that g is continuous at all points.
$h(x)=\cos x$
It is evident that $h(x)=\cos x$ is defined for every real number.
Let c be a real number. Put $x=c+h$
If $x \rightarrow c$, then $h \rightarrow 0$
$h(c)=\cos c$

$$
\begin{aligned}
& \lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} \cos x \\
& =\lim _{h \rightarrow 0} \cos (c+h) \\
& =\lim _{h \rightarrow 0}[\cos c \cosh -\sin c \sinh] \\
& =\lim _{h \rightarrow 0} \cos c \cosh -\lim _{h \rightarrow 0} \sin c \sinh \\
& =\cos c \cos 0-\sin c \sin 0 \\
& =\cos c \times 1-\sin c \times 0 \\
& =\cos c \\
& =\lim _{h \rightarrow c} h(x)=h(c)
\end{aligned}
$$

Therefore, $h(x)=\cos x$ is continuous function/
It is known that for real values functions g and h, such that $(g o h)$ is defined at c, if g is continuous at c and if f is continuous at $g(c)$, then $(f o g)$ is continuous at c.

Therefore, $f(x)=(g o h)(x)=g(h(x))=g(\cos x)=|\cos x|$ is a continuous function.
33. Examine that $\sin |x|$ is a continuous function

Solution:

Let $f(x)=\sin |x|$
This function f is defined for every real number and f can be written as the composition of two functions as,
$f=g o h$, where $g(x)=|x|$ and $h(x)=\sin x$
$[\because(g o h)(x)=g(h(x))=g(\sin x)=|\sin x|=f(x)]$
It has to be prove first that $g(x)=|x|$ and $h(x)=\sin x$ are continuous functions.
$g(x)=|x|$ can be written as
$g(x)=\left\{\begin{array}{ccc}-x & \text { if } & x<0 \\ x & \text { if } & x \geq 0\end{array}\right.$
Clearly, g is defined for all real numbers.
Let c be a real number.

Case I:

If $c<0$, then $g(c)=-c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c}(-x)=-c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x, that $x<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} x=c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x, such that $x>0$
Case III:

If $c=0$, then $g(c)=g(0)=0$
$\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0$
$\therefore \lim _{x \rightarrow c^{-}} g(x)=\lim _{x \rightarrow c^{+}} g(x)=g(0)$
Therefore, g is continuous at $x=0$
From the above three observations, it can be concluded that g is continuous at all points.

$$
h(x)=\sin x
$$

It is evident that $h(x)=\sin x$ is defined for every real number.
Let c be a real number. Put $x=c+k$
If $x \rightarrow c$, then $k \rightarrow 0$
$h(c)=\sin c$

$$
\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} \sin x
$$

$=\lim _{k \rightarrow 0} \sin (c+k)$
$=\lim _{k \rightarrow 0}[\sin c \cos k+\cos c \sin k]$
$=\lim _{k \rightarrow 0}(\sin c \cos k)-\lim _{k \rightarrow 0}(\cos c \sin k)$
$=\sin c \cos 0+\cos c \sin 0$
$=\sin c+0$
$=\sin c$
$=\lim _{x \rightarrow c} h(x)=g(c)$
Therefore, h is continuous function.
It is known that for real values functions g and h, such that $(g o h)$ is defined at c, if g is continuous at c and if f is continuous at $g(c)$, then $(f o h)$ is continuous at c.

Therefore, $\quad f(x)=(g o h)(x)=g(h(x))=g(\sin x)=|\sin x| \quad$ is a continuous function.
34. Find all the points of discontinuity of f defined by $f(x)=|x|-|x+1|$.

Solution:

The given function is $f(x)=|x|-|x+1|$
The two functions, g and h, are defined as
$g(x)=|x|$ and $h(x)=|x+1|$
Then $f=g-h$
The continuous of g and h is examined first.
$g(x)=|x|$ can be written as
$g(x)=\left\{\begin{array}{ccc}-x & \text { if } & x<0 \\ x & \text { if } & x \geq 0\end{array}\right.$
Clearly, g is defined for all real numbers.
Let c be a real number.
Case I:
If $c<0$, then $g(c)=g(0)=-c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c}(-x)=-c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x, that $x<0$
Case II:
If $c>0$, then $g(c)=c$ and $\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} x=c$
$\therefore \lim _{x \rightarrow c} g(x)=g(c)$
Therefore, g is continuous at all points x, such that $x>0$
Case III:
If $c=0$, then $g(c)=g(0)=0$

$$
\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0
$$

$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0$
$\therefore \lim _{x \rightarrow c^{-}} g(x)=\lim _{x \rightarrow c^{+}} g(x)=g(0)$
Therefore, g is continuous at $x=0$
From the above three observations, it can be concluded that g is continuous at all points.
$h(x)=|x+1|$
$h(x)=\left\{\begin{array}{ccc}-(x+1), & \text { if, } & x<-1 \\ x+1, & \text { if, } & x \geq-1\end{array}\right.$
Clearly, h is defined for every real number.
Let c be a real number
Case I:
If $c<-1$, then $h(c)=-(c+1)$ and $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c}[-(x+1)]=-(c+1)$
$\therefore \lim _{x \rightarrow c} h(x)=h(c)$
Therefore, h is continuous at all points x, such that $x<-1$
Case II:
If $c>-1$, then $h(c)=c+1$ and $\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} x+1=(c+1)$
$\therefore \lim _{x \rightarrow c} h(x)=h(c)$
Therefore, g is continuous at all points x, such that $x>-1$
Case III:
If $c=-1$, then $h(c)=h(-1)=-1+1=0$

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}}[-(x+1)]=-(-1+1) 0 \\
& \lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}}(x+1)=(-1+1)=0 \\
& \therefore \lim _{x \rightarrow 1^{-}} h=\lim _{x \rightarrow 1^{+}} h(x)=h(-1)
\end{aligned}
$$

Therefore, h is continuous at $x=-1$

From the above three observations, it can be concluded that h is continuous at all points of the real line.
g and h are continuous functions. Therefore, $f=g-h$ is also a continuous function.
Therefore, f has no point of discontinuity.

