Learn

Chapter 6: Applications of Derivatives.

Exercise 6.2

1. Show, that the function given by $f(x)=3 x+17$ is strictly increasing on R .

Solution:

Let x_{1} and x_{2}, be any two numbers in R.
$x_{1}<x_{2} \Rightarrow 3 x_{1}+17<3 x_{2}+17=f\left(x_{1}\right)<f\left(x_{2}\right)$
Thus, f is strictly increasing on R .

Alternate Method

$f^{\prime}(x)=3>0$ on R.
Thus, f is strictly increasing on R .
2. Show, that the function given by $f(x)=e^{2 x}$ is strictly increasing on R .

Solution:

Let x_{1} and x_{2} be any two numbers in R .

$$
x_{1}<x_{2} \Rightarrow 2 x_{1}<2 x_{2} \Rightarrow e^{2 x_{1}}<e^{2 x_{2}} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

Thus, f is strictly increasing on R .
3. Show that the function given by $f(x)=\sin x$ is
(A) Strictly increasing in $\left(0, \frac{\pi}{2}\right)$
(B) Strictly decreasing $\left(\frac{\pi}{2}, \pi\right)$
(C) Neither increasing nor decreasing in $(0, \pi)$

Solution:

$$
f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x
$$

(A) $x \in\left(0, \frac{\pi}{2}\right) \Rightarrow \cos x>0 \Rightarrow f^{\prime}(x)>0$ Learn

Thus, f is strictly increasing in $\left(0, \frac{\pi}{2}\right)$
(B) $x \in\left(\frac{\pi}{2}, \pi\right) \Rightarrow \cos x<0 \Rightarrow f^{\prime}(x)<0$

Thus, f is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
(C) The results obtained in (A) and (B) are sufficient to state that f is neither increasing nor decreasing in $(0, \pi)$
4. Find the intervals in which the function f given by $f(x)=2 x^{2}-3 x$ is
(A) Strictly increasing
(B) Strictly decreasing

Solution:

$$
f(x)=2 x^{2}-3 x \Rightarrow f^{\prime}(x)=4 x-3
$$

$$
\therefore f^{\prime}(x)=0 \Rightarrow x=\frac{3}{4}
$$

$\operatorname{In}\left(-\infty, \frac{3}{4}\right), f^{\prime}(x)=4 x-3<0$
Hence, f is strictly decreasing in $\left(-\infty, \frac{3}{4}\right)$
$\operatorname{In}\left(\frac{3}{4}, \infty\right), f^{\prime}(x)=4 x-3>0$
Hence, f is strictly increasing in $\left(\frac{3}{4}, \infty\right)$
5. Find the intervals in which the function f given $f(x)=2 x^{2}-3 x^{2}-36 x+7$ is
(A) Strictly increasing
(B) Strictly decreasing

Solution:

$$
f(x)=2 x^{2}-3 x^{2}-36 x+7
$$

$$
f^{\prime}(x)=6 x^{2}-6 x+36=6\left(x^{2}-x-6\right)=6(x+2)(x-3)
$$

$$
\therefore f^{\prime}(x)=0 \Rightarrow x=-2,3
$$

In $(-\infty,-2)$ and $(3, \infty), f^{\prime}(x)>0$
In $(-2,3), f^{\prime}(x)<0$
Hence, f is strictly increasing $(-\infty,-2)$ and $(3, \infty)$ and strictly decreasing in $(-2,3)$
6. Find the intervals in which the following functions are strictly increasing or decreasing
(a) $x^{2}+2 x-5$
(b) $10-6 x-2 x^{2}$
(c) $-2 x^{3}-9 x^{2}-12 x+1$
(d) $6-9 x-x^{2}$
(e) $(x+1)^{3}(x-3)^{3}$

Solution:

$f(x)=x^{2}+2 x-5 \Rightarrow f^{\prime}(x)=2 x+2 \Rightarrow f^{\prime}(x)=0 \Rightarrow x=1$
$x=-1$ divides the number line into intervals $(-\infty,-1)$ and $(-1, \infty)$
In $(-\infty,-1), f^{\prime}(x)=2 x+2<0$
$\therefore f$ is strictly decreasing in $(-\infty,-1)$

In $(-\infty,-1), f^{\prime}(x)=2 x+2>0, \quad \therefore f^{\prime}(x)=2 x+2>0$
$\therefore f$ is strictly decreasing in $(-1, \infty)$
(b) $f(x)=10-6 x-2 x^{2} \Rightarrow f^{\prime}(x)=-6-4 x \Rightarrow f^{\prime}(x)=0 \Rightarrow x=-\frac{3}{2}$
$x=-\frac{3}{2}$ divides the number line into two intervals $\left(-\infty,-\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$
$\operatorname{In}\left(-\infty,-\frac{3}{2}\right), f^{\prime}(x)=-6-4 x<0$
$\therefore f$ is strictly increasing for $x<-\frac{3}{2}$
$\operatorname{In}\left(-\frac{3}{2}, \infty\right), f^{\prime}(x)=-6-4 x>0$
$\therefore f$ is strictly increasing for $x>-\frac{3}{2}$
(c) $f(x)=-2 x^{3}-9 x^{2}-12 x+1$
$\therefore f^{\prime}(x)=-6 x^{2}-18 x-12=-6\left(x^{2}+3 x+2\right)=-6(x+1)(x+2)$
$\therefore f^{\prime}(x)=0 \Rightarrow x=-1,2$
$x=-1$ and $x=-2$ divide the number line into intervals $(-\infty,-2),(-2,-1)$ and $(-1, \infty)$

In $(-\infty,-2)$ and $(-1, \infty), f^{\prime}(x)=-6(x+1)(x+2)<0$
$\therefore f$ is strictly decreasing for $x<-2$ and $x>-1$

In $(-2,-1), f^{\prime}(x)=-6(x+1)(x+2)>0$
$\therefore f$ is strictly increasing for $-2<x<-1$
(d) $f(x)=6-9 x-x^{2} \Rightarrow f^{\prime}(x)=-9-2 x$
$f^{\prime}(x)=0 \Rightarrow x=\frac{-9}{2}$
$\operatorname{In}\left(-\infty,-\frac{9}{2}\right), f^{\prime}(x)>0$
$\therefore f$ is strictly increasing for $x<-\frac{9}{2}$
In $\left(-\frac{9}{2}, \infty\right), f^{\prime}(x)<0$
$\therefore f$ is strictly decreasing for $x>-\frac{9}{2}$
(e) $f(x)=(x+1)^{3}(x-3)^{3}$
$f^{\prime}(x)=3(x+1)^{2}(x-3)^{3}+3(x-3)^{2}(x+1)^{3}$
$=3(x+1)^{2}(x-3)^{2}[x-3+x+1]$
$=3(x+1)^{2}(x-3)^{2}(2 x-2)$
$=6(x+1)^{2}(x-3)^{2}(x-1)$
$f^{\prime}(x)=0 \Rightarrow x=-1,3,1$
$x=-1,3,1$ divides the number line into four intervals $(-\infty,-1),(-1,1)(1,3)$ and $(3, \infty)$

In $(-\infty,-1)$ and $(-1,1), f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)<0$
$\therefore f$ is strictly decreasing in $(-\infty,-1)$ and $(-1,1)$

In $(1,3)$ and $(3, \infty), f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)>0$
$\therefore f$ is strictly increasing in $(1,3)$ and $(3, \infty)$
7. Show that $y=\log (1+x)-\frac{2 x}{2+x}, x>-1$, is an increasing function throughout its domain

Solution:

$$
y=\log (1+x)-\frac{2 x}{2+x}
$$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\frac{1}{1+x}-\frac{(2+x)(2)-2 x(1)}{(2+x)^{2}}=\frac{1}{1+x}-\frac{4}{(2+x)^{2}}=\frac{x^{2}}{(1+x)(2+x)^{2}} \\
& \frac{d y}{d x}=0 \\
& \Rightarrow \frac{x^{2}}{(2+x)^{2}}=0 \\
& \Rightarrow x^{2}=0 \\
& \Rightarrow x=0
\end{aligned}
$$

Because $x>-1, x=0$ divides domain $(-1, \infty)$ in two intervals $-1<x<0$ and $x>0$
When $-1<x<0$,

$$
\begin{aligned}
& x<0 \Rightarrow x^{2}>0 \\
& x>-1 \Rightarrow(2+x)>0 \Rightarrow(2+x)^{2}>0 \\
& \therefore y^{\prime}=\frac{x^{2}}{(2+x)^{2}}>0
\end{aligned}
$$

When $\mathrm{x}>0$,

$$
\therefore y^{\prime}=\frac{x^{2}}{(2+x)^{2}}>0
$$

Hence, f is increasing throughout the domain.
8. Find the values of x for which $y=[x(x-2)]^{2}$ is an increasing function

Solution:

$$
\begin{aligned}
& y=[x(x-2)]^{2}=\left[x^{2}-2 x\right]^{2} \\
& \therefore \frac{d y}{d x}=y^{\prime}=2\left(x^{2}-2 x\right)(2 x-2)=4 x(x-2)(x-1) \\
& \therefore \frac{d y}{d x}=0 \Rightarrow x=0, x=2, x=1
\end{aligned}
$$

$x=0, x=1$ and $x=2$ divide the number line into intervals $(-\infty, 0),(0,1),(1,2)$ and $(2, \infty)$

In $(-\infty, 0)$ and $(1,2), \frac{d y}{d x}<0$
$\therefore y$ is strictly decreasing in intervals $(-\infty, 0)$ and $(1,2)$
In intervals $(0,1)$ and $(2, \infty), \frac{d y}{d x}>0$
$\therefore y$ is strictly increasing in intervals $(0,1)$ and $(2, \infty)$
9. Prove that $y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$

Solution:

$$
\begin{aligned}
& y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta \\
& \therefore \frac{d y}{d \theta}=\frac{(2+\cos \theta)(4 \cos \theta)-4 \sin \theta(-\sin \theta)}{(2+\cos \theta)^{2}}-1 \\
& =\frac{8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta}{(2+\cos \theta)^{2}}-1 \\
& =\frac{8 \cos \theta+4}{(2+\cos \theta)}-1 \\
& \frac{d y}{d \theta}=0 \\
& \Rightarrow \frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}=1 \\
& \Rightarrow 8 \cos \theta+4=4+\cos ^{2} \theta+4 \cos \theta \\
& \Rightarrow \cos { }^{2} \theta-4 \cos \theta=0 \\
& \Rightarrow \cos \theta(\cos \theta-4)=0 \\
& \Rightarrow \cos \theta=0 \text { or } \cos \theta=4
\end{aligned}
$$

Because $\cos \theta \neq 4, \cos \theta=0$
$\cos \theta=0 \Rightarrow \theta=\frac{\pi}{2}$
$\frac{d y}{d \theta}=\frac{8 \cos \theta+4-\left(4+\cos ^{2} \theta+4 \cos \theta\right)}{(2+\cos \theta)^{2}}=\frac{4 \cos \theta-\cos ^{2} \theta}{(2+\cos \theta)^{2}}=\frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}$
In $\left[0, \frac{\pi}{2}\right], \cos \theta>0$,
$4>\cos \theta \Rightarrow 4-\cos \theta>0$
$\therefore \cos \theta(4-\cos \theta)>0$
$(2+\cos \theta)^{2}>0$
$\Rightarrow \frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}>0$
$\Rightarrow \frac{d y}{d \theta}>0$
So, y is strictly increasing in $\left(0, \frac{\pi}{2}\right)$
The function is continuous at $x=0$ and $x=\frac{\pi}{2}$
So, y is increasing in $\left[0, \frac{\pi}{2}\right]$
10. Prove that the logarithmic function is strictly increasing on $(0, \infty)$

Solution:

$f(x)=\log x$
$\therefore f^{\prime}(x)=\frac{1}{x}$
For $x>0, f^{\prime}(x)=\frac{1}{x}>0$
Thus, the logarithmic function is strictly increasing in interval $(0, \infty)$
11. Prove that the function f given by $f(x)=x^{2}-x+1$ is neither strictly increasing nor stricty decreasing on $(-1,1)$

Solution:

by Educational Institutions
$f(x)=x^{2}-x+1$
$\therefore f^{\prime}(x)=2 x-1$
$\therefore f^{\prime}(x)=0 \Rightarrow x=\frac{1}{2}$
$x=\frac{1}{2}$ divides $(-1,1)$ into $\left(-1, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 1\right)$
$\operatorname{In}\left(-1, \frac{1}{2}\right), f^{\prime}(x)=2 x-1<0$
So, f is strictly decreasing in $\left(-1, \frac{1}{2}\right)$

In $\left(\frac{1}{2}, 1\right), f^{\prime}(x)=2 x-1>0$
So, f is strictly increasing in interval $\left(\frac{1}{2}, 1\right)$

Thus, f is neither strictly increasing nor strictly decreasing in interval $(-1,1)$
12. Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$?
(A) $\cos x$
(B) $\cos 2 x$
(C) $\cos 3 x$
(D) $\tan x$

Solution:

(A) $f_{1}(x)=\cos x$
$\therefore f_{1}^{\prime}(x)=-\sin x$
$\operatorname{In}\left(0, \frac{\pi}{2}\right), f_{1}^{\prime}(x)=-\sin x<0$
$\therefore f_{1}^{\prime}(x)=\cos x$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$
(B) $f_{2}(x)=\cos 2 x$

$$
\therefore f_{2}^{\prime}(x)=-2 \sin 2 x
$$

$$
0<x<\frac{\pi}{2} \Rightarrow 0<2 x<\pi \Rightarrow \sin 2 x>0 \Rightarrow-2 \sin 2 \mathrm{x}<0
$$

$$
\therefore f_{2}^{\prime}(x)=-2 \sin 2 \mathrm{x}<0 \text { in }\left(0, \frac{\pi}{2}\right)
$$

$\therefore f_{2}(x)=\cos 2 x$ is strictly decreasing in $\left(0, \frac{\pi}{2}\right)$
(C) $f_{3}(x)=\cos 3 x$

$$
\therefore f_{3}^{\prime}(x)=-3 \sin 3 x
$$

$$
f_{3}^{\prime}(x)=0
$$

$\Rightarrow \sin 3 x=0 \Rightarrow 3 x=\pi$, as $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow x=\frac{\pi}{3}$
$x=\frac{\pi}{3} \operatorname{divides}\left(0, \frac{\pi}{2}\right)$ into $\left(0, \frac{\pi}{3}\right)$ and $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
In $\left(0, \frac{\pi}{3}\right), f_{3}(x)=-3 \sin 3 x<0 \quad\left[0<x<\frac{\pi}{3} \Rightarrow 0<3 x<\pi\right]$
$\therefore f_{3}$ is strictly decreasing in $\left(0, \frac{\pi}{3}\right)$
In $\left(\frac{\pi}{3}, \frac{\pi}{2}\right), f_{3}(x)=-3 \sin 3 x>0 \quad\left[\frac{\pi}{3}<x<\frac{\pi}{2} \Rightarrow \pi<3 x<\frac{3 \pi}{2}\right]$
$\therefore f_{3}$ is strictly increasing in $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
So, f_{3} is neither increasing nor decreasing in interval $\left(0, \frac{\pi}{2}\right)$
(D) $f_{4}(x)=\tan x$
$\therefore f_{4}^{\prime}(x)=\sec ^{2} x$
In $\left(0, \frac{\pi}{2}\right), f_{4}^{\prime}(x)=\sec ^{2} x>0$
$\therefore f_{4}$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$
So, the correct answer are A and B
13. On which of the following intervals is the function f is given by $f(x)=x^{100}+\sin x-1$ strictly decreasing?
A. $(0,1) \quad$ B. $\left(\frac{\pi}{2}, \pi\right)$
C. $\left(0, \frac{\pi}{2}\right)$
D. None of these

Solution:

$f(x)=x^{100}+\sin x-1$
$\therefore f^{\prime}(x)=100 x^{99}+\cos x$
In $(0,1), \cos x>0$ and $100 x^{99}>0$
$\therefore f^{\prime}(x)>0$
So, f is strictly increasing in $(0,1)$
In $\left(\frac{\pi}{2}, x\right), \cos x<0$ and $100 x^{99}>0$
$100 x^{99}>\cos x$
$\therefore f^{\prime}(x)>0$ in $\left(\frac{\pi}{2}, x\right)$
So, f is strictly increasing in interval $\left(\frac{\pi}{2}, x\right)$

In interval $\left(0, \frac{\pi}{2}\right), \cos x>0$ and $100 x^{99}>0$
$\therefore 100 x^{99}+\cos x>0$
$\Rightarrow f^{\prime}(x)>0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f$ is strictly increasing in interval $\left(0, \frac{\pi}{2}\right)$
Hence, f is strictly decreasing in none of the intervals.
The correct answer is D.
14. Find the least value of a such that the function f given $f(x)=x^{2}+a x+1$ is strictly increasing on $(1,2)$

Solution:

$$
f(x)=x^{2}+a x+1
$$

$$
\therefore f^{\prime}(x)=2 x+a
$$

$\therefore f^{\prime}(x)>0$ in $(1,2)$
$\Rightarrow 2 x+a>0$
$\Rightarrow 2 x>-a$
$\Rightarrow x>\frac{-a}{2}$
So, we need to find the smallest value of a such that

$$
\begin{aligned}
& x>\frac{-a}{2}, \text { when } x \in(1,2) \\
& \Rightarrow x>\frac{-a}{2}(\text { when } 1<x<2)
\end{aligned}
$$

$$
\frac{-a}{2}=1 \Rightarrow a=-2
$$

Hence, the required value of a is -2
15. Let I be any interval disjoint from $(-1,1)$, prove that the function f given by $f(x)=x+\frac{1}{x}$ is strictly increasing on I

Solution:

$$
\begin{aligned}
& f(x)=x+\frac{1}{x} \\
& \therefore f^{\prime}(x)=1-\frac{1}{x^{2}} \\
& \therefore f^{\prime}(x)=0 \Rightarrow \frac{1}{x^{2}} \Rightarrow x= \pm 1
\end{aligned}
$$

$$
\mathrm{x}=1 \text { and } \mathrm{x}=-1 \text { divide the real line in intervals }(-\infty, 1),(-1,1) \text { and }(1, \infty)
$$

$$
\text { In }(-1,1),
$$

$$
-1<x<1
$$

$$
\Rightarrow x^{2}<1
$$

$$
\Rightarrow 1<\frac{1}{x^{2}}, x \neq 0
$$

$$
\Rightarrow 1-\frac{1}{x^{2}}<0, x \neq 0
$$

$$
\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}<0 \text { on }(-1,1) \sim\{0\}
$$

$\therefore f$ is strictly decreasing on $(-1,1) \sim\{0\}$

$$
\begin{aligned}
& \text { In }(-\infty,-1) \text { and }(1, \infty) \\
& x<-1 \text { or } 1<x \\
& \Rightarrow x^{2}>1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 1>\frac{1}{x^{2}} \\
& \Rightarrow 1-\frac{1}{x^{2}}>0
\end{aligned}
$$

$\therefore f^{\prime}(x)=1-\frac{1}{x^{2}}>0$ on $(-\infty,-1)$ and $(1, \infty)$
$\therefore f$ is strictly increasing on $(-\infty, 1)$ and $(1, \infty)$
Hence, f is strictly increasing in $I-(-1,1)$
16. Prove that the function f given by $f(x)=\log \sin x$ strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$

Solution:

$f(x)=\log \sin x$
$f^{\prime}(x)=\frac{1}{\sin x} \cos x=\cot x$
In $\left(0, \frac{\pi}{2}\right), f^{\prime}(x)=\cot x>0$
$\therefore f$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$
$\operatorname{In}\left(\frac{\pi}{2}, \pi\right), f^{\prime}(x)=\cot x<0$
$\therefore f$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
17. Prove that the function f given by $f(x)=\log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$
$f(x)=\log \cos x$
$\therefore f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x$
In $\left(0, \frac{\pi}{2}\right), \tan x>0 \Rightarrow-\tan x<0$
$\therefore f^{\prime}(x)=<0$ on $\left(0, \frac{\pi}{2}\right)$
$\therefore f$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$
In $\left(\frac{\pi}{2}, \pi\right), \tan x<0 \Rightarrow-\tan x>0$
$\therefore f^{\prime}(x)>0$ on $\left(\frac{\pi}{2}, \pi\right)$
$\therefore f$ is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$
18. Prove that the function given by $f(x)=x^{3}-3 x^{2}+3 x=100$ is increasing in R

Solution:

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}+3 x=100 \\
& f^{\prime}(x)=3 x^{2}-6 x+3 \\
& =3\left(x^{2}-2 x+1\right) \\
& =3(x-1)^{2}
\end{aligned}
$$

For $x \in R(x-1)^{2} \geq 0$
So $f^{\prime}(x)$ is always positive in R

So, the f is increasing in R
19. The interval in which $y=x^{2} e^{-x}$ is increasing is
A. $(-\infty, \infty)$
B. $(-2,0)$
C. $(2, \infty)$
D. $(0,2)$

Solution:

$$
\begin{aligned}
& y=x^{2} e^{-x} \\
& \therefore \frac{d y}{d x}=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x) \\
& \frac{d y}{d x}=0 \\
& \Rightarrow x=0 \text { and } x=2
\end{aligned}
$$

In $(-\infty, 0)$ and $(2, \infty), f^{\prime}(x)<0$ as e^{-x} is always positive
$\therefore f$ is decreasing on $(-\infty, 0)$ and $(2, \infty)$
In $(0,2), f^{\prime}(x)>0$
$\therefore f$ is strictly increasing on $(0,2)$
So, f is strictly increasing in $(0,2)$
The correct answer is D.

