Learn

Chapter: 8. Applications of Integrals

Exercise 8.1

1. Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x - axis in the first quadrant.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the region bounded by the curve $y^{2}=x$, the lines $x=1, x=4$ and the $x-$ axis in the first quadrant.

Hence, the required area is $A=\int_{1}^{4} \sqrt{x} d x$

$$
\begin{aligned}
A & =\int_{1}^{4} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \quad \cdot \int x^{n} d x=\frac{x^{n+1}}{n+1} ; n \neq-1 \\
& =\frac{2}{3}(8-1) \\
& =\frac{14}{3} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the $x-$ axis in the first quadrant is $\frac{14}{3}$ square units
2. Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the region bounded by the curve $y^{2}=9 x$, the lines $x=2, x=4$ and the x-axis in the first quadrant.
Hence, the required area is $A=\int_{2}^{4} 3 \sqrt{x} d x$

$$
\begin{aligned}
A & =3 \int_{2}^{4} \sqrt{x} d x \\
& =3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =3\left(\frac{2}{3}\right)\left(8-2^{\frac{3}{2}}\right) \\
& =(16-4 \sqrt{2}) \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y^{2}=9 x$ and the lines $x=1, x=4$ and the $x-$ axis in the first quadrant is $(16-4 \sqrt{2})$ square units
3. Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.

Solution: The required area of the region is the shaded region in the following figure

The area of the shaded region is the region bounded by the curve $x^{2}=4 y$, the lines $y=2, y=4$ and the y - axis in the first quadrant.
Hence, the required area is $A=\int_{2}^{4} 2 \sqrt{y} d y$

$$
\begin{aligned}
A & =2 \int_{2}^{4} \sqrt{y} d y \\
& =2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left(\frac{2}{3}\right)\left(8-2^{\frac{3}{2}}\right) \\
& =\frac{32-8 \sqrt{2}}{3} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $x^{2}=4 y$, the lines $y=2, y=4$ and the y - axis in the first quadrant is $\frac{32-8 \sqrt{2}}{3}$ square units
4. Find the area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The given equation $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ can be rewrite as below

$$
\begin{aligned}
\frac{y^{2}}{9} & =1-\frac{x^{2}}{16} \\
y^{2} & =9\left(1-\frac{x^{2}}{16}\right) \\
y & =\frac{3}{4} \sqrt{16-x^{2}}
\end{aligned}
$$

The area of the shaded region is 4 times the region bounded by the curve $y=\frac{3}{4} \sqrt{\left(16-x^{2}\right)}$, the lines $x=0, x=4$ and the $x-$ axis in the first quadrant.
Hence, the required area is $A=4\left(\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x\right)$

$$
\begin{aligned}
A & =3 \int_{0}^{4} \sqrt{16-x^{2}} d x \\
& =3\left\{\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1}\left(\frac{x}{4}\right)\right\}_{0}^{4} \\
& =3\left(8 \cdot \frac{\pi}{2}\right) \\
& =12 \pi
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is 12π square units
5. Find the area of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The given equation $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ can be rewrite as below

$$
\begin{aligned}
\frac{y^{2}}{9} & =1-\frac{x^{2}}{4} \\
y^{2} & =9\left(1-\frac{x^{2}}{4}\right) \\
y & =\frac{3}{2} \sqrt{4-x^{2}}
\end{aligned}
$$

The area of the shaded region is 4 times the region bounded by the curve $y=\frac{3}{2} \sqrt{\left(4-x^{2}\right)}$, the lines $x=0, x=4$ and the x-axis in the first quadrant.
Hence, the required area is $A=4\left(\frac{3}{2} \int_{0}^{4} \sqrt{4-x^{2}} d x\right)$

$$
\begin{aligned}
A & =6 \int_{0}^{4} \sqrt{4-x^{2}} d x \\
& =6\left\{\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right\}_{0}^{2} \\
& =6\left(2 \cdot \frac{\pi}{2}\right) \\
& =6 \pi
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ is 6π square units
6. Find the area of the region in the first quadrant enclosed by x - axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\int_{a}^{b} f(x) d x \mid$.
The area of the shaded region is sum of the following regions
(i) The area of the shaded region bounded by the line $x=\sqrt{3} y$, lines $x=0, x=\sqrt{3}$ and the x-axis in the first quadrant, and it is equal to $\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} x d x$

Learn
(ii) The area of the shaded region bounded by the curve $y=\sqrt{4-x^{2}}$, lines $x=\sqrt{3}, x=2$ and the $x-$ axis in the first quadrant, and it is equal to $\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
Hence, the required area is

$$
\begin{aligned}
& A=\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3}} x d x+\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{1}{\sqrt{3}}\left(\frac{x^{2}}{2}\right)_{0}^{\sqrt{3}}+\left(\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)\right)_{\sqrt{3}}^{2} \\
& =\frac{3}{2 \sqrt{3}}+2\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{2}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\sqrt{3}}{2}+\pi-\frac{\sqrt{3}}{2}-2\left(\frac{\pi}{3}\right) \\
& =\frac{\pi}{3}
\end{aligned}
$$

Therefore, the area of the region in the first quadrant enclosed by x - axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$ is $\frac{\pi}{3}$ square units
7. Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The area of the shaded region is two times the area of the region bounded by the curve $y=\sqrt{a^{2}-x^{2}}$, the lines $x=\frac{a}{\sqrt{2}}, x=a$ and $x-$ axis in the first quadrant.
Hence, the required area is

$$
\begin{aligned}
& A=2 \int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =2\left(\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)\right)_{\frac{a}{\sqrt{2}}}^{a} \\
& =2\left(\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-\frac{a^{2}}{2}-\frac{a^{2}}{2}\left(\frac{\pi}{4}\right)\right) \\
& =2\left(\left(\frac{\pi a^{2}}{8}\right)-\frac{a^{2}}{2}\right) \\
& =\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)
\end{aligned}
$$

Therefore, the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$ is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ square units
8. The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$ then find the value of a

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
Suppose that the line $x=a$ divide the area between $x=y^{2}$ and $x=4$

Hence,

$$
\begin{aligned}
\int_{0}^{a} \sqrt{x} d x & =\frac{1}{2} \int_{0}^{4} \sqrt{x} d x \\
{\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a} } & =\frac{1}{2}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4} \\
\frac{2}{3} a^{\frac{3}{2}} & =\frac{1}{2}\left(\frac{2}{3}\right)(8) \\
a^{\frac{3}{2}} & =4 \\
a & =4^{\frac{2}{3}}
\end{aligned}
$$

Therefore, the value of a is $4^{\frac{2}{3}}$, such that the line $x=4^{\frac{2}{3}}$ divide the region into two equal parts of the region bounded by $x=y^{2}$, the line $x=4$
9. Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The area of the shaded region is two times the area of the region bounded by the curve $y=x^{2}$, the line $y=x$, the lines $x=0, x=1$ and x-axis in the first quadrant.

Hence, the required area is $A=2 \int_{0}^{1}\left(x-x^{2}\right) d x$

$$
\begin{aligned}
A & =2 \int\left(x-x^{2}\right) d x \\
& =2\left(\frac{x^{2}}{2}\right)-2\left(\frac{x^{3}}{3}\right)+C \\
& =\left(x^{2}-\frac{2 x^{3}}{3}\right)_{0}^{1} \\
& =1-\frac{2}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{2}$ and the lines $y=|x|$ is $\frac{1}{3}$ square units
10. Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$

Solution:
The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

Points of intersection of the curve $x^{2}=4 y$ and the line $x=4 y-2$

$$
\begin{aligned}
x^{2} & =x+2 \\
x^{2}-x-2 & =0 \\
x^{2}-2 x+x-2 & =0 \\
x(x-2)+1(x-2) & =0 \\
(x+1)(x-2) & =0
\end{aligned}
$$

Hence, the points of intersection of both curve and the line are $x=-1, x=2$

The area of the shaded region is the area of the region bounded by the curve $x^{2}=4 y$, the line $x=4 y-2$, the lines $x=-1, x=2$ and x - axis in the first quadrant.

Hence, the required area is $A=\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x$

$$
\begin{aligned}
A & =\int_{-1}^{2}\left(\frac{x+2}{4}-\frac{x^{2}}{4}\right) d x \\
& =\frac{1}{4} \int_{-1}^{2}\left(x+2-x^{2}\right) d x \\
& =\frac{1}{4}\left(\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right)_{-1}^{2} \\
& =\frac{1}{4}\left(2+4-\frac{8}{3}-\frac{1}{2}+2-\frac{1}{3}\right) \\
& =\frac{1}{4}\left(\frac{9}{2}\right) \\
& =\frac{9}{8} \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$ is $\frac{9}{8}$ square units
11. Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $x=f(y)$, the lines $y=a, y=b$ and $y-$ axis is $\left|\int_{a}^{b} f(y) d y\right|$.

Points of intersection of the curve $y^{2}=4 x$ and the line $x=3$

$$
y^{2}=12 \Rightarrow y= \pm 2 \sqrt{3}
$$

The area of the shaded region is the area of the region bounded by the curve $x=\frac{y^{2}}{4}$, the line $y=2 \sqrt{3}, y=-2 \sqrt{3}$ and y - axis.

Hence, the required area is $A=\int_{-2 \sqrt{3}}^{2 \sqrt{3}}\left(3-\frac{y^{2}}{4}\right) d x$

$$
\begin{aligned}
A & =\int_{-2 \sqrt{3}}^{2 \sqrt{3}}\left(3-\frac{y^{2}}{4}\right) d x \\
& =\left(3 y-\frac{y^{3}}{12}\right)_{-2 \sqrt{3}}^{2 \sqrt{3}} \\
& =6 \sqrt{3}-\frac{24 \sqrt{3}}{12}+6 \sqrt{3}-\frac{24 \sqrt{3}}{12} \\
& =12 \sqrt{3}-4 \sqrt{3} \\
& =8 \sqrt{3}
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$ is $8 \sqrt{3}$ square units
12. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is in square units

1) π
2) $\frac{\pi}{2}$
3) $\frac{\pi}{3}$
4) $\frac{\pi}{4}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

The area of the shaded region is the area of the region bounded by the curve $y=\sqrt{4-x^{2}}$, the line $x=0, x=2$ and $x-$ axis in the first quadrant.

Hence, the required area is $A=\int_{0}^{2} \sqrt{4-x^{2}} d x$

$$
\begin{aligned}
A & =\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\left(\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{2} \\
& =\left(2 \sin ^{-1}(1)\right) \\
& =2\left(\frac{\pi}{2}\right) \\
& =\pi
\end{aligned}
$$

Therefore, the option 1 is correct
13. Area of the region bounded by the curve $y^{2}=4 x, y$ - axis and the line $y=3$ in square units.

Learn

1) 2
2) $\frac{9}{4}$
3) $\frac{9}{3}$
4) $\frac{9}{2}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $x=f(y)$, the lines $y=a, y=b$ and $y-$ axis is $\left|\int_{a}^{b} f(y) d y\right|$.

The area of the shaded region is the area of the region bounded by the curve $x=\frac{y^{2}}{4}$, the line $y=0, y=3$ and y - axis.

Hence, the required area is $A=\int_{0}^{3}\left(\frac{y^{2}}{4}\right) d x$

$$
\begin{aligned}
A & =\int_{0}^{3}\left(\frac{y^{2}}{4}\right) d x \\
& =\left(\frac{y^{3}}{12}\right)_{0}^{3} \\
& =\frac{27}{12} \\
& =\frac{9}{4} \text { square units }
\end{aligned}
$$

Therefore, the option 2 is correct.

