

Chapter: 8. Applications of Integrals

Exercise 8. Miscellaneous

1. (i) Find the area under the curve $y = x^2$, the lines $x = 1, x = 2$ and the $x - axis$. **Solution:** The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$

axis is $\| f(x) \|$ *b* $\int_a^b f(x) dx$.

The area of the shaded region is the region bounded by the curve $y = x^2$, the lines $x = 1, x = 2$ and the $x -$ axis in the first quadrant.

Hence, the required area is 2 2 $A = \int_{1}^{x^2} dx$

$$
A = \int_{1}^{2} x^{2} dx
$$

= $\left[\frac{x^{3}}{3}\right]_{1}^{2}$ $\cdot \int x^{n} dx = \frac{x^{n+1}}{n+1}; n \neq -1$
= $\frac{1}{3}(8-1)$
= $\frac{7}{3}$ square units

Therefore, the area of the region bounded by the curve $y = x^2$ and the lines $x = 1, x = 2$ and the $x -$ axis in the first quadrant is $\frac{7}{3}$ square units

(ii) Find the area under the curve $y = x^4$, the lines $x = 1, x = 5$ and the $x - axis$. **Solution:** The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$ axis is $\| f(x) \|$ $\int_a^b f(x) dx$.

The area of the shaded region is the region bounded by the curve $y = x^4$, the lines $x = 1, x = 5$ and the $x -$ axis in the first quadrant.

Hence, the required area is 5 4 $A = \int_{1}^{x^4} dx$

$$
A = \int_{1}^{5} x^{4} dx
$$

= $\left[\frac{x^{5}}{5} \right]_{1}^{5}$ $\cdot \int x^{n} dx = \frac{x^{n+1}}{n+1}; n \neq -1$
= $\frac{1}{5} (3125 - 1)$
= 624.8 square units

Therefore, the area of the region bounded by the curve $y = x^4$ and the lines $x = 1, x = 5$ and the $x - axis$ in the first quadrant is 624.8 square units

2. Find the area between the curves $y = x$ and $y = x^2$.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by two curves $y = f(x)$ and $y = g(x)$ the lines

$$
x = a, x = b \text{ is } \int_{a}^{b} |f(x) - g(x)| dx.
$$

The point of intersection of curve $y = x^2$ and the line $y = x$

$$
x = x2
$$

$$
x2 - x = 0
$$

$$
x(x-1) = 0
$$

$$
x = 0 \text{ or } x = 1
$$

The area of the shaded region is the region bounded by the curve $y = x^2$, the lines $y = x, x = 0, x = 1.$

Hence, the required area is $A = \int_0^1 (x - x^2) dx$ 2 $A = \int_{0}^{x} (x - x^2) dx$ $\int (x-x^2)$ 2 0 2 3 $\frac{1}{1}$ 2 3 $\frac{1}{0}$ 1 1 2 3 $=\frac{1}{6}$ square units $A = \int (x - x^2) dx$ $\begin{bmatrix} x^2 & x^3 \end{bmatrix}$ $=\left[\frac{1}{2} - \frac{1}{3}\right]$ $(1 \ 1)$ $=\left(\frac{1}{2}-\frac{1}{3}\right)$

Therefore, the area of the region bounded by the curve $y = x^2$ and the line $y = x$ is

 $\frac{1}{6}$ square units

3. Find the area of the region lying in the first quadrant bounded by $y = 4x^2$, lines $y = 1$, $y = 4$ and the $y - axis$.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $x = g(y)$, lines $y = a, y = b$ and y axis in the first quadrant is defined as $\int g(y) dy$ *b*

The area of the shaded region is the region bounded by the curve $y = 4x^2$, the lines $y = 1$, $y = 4$ and the $y - axis$ in the first quadrant.

a

Hence, the required area is 4 1 1 $A = \frac{1}{2} \int \sqrt{y} dy$

$$
A = \frac{1}{2} \int_{1}^{4} \sqrt{y} dy
$$

$$
= \frac{1}{2} \left(\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right)_{1}^{4}
$$

$$
= \frac{1}{2} \left(\frac{2}{3} \right) (8 - 1)
$$

$$
= \frac{7}{3}
$$

The area of the shaded region is the region bounded by the curve $y = 4x^2$, the lines $y = 1$, $y = 4$ and the $y - axis$ in the first quadrant. $\frac{7}{3}$ square units

4. Sketch the graph of
$$
y = |x+3|
$$
, and evaluate $\int_{-6}^{0} |x+3| dx$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$

axis is $\| f(x) \|$ $\int_a^b f(x) dx$.

The given equation $y = |x + 3|$ can be rewrite as below

$$
y = \begin{cases} x+3 & x > -3 \\ -(x+3) & x < -3 \end{cases}
$$

Hence,

$$
\int_{-6}^{0} |x+3| dx = \left| \int_{-6}^{-3} (x+3) dx - \int_{-3}^{0} (x+3) dx \right|
$$

= $\left| \left(\frac{x^2}{2} + 3x \right)_{-6}^{-3} - \left(\frac{x^2}{2} + 3x \right)_{-3}^{0} \right|$
= $\left| \frac{9}{2} - 9 - \frac{36}{2} + 18 + \frac{9}{2} - 9 \right|$
= 9

Therefore, the area of the region bounded by the curve $y = |x + 3|$ between the lines $x = -6$, $x = 0$ above the $x -$ axis is 9 square units

5. Find the area bounded by the curve $y = \sin x$ between the lines $x = 0$ and $x = 2\pi$ **Solution:** The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$

axis is
$$
\int_a^b f(x) dx
$$
.

The area of the shaded region is 2 times the region bounded by the curve $y = \sin x$, the lines $x = 0, x = \pi$ and the $x -$ axis in the first quadrant.

Hence, the required area is
$$
A = 2 \left(\int_0^{\pi} \sin x dx \right)
$$

\n
$$
A = 2 \left(\int_0^{\pi} \sin x dx \right)
$$
\n
$$
= 2 \left(-\cos x \right)_0^{\pi}
$$
\n
$$
= 2 (1+1)
$$
\n
$$
= 4
$$

Therefore, the area of the region bounded by the curve $y = \sin x$ between the lines $x = 0, x = 2\pi$ is 4 square units

6. Find the area of the region enclosed between the curves $y^2 = 4ax$ and the line $y = mx$ **Solution:** The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

the

Lines
$$
x = a, x = b
$$
 is
$$
\int_{a}^{b} (f(x) - g(x)) dx
$$
.

The curve $y^2 = 4ax$ and the line $y = mx$ intersect:

$$
(mx)2 = 4ax
$$

$$
m2x2 = 4ax
$$

$$
m2x = 4a
$$

$$
x = \frac{4a}{m2}
$$

The area of the shaded region is the area of the region bounded between the curve $y^2 = 4ax$ and the line $y = mx$ is sum of the following regions Hence, the required area is

$$
A = \int_0^{\frac{\pi^2}{2}} 2\sqrt{ax} - mx
$$

= $2\sqrt{a} \left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right)_0^{\frac{4a}{m^2}} - m \left(\frac{x^2}{2} \right)_0^{\frac{4a}{m^2}}$
= $2\sqrt{a} \left(\frac{2}{3} \right) \left(\frac{8a^{\frac{3}{2}}}{m^3} \right) - m \left(\frac{8a^2}{m^4} \right)$
= $\frac{32a^2}{3m^3} - \frac{8a^2}{m^3}$
= $\frac{8a^2}{3m^3}$

Therefore, the enclosed between the curves $y^2 = 4ax$ and the line $y = mx$ is 2 3 $\frac{8a^2}{3m^3}$ square units *a*

7. Find the area enclosed by the parabola $4y = 3x^2$ and the line $2y = 3x + 12$

Solution:

m

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between the

Lines
$$
x = a, x = b
$$
 is $\left| \int_a^b (f(x) - g(x)) dx \right|$.

Points of intersection of the curve $4y = 3x^2$ and the line $2y = 3x + 12$

$$
3x2 = 2(3x + 12)
$$

\n
$$
3x2 - 6x - 24 = 0
$$

\n
$$
x2 - 2x - 8 = 0
$$

\n
$$
x2 - 4x + 2x - 8 = 0
$$

\n
$$
x(x-4) + 2(x-4) = 0
$$

\n
$$
(x+2)(x-4) = 0
$$

It implies that $x = -2$, $x = 4$

The area of the shaded region is two times the area of the region bounded by the

curves
$$
y = \frac{3x^2}{4}
$$
, the lines $y = \frac{3x + 12}{2}$, $x = -2$, $x = 4$.

Hence, the required area is

$$
A = \int_{-2}^{4} \left(\frac{3x^2}{4} - \frac{3x+12}{2} \right) dx
$$

= $\frac{3}{4} \int_{-2}^{4} (x^2 - 2x - 8) dx$
= $\frac{3}{4} \left(\frac{x^3}{3} - x^2 - 8x \right)_{-2}^{4}$
= $\frac{3}{4} \left(\frac{64}{3} - 16 - 32 + \frac{8}{3} + 4 - 16 \right)$
= $\left| \frac{3}{4} \left(\frac{72}{3} - 60 \right) \right|$
= 27

Therefore, the area enclosed by the parabola $4y = 3x^2$ and the line $2y = 3x + 12$ is 27square units

8. Find the area of the smallest region in the ellipse $\frac{x^2}{2} + \frac{y^2}{4}$ 1 9 4 $\frac{x}{2} + \frac{y}{1} = 1$ and the line $\frac{x}{2} + \frac{y}{2} = 1$ 3 2 $\frac{x}{x} + \frac{y}{x} =$

Solution:

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

Lines
$$
x = a, x = b
$$
 is
$$
\int_{a}^{b} (f(x) - g(x)) dx
$$
.

the

The area of the shaded region is the region between the curves $y = \frac{2}{3}\sqrt{9-x^2}$ $y = \frac{2}{3}\sqrt{9-x^2}$,

3

 Ω

$$
y = 2\left(\frac{3-x}{3}\right)
$$
 and the lines $x = 0, x = 3$

Hence, the area of the shaded region is $A = \frac{2}{3} \int_0^3 (\sqrt{9-x^2} - (3-x)) dx$ 2 0 $\int_{0}^{2} \int_{0}^{2} \sqrt{9-x^2}$ – (3) $A = \frac{2}{3} \int_{0}^{2} (\sqrt{9-x^2} - (3-x)) dx$

$$
A = \frac{2}{3} \int_{0}^{3} \left(\sqrt{9 - x^2} - (3 - x) \right) dx
$$

= $\frac{2}{3} \left[\frac{x}{2} \sqrt{9 - x^2} - \frac{9}{2} \sin^{-1} \frac{x}{3} - 3x + \frac{x^2}{2} \right]$
= $\frac{2}{3} \left[-\frac{9}{2} \left(\frac{\pi}{2} \right) - 9 + \frac{9}{2} \right]$
= $\frac{2}{3} \left(\frac{9}{2} \right) \left(\frac{\pi}{2} - 1 \right)$
= $\frac{3}{2} (\pi - 2)$

Therefore, the area of the smallest region in the ellipse 2 \ldots ² 1 9 4 $\frac{x^2}{2} + \frac{y^2}{4} = 1$ and the line 3

$$
\frac{x}{3} + \frac{y}{2} = 1
$$
 is $\frac{3}{2}(\pi - 2)$ square units

9. Find the area of the smallest region in the ellipse $\frac{x^2}{2} + \frac{y^2}{2}$ $\frac{x}{2} + \frac{y}{1^2} = 1$ $\frac{x}{a^2} + \frac{y}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$ $\frac{a}{a} + \frac{b}{b} =$

Solution:

the

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

Lines
$$
x = a, x = b
$$
 is
$$
\int_{a}^{b} (f(x) - g(x)) dx
$$

The area of the shaded region is the region between the curves $y = \frac{b}{a} \sqrt{a^2 - x^2}$ $=\frac{b}{x^2}-x^2$ and the line $y = \frac{b}{a-x}$ *a* $=\frac{b}{a}$ (a – .

Hence, the area of the shaded region is $A = \frac{b}{a} \int_0^3 (\sqrt{a^2 - x^2} - (a - x)) dx$ 2 2 0 $A = \frac{b}{a} \int_a^b (\sqrt{a^2 - x^2} - (a - x)) dx$ *a* $=\frac{b}{a}\int \left(\sqrt{a^2-x^2-(a-1)}\right)$

$$
A = \frac{b}{a} \int_{0}^{a} \left(\sqrt{a^{2} - x^{2}} - (a - x) \right) dx
$$

= $\frac{b}{a} \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} - \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} - ax + \frac{x^{2}}{2} \right]_{0}^{a}$
= $\frac{b}{a} \left[-\frac{a^{2}}{2} \left(\frac{\pi}{2} \right) - a^{2} + \frac{a^{2}}{2} \right]$
= $\frac{b}{a} \left(\frac{a^{2}}{2} \right) \left(\frac{\pi}{2} - 1 \right)$
= $\frac{ab}{4} (\pi - 2)$

Therefore, the area of the smallest region in the ellipse 2 \ldots ² $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a^2 *b* $+\frac{y}{2}$ = 1 and the line

 $\frac{x}{-} + \frac{y}{-} = 1$ $\frac{\lambda}{a} + \frac{y}{b} = 1$ is $\frac{dv}{4}(\pi - 2)$ square units $\frac{ab}{\pi}$ (π –

10. Find the area bounded by the curve $x^2 = y$ and the line $y = x + 2$ and $x - axis$.

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between the

Lines
$$
x = a, x = b
$$
 is $\left| \int_a^b (f(x) - g(x)) dx \right|$.

Points of intersection of the curve $x^2 = y$ and the line $y = x + 2$

2

$$
x^{2} = x + x^{2} - x - 2 = 0
$$

$$
x^{2} - 2x + x - 2 = 0
$$

$$
x(x-2) + 1(x-2) = 0
$$

$$
(x+1)(x-2) = 0
$$

Hence, the points of intersection of both curve and the line are $x = -1, x = 2$

The area of the shaded region is the sum of the areas of the region bounded by the curve $y = x + 2$, lines $x = -2$, $x = -1$ and $x -$ axis and the area of the region bounded by the curves $x^2 = y$, the lines $x = -1$, $x = 0$ and $x -$ axis in the second quadrant.

Hence, the required area is
$$
A = \int_{-2}^{1} (x+2) dx + \int_{-1}^{0} x^2 dx
$$

$$
A = \int_{-2}^{1} (x+2) dx + \int_{-1}^{0} x^2 dx
$$

= $\left(\frac{x^2}{2} + 2x\right)_{-2}^{1} + \left[\frac{x^3}{3}\right]_{-1}^{0}$
= $\left(\frac{1}{2} - 2 - 2 + 4 + \frac{1}{3}\right)$
= $\left(\frac{5}{6}\right)$ square units

Therefore, the area of the region bounded by the curve $x^2 = y$ the line $y = x + 2$ and *x* – axis is $\frac{5}{6}$ square units

11. Using the method of integration, find the area bounded by the curve $|x|+|y|=1$

Solution:

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$

axis is $\| f(x) \|$ $\int_a^b f(x) dx$.

The area of the shaded region is four times the area of the triangle in the first quadrant

Hence, the required area is $A = 4/(x+1)$ $A = 4 \int_{0}^{x} (x+1) dx$

$$
A = 4 \int_0^1 (-x+1) dx
$$

= $4 \left(-\frac{x^2}{2} + x \right)_0^1$
= $4 \left(-\frac{1}{2} + 1 \right)$
= $4 \left(\frac{1}{2} \right)$

 $=$ 2 square units

Therefore, the area bounded by the curve $|x|+|y| = 1$ is 2 square units

12. Find the area bounded by curves $\{(x, y) : y \ge x^2 \text{ and } y = |x|\}$

Solution:

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

Lines
$$
x = a, x = b
$$
 is $\left| \int_a^b (f(x) - g(x)) dx \right|$.

The area of the shaded region is two times the area of the region bounded by the line $y = x^2$ and the line $y = x$ in the first quadrant

Hence, the required area is $A = 2 \int_0^1 (x^2 - x) dx$ 2 $A = 2\int\limits_0^1 (x^2 - x) dx$

$$
A = 2\int_{0}^{1} (x^{2} - x) dx
$$

= $2\left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)_{0}^{1}$
= $2\left(\frac{1}{3} - \frac{1}{2}\right)$
= $\frac{1}{3}$ square units

Therefore the area bounded by curves $\{(x, y) : y \ge x^2 \text{ and } y = |x|\}$ is $\frac{1}{3}$ square units

13. Using the method of integration, find the area of the triangle formed by the points $A(2,0), B(4,5), C(6,3)$

Solution:

the

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between the

Lines
$$
x = a, x = b
$$
 is $\left| \int_a^b (f(x) - g(x)) dx \right|$.

The equations of the sides of the triangle are as below

Equation of *AB* is $y = \frac{5}{2}(x-2)$ $y = \frac{1}{2}(x -$

Equation of *BC* is $y = -x + 9$

Equation of CA is
$$
y = \frac{3}{4}(x-2)
$$

The area of the triangle is sum of the following areas

(i) The area of the region between the lines $AB, AC, x = 2, x = 4$ (ii) The area of the region between the lines $BC, AC, x = 4, x = 6$

Hence, the area of the triangle is

$$
A = \int_{2}^{4} (AB - AC) dx + \int_{4}^{6} (BC - AC) dx
$$

=
$$
\int_{2}^{4} \left(\frac{5}{2}(x - 2) - \frac{3}{4}(x - 2)\right) dx + \int_{4}^{6} \left((-x + 9) - \frac{3}{4}(x - 2)\right) dx
$$

=
$$
\frac{5}{2} \int_{2}^{4} (x - 2) dx - \frac{3}{4} \int_{2}^{6} (x - 2) dx + \int_{4}^{6} (-x + 9) dx
$$

=
$$
\frac{5}{2} \left(\frac{x^{2}}{2} - 2x\right)_{2}^{4} - \frac{3}{4} \left(\frac{x^{2}}{2} - 2x\right)_{2}^{6} + \left(-\frac{x^{2}}{2} + 9x\right)_{4}^{6}
$$

$$
=\frac{5}{2}(2) - \frac{3}{4}(8) + (-18 + 54 + 8 - 36)
$$

= 5 - 6 + 8
= 7

Therefore, the area of the triangle formed by the points $A(2,0), B(4,5), C(6,3)$ is 7 square units.

14. Using the method of integration find the area of the region bounded by the lines $2x + y = 4, 3x - 2y = 6, x - 3y + 5 = 0$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

the Lines
$$
x = a, x = b
$$
 is $\int_a^b (f(x) - g(x)) dx$.

The vertices of triangle are

Equation of *AB* is $y = -2x + 4$

Equation of *BC* is
$$
y = \frac{x+5}{3}
$$

Equation of CA is
$$
y = \frac{3x - 6}{2}
$$

The area of the triangle is sum of the following areas

- (i) The area of the region between the lines $AB, BC, x = 1, x = 2$
- (ii) The area of the region between the lines $BC, AC, x = 2, x = 4$

Hence, the area of the triangle is

$$
A = \int_{1}^{2} (BC - AB) dx + \int_{2}^{4} (BC - AC) dx
$$

\n
$$
= \int_{1}^{2} \left(\frac{1}{3}(x+5) - (-2x+4)\right) dx + \int_{2}^{4} \left(\frac{1}{3}(x+5) - \left(\frac{3x-6}{2}\right)\right) dx
$$

\n
$$
= \frac{1}{3} \int_{1}^{4} (x+5) dx + \int_{1}^{2} (2x-4) dx - \frac{3}{2} \int_{2}^{4} (x-2) dx
$$

\n
$$
= \frac{1}{3} \left(\frac{x^2}{2} + 5x\right)_{1}^{4} + \left(x^2 - 4x\right)_{1}^{2} - \frac{3}{2} \left(\frac{x^2}{2} - 2x\right)_{2}^{4}
$$

\n
$$
= \frac{1}{3} \left(28 - \frac{11}{2}\right) + \left(-4 + 3\right) - \frac{3}{2} \left(2\right)
$$

\n
$$
= \frac{15}{2} - 1 - 3
$$

\n
$$
= \frac{7}{2}
$$

Therefore, the area of the region bounded by the lines $2x + y = 4$, $3x - 2y = 6$ and $x-3y+5=0$ is $\frac{7}{2}$ square units

15. Find the area of the region $\{(x, y) : y^2 \le 4x \text{ and } 4x^2 + 4y^2 \le 9\}$

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

the Lines
$$
x = a, x = b
$$
 is $\left| \int_a^b (f(x) - g(x)) dx \right|$.

Point of intersection of $y^2 = 4x, 4x^2 + 4y^2 = 9$

$$
4x^{2} + 4(4x) = 9
$$

$$
4x^{2} + 16x - 9 = 0
$$

$$
4x^{2} + 18x - 2x - 9 = 0
$$

$$
2x(2x+9) - 1(2x+9) = 0
$$

$$
(2x-1)(2x+9) = 0
$$

Observing the figure both curves intersect at $x = \frac{1}{2}$ $x=\frac{1}{2}$

The area of the shaded region is sum of the following areas

- (i) Two times the area of the region bounded by the curve $y^2 = 4x$, lines $x = 0, x = \frac{1}{2}$ and $x -$ axis in the first quadrant.
- (ii) Two times the area of the region bounded by the curve $4x^2 + 4y^2 = 9$, lines $x = \frac{1}{2}, x = \frac{3}{2}$ $x = \frac{1}{2}$, $x = \frac{3}{2}$ and $x -$ axis in the first quadrant.

Hence, the area of the shaded region is 1 3 \int_{0}^{2} \sqrt{n} , \int_{0}^{2} $\frac{1}{2}$ 0 1 2 $2\int_{0}^{2} 2\sqrt{x} dx + \int_{0}^{2} 1\sqrt{9-4} dx$ 2 $A = 2 \mid 2\sqrt{x} dx + 1 - \sqrt{9} - 4x^2 dx$ $\begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix}$ $=2\left[\int_{0}^{2}2\sqrt{x}dx+\int_{0}^{2}\frac{1}{2}\sqrt{9-4x^{2}}dx\right]$ $\left[\begin{array}{ccc} 0 & & & \frac{1}{2} \end{array}\right]$ $\int 2\sqrt{x}dx + \int$

$$
A = 2\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} 2\sqrt{x} dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9 - 4x^2} dx
$$

\n
$$
= 2\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} 2x^{\frac{1}{2}} dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{3^2 - (2x)^2} dx
$$

\n
$$
= 2\begin{bmatrix} 2\left(\frac{2}{3}x^{\frac{3}{2}}\right)^{\frac{1}{2}} + \frac{1}{4}\left(\frac{2x}{2}\sqrt{9 - 4x^2} + \frac{9}{2}\sin^{-1}\left(\frac{2x}{3}\right)\right)^{\frac{3}{2}} \end{bmatrix}
$$

\n
$$
= 2\left[2\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) + \frac{1}{4}\left(\frac{9}{2}\left(\frac{\pi}{2}\right) - \frac{1}{2}2\sqrt{2} - \frac{9}{2}\sin^{-1}\frac{1}{3}\right) \right]
$$

\n
$$
= 2\left(\frac{2\sqrt{2}}{3} + \frac{9\pi}{16} - \sqrt{2} - \frac{9}{8}\sin^{-1}\frac{1}{3}\right)
$$

\n
$$
= \frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) + \frac{1}{3\sqrt{2}}
$$

Therefore, the area of the region $\{(x, y): y^2 \le 4x \text{ and } 4x^2 + 4y^2 \le 9\}$ is

$$
\frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \left(\frac{1}{3}\right) + \frac{1}{3\sqrt{2}}
$$

16. Area bounded by the curve $y = x^3$, the $x -$ axis and ordinates $x = -2$ and $x = 1$ is in square units

1)
$$
-9
$$
 (2) $-\frac{15}{4}$ (3) $\frac{15}{4}$ (4) $\frac{17}{4}$

Solution:

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$ axis is $|| f(x)$ *b* $\int_a^b f(x) dx$.

The area of the shaded region is sum of areas of the regions bounded by the curve $y = x³$, the line $x = 0, x = 1$ and $x - 2$ axis in the first quadrant and bounded by the curve $y = -x^3$, the line $x = 0$, $x = -2$ and $x -$ axis in the third quadrant

Hence, the required area is 0 1 3 3 2 0 $A = \frac{1 - x^3}{x + \frac{1}{x^3}}$ $=\int_{-2}^{-2} dx + \int_{0}^{3} dx$ 0 1 $3 \cdot 1 \cdot 1 \cdot 3$ 2 0 $4 \lambda^0$ ($4 \lambda^1$ 4 \int_{-2} (4 \int_{0} 16 1 $= - + -$
4 4 $=\frac{17}{4}$ square units $A = \int -x^3 dx + \int x^3 dx$ *x x* т, $=\int -x^3 dx + \int$ $\left(x^4\right)^0$ $\left(x^4\right)$ $=\left(-\frac{1}{4}\right)_{-2}+\left(\frac{1}{4}\right)$

Therefore, the option 4 is correct

17. Area bounded by the curve $y = x|x|$, $x -$ axis and the ordinates $x = -1$ and $x = 1$ is given by in square units.

1) 0
$$
2) \frac{1}{3}
$$
 3) $\frac{2}{3}$ 4) $\frac{4}{3}$

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y = f(x)$, the lines $x = a, x = b$ and $x - b$ axis is $|| f(x)$ *b* $\int_a^b f(x) dx$.

The given equation of the curve $y = x|x|$ can be rewrite as

$$
y = \begin{cases} x^2 & x \ge 0 \\ -x^2 & x < 0 \end{cases}
$$

The area of the shaded region is two times the area of the region bounded by the curve $y = x^2$, the line $x = 0$, $x = 1$ and $x -$ axis.

Hence, the required area is 2 $A = 2\int\limits_0^1 x^2 dx$ 1 2 $3 \lambda^1$ 0 $A = 2\int x^2 dx$ 2 3 $=\frac{2}{3}$ square units $=2\left(\frac{x^3}{3}\right)$

Therefore, the option 3 is correct.

18. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$

1)
$$
\frac{4}{3}(4\pi - \sqrt{3})
$$
 2) $\frac{4}{3}(4\pi + \sqrt{3})$ 3) $\frac{4}{3}(8\pi - \sqrt{3})$ 4) $\frac{4}{3}(8\pi + \sqrt{3})$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

the Lines
$$
x = a, x = b
$$
 is
$$
\int_{a}^{b} (f(x) - g(x)) dx
$$

The points of intersection of the circle $x^2 + y^2 = 16$ and the parabola $y^2 = 6x$

 $x(x+8)-2(x+8)=0$ $(x-2)(x+8)=0$ $x^2 + 6x - 16 = 0$ $x^2 + 8x - 2x - 16 = 0$

It implies that $x = 2$ or $x = -8$

Observing the graph, the point of intersection of circle and parabola is $x = 2$ The area of the shaded region is sum of the area of the semicircle $x^2 + y^2 = 16$ and two times the area of the region bounded by the circle $y = \sqrt{16 - x^2}$, parabola $y = \sqrt{6x}$, the lines $x = 0, x = 2, x -$ axis in the first quadrant.

Hence, the required area is
$$
A = 8\pi + 2\int_{0}^{2} \sqrt{16 - x^2} - \sqrt{6x} dx
$$

\n
$$
A = 8\pi + 2\int_{0}^{2} \sqrt{16 - x^2} - \sqrt{6x} dx
$$
\n
$$
= 8\pi + 2\left(\frac{x}{2}\sqrt{16 - x^2} + \frac{16}{2}\sin^{-1}\left(\frac{x}{4}\right) - \sqrt{6}\left(\frac{2}{3}\right)x^{\frac{3}{2}}\right)_{0}^{2}
$$
\n
$$
= 8\pi + 2\left(\sqrt{12} + 8 \cdot \frac{\pi}{6} - \sqrt{6}\left(\frac{2}{3}\right)2\sqrt{2}\right)
$$
\n
$$
= 8\pi + 2\left(2\sqrt{3} + \frac{4\pi}{3} - \frac{8\sqrt{3}}{3}\right)
$$
\n
$$
= 2\left(\frac{16\pi}{3} - \frac{2\sqrt{3}}{3}\right)
$$
\n
$$
= \frac{4}{3}\left(8\pi - \sqrt{3}\right)
$$

19. The area bounded by the $y - axis$, $y = cos x$, $y = sin x$ when 0 $\leq x \leq \frac{\pi}{2}$

1)
$$
2(\sqrt{2}-1)
$$
 2) $(\sqrt{2}-1)$ 3) $(\sqrt{2}+1)$ 4) $\sqrt{2}$

Therefore, the option 3 is correct.

The area of the region bounded between two curves $y = f(x)$ and $y = g(x)$ between

the Lines
$$
x = a, x = b
$$
 is $\left| \int_a^b (f(x) - g(x)) dx \right|$.

The area of the shaded region is the area of the region between the two curves

 $y = \sin x$ and $y = \cos x$, lines $x = 0$, $x = \frac{\pi}{4}$ in the first quadrant.

π

Hence, the required area is $A = \int_{0}^{4} (\cos x - \sin x)$ 0 $A = \int (\cos x - \sin x) dx$ $=\int (\cos x -$

$$
A = \int_{0}^{\frac{\pi}{4}} (\cos x - \sin x) dx
$$

= $(\sin x + \cos x)^{\frac{\pi}{4}}$
= $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$
= $(\sqrt{2} - 1)$ square units

Therefore, the option 2 is correct.