Chapter: 8. Applications of Integrals

Exercise 8.2

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$

The point of intersection of the circle $4 x^{2}+4 y^{2}=9$ and the curve $x^{2}=4 y$

$$
\begin{aligned}
4 x^{2}+\left(\frac{x^{2}}{2}\right)^{2} & =9 \\
16 x^{2}+x^{4} & =36 \\
x^{4}+16 x^{2}-36 & =0 \\
x^{4}+18 x^{2}-2 x^{2}-36 & =0 \\
x^{2}\left(x^{2}+18\right)-2\left(x^{2}+18\right) & =0 \\
\left(x^{2}-2\right)\left(x^{2}+18\right) & =0
\end{aligned}
$$

Hence, $x=-\sqrt{2}, \sqrt{2}$
The area of the shaded region is the region bounded by the curve $y=\frac{1}{2} \sqrt{9-4 x^{2}}, y=\frac{x^{2}}{4}$, the lines $x=-\sqrt{2}, x=\sqrt{2}$ and the x-axis

Hence, the required area is $A=\int_{-\sqrt{2}}^{\sqrt{2}}\left(\frac{1}{2} \sqrt{9-4 x^{2}}-\frac{x^{2}}{4}\right) d x$

Hence,

$$
\begin{aligned}
& A=\int_{-\sqrt{2}}^{\sqrt{2}}\left(\frac{1}{2} \sqrt{9-4 x^{2}}-\frac{x^{2}}{4}\right) d x \\
& =2\left(\frac{1}{4}\left(\frac{2 x}{2} \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 x}{3}\right)-\frac{x^{3}}{12}\right)_{0}^{\sqrt{2}} \\
& =2\left(\frac{1}{4}\left(\frac{2 \sqrt{2}}{2}+\frac{9}{2} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)\right)-\frac{2 \sqrt{2}}{12}\right) \\
& =\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{3} \\
& =\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{\sqrt{2}}{6}
\end{aligned}
$$

Therefore area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$
is $\frac{9}{4} \sin ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)+\frac{\sqrt{2}}{6}$ square units
2. Find the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.

Points of intersection of the both curves

$$
\begin{aligned}
(x-1)^{2}+1-x^{2} & =1 \\
(x-1)^{2} & =x^{2} \\
x-1 & =-x \\
2 x & =1 \\
x & =\frac{1}{2}
\end{aligned}
$$

Both circles intersect at $x=\frac{1}{2}$
The area of the shaded region is sum of the following two regions
(i) Two times the area of the region bounded by $y=\sqrt{1-(x-1)^{2}}$, the lines $x=0, x=\frac{1}{2}$ and x - axis in the first quadrant.
(ii) Two times the area of the region bounded by the $y=\sqrt{1-x^{2}}$, the lines $x=\frac{1}{2}, x=1$ and x - axis in the first quadrant.
Hence, the required area is $A=2\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right]$

$$
\begin{aligned}
& A=2\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right] \\
& =2\left[\left[\frac{x-1}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1}(x)\right]_{\frac{1}{2}}^{1}\right] \\
& =2\left[\left[-\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)-\frac{1}{2}\left(\sin ^{-1}(-1)\right)\right]\right. \\
& \left.\quad+\left[\frac{1}{2} \sin ^{-1}(1)-\frac{1}{4}\left(\frac{\sqrt{3}}{2}\right)-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right]\right] \\
& =4\left[-\frac{1}{4} \frac{\sqrt{3}}{2}-\frac{\pi}{12}+\frac{\pi}{4}\right] \\
& =\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Therefore, the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$ $\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ square units

Learn
3. Find the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3$.

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded by two curves $y=f(x)$ and $y=g(x)$ the lines $x=a, x=b$ is $\int_{a}^{b}|f(x)-g(x)| d x$.

The area of the shaded region is the region bounded by the curve $y=x^{2}+2$, the lines $y=x, x=0, x=3$ and the x - axis in the first quadrant.
Hence, the required area is $A=\int_{0}^{3}\left(x^{2}+2-x\right) d x$

$$
\begin{aligned}
A & =\int_{0}^{3}\left(x^{2}+2-x\right) d x \\
& =\left[\frac{x^{3}}{3}+2 x-\frac{x^{2}}{2}\right]_{0}^{3} \\
& =9+6-\frac{9}{2} \\
& =\frac{21}{2}
\end{aligned}
$$

Therefore, the area of the region bounded by the curve $y=x^{2}+2, y=x, x=0$ and $x=3 . \frac{21}{2}$ square units
4. Using the integration, find the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3),(3,2)$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the
Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.
The equations of the sides of the triangle are as below

$$
\text { Equation of } A B \text { is } y=\frac{3}{2}(x+1)
$$

Equation of $B C$ is $y=\frac{-x+7}{2}$
Equation of $C A$ is $y=\frac{1}{2}(x+1)$

The area of the triangle is sum of the following areas
(i) The area of the region between the lines $A B, A C, x=-1, x=1$
(ii) The area of the region between the lines $B C, A C, x=1, x=3$

Hence, the area of the triangle is

Learn

$$
\begin{aligned}
A & =\int_{-1}^{1}(A B-A C) d x+\int_{1}^{3}(B C-A C) d x \\
& =\int_{-1}^{1} \frac{3}{2}(x+1)-\frac{1}{2}(x+1) d x+\int_{1}^{3}\left(\frac{1}{2}(-x+7)-\frac{1}{2}(x+1)\right) d x \\
& =\int_{-1}^{1}(x+1) d x+\frac{1}{2} \int_{1}^{3}(-2 x+6) d x \\
& =\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}+\frac{1}{2}\left[-x^{2}+6 x\right]_{1}^{3} \\
& =\frac{1}{2}+1-\frac{1}{2}+1+\frac{1}{2}(9+1-6) \\
& =2+2 \\
& =4
\end{aligned}
$$

Therefore, the area of the triangle formed by the points $(-1,0),(1,3),(3,2)$ is 4 square units.
5. Use the integration find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$

Solution: The required area of the region is the shaded region in the following figure

The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The vertices of triangle are
Equation of $A B$ is $y=2 x+1$

Equation of $B C$ is $x=4$
Equation of $C A$ is $y=3 x+1$
The area of the triangle is the area of the region between the lines $A B, A C, x=0, x=4$

Hence, the area of the triangle is

$$
\begin{aligned}
A & =\int_{0}^{4}(A C-A B) d x \\
& =\int_{0}^{4}(3 x+1)-(2 x+1) d x \\
& =\int_{0}^{4} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{4} \\
& =8 \text { square units }
\end{aligned}
$$

Therefore, the area of the region bounded by the lines $y=2 x+1, y=3 x+1$ and $x=4$ is 8 square units
6. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is

1) $2(\pi-2)$
2) $(\pi-2)$
3) $2 \pi-1$
4) $2(\pi+2)$

Solution: The required area of the region is the shaded region in the following figure

Learn
The area of the region bounded between two curves $y=f(x)$ and $y=g(x)$ between the Lines $x=a, x=b$ is $\left|\int_{a}^{b}(f(x)-g(x)) d x\right|$.

The area of the shaded region is area of the region bounded by the curve $y=\sqrt{4-x^{2}}$ and $y=2-x$, lines $x=0, x=2$ in the first quadrant.
Hence, the required area is

$$
\begin{aligned}
A & =\int_{0}^{2} \sqrt{4-x^{2}}-(2-x) d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1}\left(\frac{x}{2}\right)-2 x+\frac{x^{2}}{2}\right]_{0}^{2} \\
& =2 \sin ^{-1}(1)-4+2 \\
& =\pi-2
\end{aligned}
$$

Therefore, option 2 is correct
7. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is

1) $\frac{2}{3}$
2) $\frac{1}{3}$
3) $\frac{1}{4}$
4) $\frac{3}{4}$

Solution:

The required area of the region is the shaded region in the following figure

The area of the region bounded by the curve $y=f(x)$, the lines $x=a, x=b$ and $x-$ axis is $\left|\int_{a}^{b} f(x) d x\right|$.
The point of intersection of the curve $y^{2}=4 x$ and the line $y=2 x$

$$
\begin{aligned}
(2 x)^{2} & =4 x \\
4 x^{2} & =4 x \\
x(x-1) & =0 \\
x & =0 \text { or } x=1
\end{aligned}
$$

The area of the shaded region is the area of the region bounded by the curves $y^{2}=4 x$ and the line $y=2 x$, lines $x=0, x=1$ and x-axis in the first quadrant.

Hence, the required area is

$$
\begin{aligned}
A & =\int_{0}^{1}(2 \sqrt{x}-2 x) d x \\
& =2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =2\left(\frac{2}{3}-\frac{1}{2}\right) \\
& =2\left(\frac{1}{6}\right) \\
& =\frac{1}{3}
\end{aligned}
$$

Therefore, option 2 is correct

