Chapter 12: Introduction to Three Dimensional Geometry

Example 1

In Fig 12.3, if P is $(2,4,5)$, find the coordinates of F.

Solution

From figure,

At the point F the distance measured at OY is zero.
Hence, the coordinates of F will be $(2,0,5)$.

Example 2

Find the octant in which the points $(-3,1,2)$ and $(-3,1,-2)$ lie.

Solution

From the Table 12.1,
At the point $(-3,1,2)$
So, x says negative, y says positive and z says positive
So, it lies in second octant
At the point $(-3,1,-2)$
So, x says negative, y says positive, and z says negative
So, it lies in sixth octant.

EXERCISE 12.1

1. A point is on the x-axis. What are its y-coordinate and z-coordinates?

Solution

If a point is on the x axis its y and z coordinates are 0
If a point in three-dimensional geometry is on the x-axis, then the y and z-coordinates of the points are zero.

Coordinates of any point in x-axis is $(x, 0,0)$

2. A point is in the $X Z$-plane. What can you say about its y-coordinate?

Solution

At any point on $\mathrm{XZ}-$ plane is $(x, 0, z)$.
Hence, y-coordinate of the point is zero.
3. Name the octants in which the following points lie:
$(1,2,3),(4,-2,3),(4,-2,-5),(4,2,-5),(-4,2,-5),(-4,2,5)$
$(-3,-1,6)(-2,-4,-7)$

Solution

Table which represents octants

Octants	I	II	III	IV	V	VI	VII	VIII
x	+	-	-	+	+	-	-	+
y	+	+	-	-	+	+	-	-
z	+	+	+	+	-	-	-	-

(i) For the point $(1,2,3)$
$x=1>0$ is measured along OX
$y=2>0$ is measured along OY
$z=3>0$ is measured along OZ
Hence the point $(1,2,3)$ lies in the octant XOYZ,
That is in octant I.
(ii) For the point $(4,-2,3)$
$x=4>0$ is measured along OX
$y=-2<0$ is measured along $O Y$
$z=3>0$ is measured along OZ
Hence the point $(4,-2,3)$ lies in the octant XOYZ,
That is in octant IV.
(iii) For the point $(4,-2,-5)$
$x=4>0$ is measured along OX

Infinity

 Learn$y=-2<0$ is measured along OY^{\prime}
$z=-5<0$ is measured along OZ^{\prime}
Hence the point $(4,-2,-5)$ lies in the octant XOYZ',
That is in octant VIII.
(iv) For the point $(4,2,-5)$
$x=4>0$ is measured along OX
$y=2>0$ is measured along OY
$z=-5<0$ is measured along OZ
Hence the point $(4,2,-5)$ lies in the octant XOYZ,
That is in octant V .
(v) For the point $(-4,2,-5)$
$x=-4<0$ is measured along OX
$y=2>0$ is measured along OY
$z=-5<0$ is measured along OZ
Hence the point $(-4,2,-5)$ lies in the octant XOYZ,
That is in octant VI.
(vi) For the point $(-4,2,5)$
$x=-4<0$ is measured along OX
$y=2>0$ is measured along OY
$z=5>0$ is measured along OZ
Hence the point $(-4,2,5)$ lies in the octant XOYZ,
That is in octant II.
(vii) For the point $(-3,-1,6)$
$x=-3<0$ is measured along OX
$y=-1<0$ is measured along OY^{\prime}
$z=6>0$ is measured along OZ
Hence the point $(-3,-1,6)$ lies in the octant $\mathrm{X}^{\prime} \mathrm{OY}^{\prime} \mathrm{Z}$,
That is, in octant III.

Infinity

 Learn(viii) For the point $(2,-4,-7)$
$x=2>0$ is measured along OX
$y=-4<0$ is measured along OY^{\prime}
$z=-7<0$ is measured along OZ^{\prime}
Hence the point $(2,-4,-7)$ lies in the octant $\mathrm{XOY}^{\prime} Z^{\prime}$,
That is in octant VIII.

4. Fill in the blanks:

(i) The x-axis and y-axis taken together determine a plane known as
(ii) The coordinates of points in the XY-plane are of the form
(iii) Coordinate planes divide the space into octants.

Solution

(i) The x-axis and y-axis taken together determine a plane known as $x y$ - plane.
(ii) The coordinates of points in the XY- plane are of the form $(x, y, 0)$.
(iii) Coordinate planes divide the space into eight octants.

Example 3

Find the distance between the points $\mathrm{P}(1,-3,4)$ and $\mathrm{Q}(-4,1,2)$.

Solution

The distance PQ between the points $\mathrm{P}(1,-3,4)$ and $\mathrm{Q}(-4,1,2)$ is
The coordinates of points
$x_{1}=1, y_{1}=-3, z_{1}=4$
$x_{2}=-4, y_{2}=1, z_{2}=2$
Distance $\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
Substitute the values
$\mathrm{PQ}=\sqrt{(-4-1)^{2}+(1+3)^{2}+(2-4)^{2}}$
$=\sqrt{25+16+4}$
$=\sqrt{45}$

Learn
$=3 \sqrt{5}$ units
The distance between the points is $3 \sqrt{5}$ units.

Example 4

Show that the points $P(-2,3,5), Q(1,2,3)$ and $R(7,0,-1)$ are collinear.

Solution

The points are said to be collinear if they lie on a line.
Let first calculate distance between the 3 points
It is PQ, QR and PR
Calculating PQ
$\mathrm{P}(-2,3,5)$ and $\mathrm{Q}(1,2,3)$
$\mathrm{R}(7,0,-1)$
Now,
$\mathrm{PQ}=\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}}$
$=\sqrt{9+1+4}$
$=\sqrt{14}$
Same as distance of QR
$\mathrm{QR}=\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}}$
$=\sqrt{36+4+16}$
$=\sqrt{56}$
$=2 \sqrt{14}$
And
Distance of PR
$\mathrm{PR}=\sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}}$
$=\sqrt{81+9+36}$
$=\sqrt{126}$
$=3 \sqrt{14}$
So, $\mathrm{PQ}+\mathrm{QR}=\mathrm{PR}$.
Therefore, P, Q and R are collinear.

Learn

Example 5

Are the points A $(3,6,9)$, B $(10,20,30)$ and $\mathbf{C}(25,-41,5)$, the vertices of a right angled triangle?

Solution

Let's first calculate distances AB, BC and $\mathrm{AC} \&$ then apply Pythagoras theorem
To check whether it is right triangle
Calculating AB
A(3,6,9)
B($10,20,30$)
C (25,-41,5)
Distance formula $A B=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
The coordinates of points A and B
Here, $x_{1}=3, y_{1}=6, z_{1}=9$
$x_{2}=10, y_{2}=20, z_{2}=30$
Substitute the values in distance formula
$A B=\sqrt{(10-3)^{2}+(20-6)^{2}+(30-9)^{2}}$
$=\sqrt{(7)^{2}+(14)^{2}+(21)^{2}}$
$=\sqrt{49+196+441}$
$=\sqrt{686}$
$\mathrm{AB}^{2}=686$
Similarly
Use distance formula
$\mathrm{BC}^{2}=(25-10)^{2}+(-41-20)^{2}+(5-30)^{2}$
$=225+3721+625$
$=4571$
And, similarly

Infinity
Learn
$\mathrm{CA}^{2}=(3-25)^{2}+(6+41)^{2}+(9-5)^{2}$
$=484+2209+16$
$=2709$
In Right angle tringle,
$(\text { Hypotenuse })^{2}=(\text { Height })^{2}+(\text { Base })^{2}$
To find that $\mathrm{CA}^{2}+\mathrm{AB}^{2} \neq \mathrm{BC}^{2}$.
Therefore, the triangle ABC is not a right angled triangle.

Example 6

Find the equation of set of points P such that $\mathrm{PA}^{2}+\mathrm{PB}^{2}=2 k^{2}$, where A and B are the points $(3,4,5)$ and $(-1,3,-7)$, respectively.

Solution

Let the coordinates of point P be $(x, \mathrm{y}, \mathrm{z})$.
Given,
A $(3,4,5)$
B($-1,3,-7$)
Using the distance formula
Here,
$\mathrm{PA}^{2}=(x-3)^{2}+(y-4)^{2}+(z-5)^{2}$
$\mathrm{PB}^{2}=(x+1)^{2}+(y-3)^{2}+(z+7)^{2}$
By the given condition $\mathrm{PA}^{2}+\mathrm{PB}^{2}=2 k^{2}$, we have
Putting the values
$(x-3)^{2}+(y-4)^{2}+(z-5)^{2}+(x+1)^{2}+(y-3)^{2}+(z+7)^{2}=2 k^{2}$
$2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+50+59=2 k^{2}$
$2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z=2 k^{2}-50-59$
Rearrange the equation
$2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z=2 k^{2}-109$

Infinity

Learn

1. Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$
(ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and $(1,-3,4)$
(iv) $(2,-1,3)$ and $(-2,1,3)$.

Solution

(i) The distance between the points $\mathrm{P}(2,3,5)$ and $Q(4,3,1)$ by distance formula is,
$\mathrm{PQ}=\sqrt{(4-2)^{2}+(3-3)^{2}+(1-5)^{2}}$
$=\sqrt{4+0+16}$
$=\sqrt{20}$
$=\sqrt{4 \times 5}$
$=2 \sqrt{5}$
(ii) The distance between the points $\mathrm{P}(-3,7,2)$ and $Q(2,4,-1)$ is
$\mathrm{PQ}=\sqrt{(2+3)^{2}+(4-7)^{2}+(-1-2)^{2}}$
$=\sqrt{25+9+9}$
$=\sqrt{43}$
(iii) The distance between the points $\mathrm{P}(-1,3,-4)$ and $Q(1,-3,4)$ is

$$
\begin{aligned}
& \mathrm{PQ}=\sqrt{(1+1)^{2}+(-3-3)^{2}+(4+4)^{2}} \\
& =\sqrt{4+36+64} \\
& =\sqrt{104} \\
& =\sqrt{4 \times 26} \\
& =2 \sqrt{26}
\end{aligned}
$$

(iv) The distance between the points $\mathrm{P}(2,-1,3)$ and $Q(-2,1,3)$ is
$\mathrm{PQ}=\sqrt{(-2-2)^{2}+(1+1)^{2}+(3-3)^{2}}$
$=\sqrt{16+4+0}$
$=\sqrt{20}$
$=\sqrt{4 \times 5}$
$=2 \sqrt{5}$

Infinity

Learn
2. Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

Solution

Let $\mathrm{P}(-2,3,5), \mathrm{Q}(1,2,3), \mathrm{R}(7,0,-1)$ be the given points.
Distance between points
$\mathrm{PQ}=\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}}$
$=\sqrt{9+1+4}$
$=\sqrt{14}$
And,
$\mathrm{QR}=\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}}$
$=\sqrt{36+4+16}$
$=\sqrt{56}$
$=\sqrt{4 \times 14}$
$=2 \sqrt{14}$
Now,
$\mathrm{PR}=\sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}}$
$=\sqrt{81+9+36}$
$=\sqrt{126}$
$=\sqrt{9 \times 14}$
$=3 \sqrt{14}$
So,
$\mathrm{PQ}+\mathrm{QR}=\sqrt{14}+2 \sqrt{14}$
$=(1+2) \sqrt{14}$
$=3 \sqrt{14}=\mathrm{PR}$
Therefore, points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear.

3. Verify the following:

(i) $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.

Solution

Infinity
 Learn

(i) Let $\mathrm{A}(0,7,-10), \mathrm{B}(1,6,-6)$ and $\mathrm{C}(4,9,-6)$ be the given points.
$\mathrm{AB}=\sqrt{(1-0)^{2}+(6-7)^{2}+(-6+10)^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=\sqrt{9 \times 2}$
$=3 \sqrt{2}$
$\mathrm{BC}=\sqrt{(4-1)^{2}+(9-6)^{2}+(-6+6)^{2}}$
$=\sqrt{9+9+0}$
$=\sqrt{18}$
$=\sqrt{9 \times 2}$
$=3 \sqrt{2}$
$\mathrm{AC}=\sqrt{(4-0)^{2}+(9-7)^{2}+(-6+10)^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$
Since $A B=B C=3 \sqrt{2}$,
If the two sides of a triangle is same
So, triangle ABC is isosceles.
(ii) Let $\mathrm{A}(0,7,10), \mathrm{B}(-1,6,6)$ and $\mathrm{C}(-4,9,6)$ be the given points.

Distance formula
$\mathrm{AB}=\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}}$
$=\sqrt{1+1+16}$
$=\sqrt{18}$
$=3 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}}$
$=\sqrt{9+9+0}$
$=\sqrt{18}$
$=3 \sqrt{2}$

Infinity

Learn
$\mathrm{AC}=\sqrt{(-4-0)^{2}+(9-7)^{2}+(6-10)^{2}}$
$=\sqrt{16+4+16}$
$=\sqrt{36}$
$=6$
Since $\mathrm{AB}^{2}+\mathrm{BC}^{2}=18+18=36=\mathrm{AC}^{2}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
$\triangle \mathrm{ABC}$ is right angled at B .
Therefore, ABC is a right-angled isosceles triangle.
(iii) Let $\mathrm{A}(-1,2,1), \mathrm{B}(1,-2,5), \mathrm{C}(4,-7,8)$ and $\mathrm{D}(2,-3,4)$ be the given points.

The distance formula

$$
\begin{aligned}
& A B=\sqrt{(1+1)^{2}+(-2-2)^{2}+(5-1)^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

$\mathrm{DC}=\sqrt{(4-2)^{2}+(-7+3)^{2}+(8-4)^{2}}$
$=\sqrt{4+16+16}$
$=\sqrt{36}$
$=6$
$\mathrm{AD}=\sqrt{(2+1)^{2}+(-3-2)^{2}+(4-1)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
$\mathrm{BC}=\sqrt{(4-1)^{2}+(-7+2)^{2}+(8-5)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Since $A B=D C=6$ and $A D=B C=\sqrt{43}$
\Rightarrow The opposite sides of quadrilateral ABCD are equal.
\Rightarrow Quadrilateral ABCD is a parallelogram.
4. Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

Solution

Let $\mathrm{P}(x, y, z)$ be equidistant from the points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(3,2,-1)$
So, $\mathrm{AP}=\mathrm{BP}$
$\mathrm{AP}^{2}=\mathrm{BP}^{2}$
$(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2}$
$\left(x^{2}-2 x+1\right)+\left(y^{2}-4 y+4\right)+\left(z^{2}-6 z+9\right)=\left(x^{2}-6 x+9\right)+\left(y^{2}-4 y+4\right)+\left(z^{2}+2 z+1\right)$
Rearrange the equation
$-2 x+6 x-6 z-2 z+14-14=0$
$4 x-8 z=0$
Dividing every term by 4 ,
$x-2 z=0$ which is the required equation of the set of points $\mathrm{P}(x, y, z)$
5. Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to $\mathbf{1 0}$.

Solution

Given points are $\mathrm{A}(4,0,0)$ and $\mathrm{B}(-4,0,0)$.
Let the coordinates of P be (x, y, z).
Given: $\mathrm{AP}+\mathrm{BP}=10$
Applying distance formula

$$
\begin{aligned}
& \Rightarrow \sqrt{(x-4)^{2}+(y-0)^{2}+(z-0)^{2}}+\sqrt{(x+4)^{2}+(y-0)^{2}+(z-0)^{2}}=10 \\
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10
\end{aligned}
$$

Shifting one square root term to R.H.S;
$\Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}$
Squaring both sides,

$$
\begin{aligned}
& (x-4)^{2}+y^{2}+z^{2}=100+(x+4)^{2}+y^{2}+z^{2}-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}} \\
& x^{2}+16-8 x=100+x^{2}+16+8 x-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}} \\
& \Rightarrow-16 x-100=-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Infinity

 LearnDividing both sides by (-4) ,
$4 x+25=5 \sqrt{(x+4)^{2}+y^{2}+z^{2}}$
Squaring both sides again,
$16 x^{2}+200 x+625=25\left[x^{2}+8 x+16+y^{2}+z^{2}\right]$
$16 x^{2}+200 x+625=25 x^{2}+200 x+400+25 y^{2}+25 z^{2}$
$\Rightarrow-9 x^{2}-25 y^{2}-25 z^{2}=-225$
multiplying by -1 ,
$9 x^{2}+25 y^{2}+25 z^{2}=225$
Which is required equation (i.e., locus) of set of points P .

Example 7

Find the coordinates of the point which divides the line segment joining the points $(1,-2,3)$ and $(3,4,-5)$ in the ratio $2: 3$ (i) internally, and (ii) externally.

Solution

(i) Let $\mathrm{P}(x, y, z)$ be the point which divides line segment joining $\mathrm{A}(1,-2,3)$ and $\mathrm{B}(3,4,-5)$ internally in the ratio $2: 3$.

So, Applying the coordinates of mid-point
For x axis
$x=\frac{2(3)+3(1)}{2+3}=\frac{9}{5}$,
For y axis
$y=\frac{2(4)+3(-2)}{2+3}=\frac{2}{5}$,
For z Axis
$z=\frac{2(-5)+3(3)}{2+3}=\frac{-1}{5}$
Thus, the required point of the coordinate is
$\left(\frac{9}{5}, \frac{2}{5}, \frac{-1}{5}\right)$

Infinity

Learn
(ii) Let $\mathrm{P}(x, y, z)$ be the point which divides segment joining $\mathrm{A}(1,-2,3)$ and $\mathrm{B}(3,4,-5)$ externally in the ratio 2:3.

Then, Applying the coordinate mid point rule
For x axis
$x=\frac{2(3)+(-3)(1)}{2+(-3)}=-3$,
For x axis
$y=\frac{2(4)+(-3)(-2)}{2+(-3)}=-14$,
For z axis
$z=\frac{2(-5)+(-3)(3)}{2+(-3)}=19$
So, the required point of the coordinate is $(-3,-14,19)$.

Example 8

Using section formula, prove that the three points $(-4,6,10),(2,4,6)$ and $(14,0,-2)$ are collinear.

Solution

Let $\mathrm{A}(-4,6,10), \mathrm{B}(2,4,6)$ and $\mathrm{C}(14,0,-2)$ be the given points.
Let the point P divides AB in the ratio $k: 1$.
Then coordinates of the point P are
$\left(\frac{2 k-4}{k+1}, \frac{4 k+6}{k+1}, \frac{6 k+10}{k+1}\right)$
Check whether the value of k, the point P coincides with point C .
On putting $\frac{2 k-4}{k+1}=14$,
The value of $k=-\frac{3}{2}$
When $k=-\frac{3}{2}$, Learn
then $\frac{4 k+6}{k+1}=\frac{4\left(-\frac{3}{2}\right)+6}{-\frac{3}{2}+1}=0$
and
$\frac{6 k+10}{k+1}=\frac{6\left(-\frac{3}{2}\right)+10}{-\frac{3}{2}+1}=-2$
So, $\mathrm{C}(14,0,-2)$ is a point is divided AB by externally in the ratio $3: 2$ and is same as P .
Hence A,B,C are collinear.

Example 9

Find the coordinates of the centroid of the triangle whose vertices are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$.

Solution

Let ABC be the triangle.
Let the coordinates of the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$, respectively.
Let D be the mid-point of BC .
Hence coordinates of D are
$\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)$
Let G be the centroid of the triangle.
It divides the median AD in the ratio $2: 1$.
Hence, the coordinates of G are

$$
\left(\frac{2\left(\frac{x_{2}+x_{3}}{2}\right)+x_{1}}{2+1}, \frac{2\left(\frac{y_{2}+y_{3}}{2}\right)+y_{1}}{2+1}, \frac{2\left(\frac{z_{2}+z_{3}}{2}\right)+z_{1}}{2+1}\right)
$$

Cancel the common term
or

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

Example 10

Find the ratio in which the line segment joining the points $(4,8,10)$ and $(6,10,-8)$ is divided by the $Y Z$-plane.

Solution

Let $Y Z$ - plane divided the line segment joins $\mathrm{A}(4,8,10)$ and $\mathrm{B}(6,10,-8)$ at $\mathrm{P}(x, y, z)$ in the ratio $k: 1$.

Then the coordinates of P are
$\left(\frac{4+6 k}{k+1}, \frac{8+10 k}{k+1}, \frac{10-8 k}{k+1}\right)$
Since P lies on the YZ-plane, its x-coordinate is zero,
That is $\frac{4+6 k}{k+1}=0$
Rearrange the equation
or
$k=-\frac{2}{3}$
So, YZ- plane divided AB by externally in the ratio $2: 3$.

EXERCISE 12.3

1. Find the coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ in the ratio
(i) $2: 3$ internally,
(ii) $2: 3$ externally.

Solution

(i) Let $\mathrm{P}(x, y, z)$ be the point which divided the line segment joining $\mathrm{A}(-2,3,5)$ and $\mathrm{B}(1,-4,6)$ internally in the ratio $2: 3$.

Then, by section formula;
For coordinate of x
$x=\frac{2(1)+3(-2)}{2+3}=-\frac{4}{5}$,
For coordinate of y
$y=\frac{2(-4)+3(3)}{2+3}=\frac{1}{5}$
For coordinate of z
$z=\frac{2(6)+3(5)}{2+3}=\frac{27}{5}$
Hence, the required point is $\left(-\frac{4}{5}, \frac{1}{5}, \frac{27}{5}\right)$.
(ii) Let $\mathrm{P}(x, y, z)$ be the point which divides the line segment joining $\mathrm{A}(-2,3,5)$ and $\mathrm{B}(1,-4,6)$ externally in the ratio $2: 3$.

Then, by section formula
For coordinate of x
$x=\frac{2(1)-3(-2)}{2-3}=-8$,
For coordinate y
$y=\frac{2(-4)-3(3)}{2-3}=17$
For coordinate z
$z=\frac{2(6)-3(5)}{2-3}=3$
Hence, the required point is $(-8,17,3)$.
2. Given that $P(3,2,-4), Q(5,4,-6)$ and $R(9,8,-10)$ are collinear. Find the ratio in which Q divides PR .

Solution

Let Q divide PR in the ratio $k: 1$,
then the coordinates of Q are $\left(\frac{9 k+3}{k+1}, \frac{8 k+2}{k+1}, \frac{-10 k-4}{k+1}\right)$
But the coordinates of Q are given to be $(5,4,-6)$ Equating coordinates,
$\frac{9 k+3}{k+1}=5$ and $\frac{8 k+2}{k+1}=4$ and $\frac{-10 k-4}{k+1}=-6$

Infinity

 LearnSolving any one of these equations for k, say first,
we have on cross-multiplication,
$9 k+3=5 k+5$
$4 k=2$.
$\therefore k=\frac{1}{2}$
Hence, Q divides PR in the ratio $\frac{1}{2}: 1=1: 2$.
3. Find the ratio in which the YZ-plane divides the line segment formed by joining the points $(-2,4,7)$ and $(3,-5,8)$.

Solution

Let the $Y Z$-plane divide the line segment joining $\mathrm{A}(-2,4,7)$ and $\mathrm{B}(3,-5,8)$ at $\mathrm{P}(x, y, z)$ in the ratio $k: 1$.Then the coordinates of P are
$\left(\frac{3 k-2}{k+1}, \frac{-5 k+4}{k+1}, \frac{8 k+7}{k+1}\right)$
Since P lies on the $Y Z$ - plane, its x-coordinate is zero,
That is $\frac{3 k-2}{k+1}=0$
cross-multiplying,
$3 k-2=0$
$\Rightarrow 3 k=2$
or $k=\frac{2}{3}(+\mathrm{ve})$
Therefore, YZ -plane divides AB internally in the ratio $\frac{2}{3}: 1$
That is $2: 3$.
4. Using section formula, show that the points $\mathrm{A}(2,-3,4), \mathrm{B}(-1,2,1)$ and $C\left(0, \frac{1}{3}, 2\right)$ are collinear.

Solution

Let the point C divide the line joining the points A and B in the ratio $k: 1$.

Infinity

 LearnThen the coordinates of C are
$\left(\frac{-k+2}{k+1}, \frac{2 k-3}{k+1}, \frac{k+4}{k+1}\right)$
But coordinates of C are given $\left(0, \frac{1}{3}, 2\right)$
Equating coordinates of C given and obtained,
$\frac{-k+2}{k+1}=0$
cross-multiplying
$-k+2=0$
$k=2$
Now,
$\frac{2 k-3}{k+1}=\frac{1}{3}$
cross-multiplying
$6 k-9=k+1$
$5 k=10$
$k=2$
And,
$\frac{k+4}{k+1}=2$
$k+4=2 k+2$
$2=k$
The value of k from all the three equations is equals
\therefore Points A, B and C are collinear (and the point C divides AB in the ratio 2:1).
5. Find the coordinates of the points which trisect the line segment joining the points $\mathrm{P}(4,2,-6)$ and $\mathrm{Q}(10,-16,6)$

Solution

Given: points $\mathrm{P}(4,2,-6)$ and $Q(10,-16,6)$.
Let take two points R and S within the segment PQ

Infinity

Learn

such that $P R=R S=S Q$.
Then points R and S are called points of trisection of the segment PQ
Therefore, One point of trisection R divides the joins of P and Q internally in the ratio $1: 2(=1+1)$.

Point P is $(4,2,-6)$ and Q is $(10,-16,6)$
Coordinates of point R are
$R\left[\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-6)}{1+2}\right]$
So, the $\mathrm{R}\left(\frac{18}{3}, \frac{-12}{3}, \frac{-6}{3}\right)=(6,-4,-2)$
Again, the second point of trisection S divides the joins of P and Q internally in the ratio of $2(=1+1): 1$.

Coordinates of point S are
$S\left[\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)+1(-6)}{2+1}\right]$
$S\left(\frac{24}{3}, \frac{-30}{3}, \frac{6}{3}\right)=(8,-10,2)$
Point S is the mid-point of RQ
The coordinate of point is $(8,-10,2)$

Example 11

Show that the points $A(1,2,3), B(-1,-2,-1), C(2,3,2)$ and $D(4,7,6)$ are the vertices of a parallelogram $A B C D$, but it is not a rectangle.

Solution

To show ABCD is a parallelogram need to show opposite side are equal By using the distance formula

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{(-1-1)^{2}+(-2-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{4+16+16} \\
& =6
\end{aligned}
$$

So,

Learn
| Educational Institutions
$\mathrm{BC}=\sqrt{(2+1)^{2}+(3+2)^{2}+(2+1)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Now,
$\mathrm{CD}=\sqrt{(4-2)^{2}+(7-3)^{2}+(6-2)^{2}}$
$=\sqrt{4+16+16}$
$=6$
And
$\mathrm{DA}=\sqrt{(1-4)^{2}+(2-7)^{2}+(3-6)^{2}}$
$=\sqrt{9+25+9}$
$=\sqrt{43}$
Since $A B=C D$ and $B C=A D$,
ABCD is a parallelogram.
Now, it is required to prove that ABCD is not a rectangle. For this, we show that diagonals AC and BD are unequal.

Same as using the distance
$\mathrm{AC}=\sqrt{(2-1)^{2}+(3-2)^{2}+(2-3)^{2}}$
$=\sqrt{1+1+1}$
$=\sqrt{3}$
And
$\mathrm{BD}=\sqrt{(4+1)^{2}+(7+2)^{2}+(6+1)^{2}}$
$=\sqrt{25+81+49}$
$=\sqrt{155}$
Since $A C \neq B D$,
ABCD is not a rectangle.

Example 12

Find the equation of the set of the points P such that its distances from the points $\mathbf{A}(3,4,-5)$ and $B(-2,1,4)$ are equal.

Solution

Infinity
 Learn

If $\mathrm{P}(x, y, z)$ be any point such that $\mathrm{PA}=\mathrm{PB}$.
Given that,
A $(3,4,-5)$ and $B(-2,1,4)$ are equal.
Now, by applying the distance formula
$\sqrt{(x-3)^{2}+(y-4)^{2}+(z+5)^{2}}=\sqrt{(x+2)^{2}+(y-1)^{2}+(z-4)^{2}}$
or $(x-3)^{2}+(y-4)^{2}+(z+5)^{2}=(x+2)^{2}+(y-1)^{2}+(z-4)^{2}$
or $x^{2}+9-6 x+y^{2}+4-8 y+z^{2}+25+10 z=x^{2}+4+8 x+y^{2}+1-2 y+z^{2}+16-8 z$
or $10 x+6 y-18 z-29=0$.

Example 13

The centroid of a triangle $A B C$ is at the point $(1,1,1)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$, respectively, find the coordinates of the point C.

Solution

Let the coordinates of C be (x, y, z) and the coordinates of the centroid G be $(1,1,1)$.
Coordinates of A is $(3,-5,7)$
Coordinates of B is $(-1,7,-6)$
Then
$\frac{x+3-1}{3}=1$
$. x=1 ;$
And,
$\frac{y-5+7}{3}=1$
That is $y=1$
$\frac{z+7-6}{3}=1$,
That is $z=2$
Therefore, coordinates of C are $(1,1,2)$.

Miscellaneous Exercise on Chapter 12

Learn

1. Three vertices of a parallelogram ABCD are $\mathrm{A}(3,-1,2), \mathrm{B}(1,2,-4)$ and $\mathrm{C}(-1,1,2)$. Find the coordinates of the fourth vertex.

Solution

Let the coordinates of D be (x, y, z).
Given,
$\mathrm{A}(3,-1,2), \mathrm{B}(1,2,-4)$ and $\mathrm{C}(-1,1,2)$.
M the point of intersection of the diagonals of the parallelogram
The diagonals of a $\|^{\mathrm{gm}}$ bisect each other.
Since M is the mid-point AC,
Therefore, Coordinates of M are $\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)=(1,0,2)$
Also M is the mid-point of BD
Coordinates of M are $\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
Equating corresponding entries,
$1=\frac{x+1}{2}$,
$0=\frac{y+2}{2}$
and $2=\frac{z-4}{2}$
Now, cross-multiplying
$x+1=2, y+2=0$ and $z-4=4$
$x=1$,
$y=-2$
and $z=8$
Hence, vertex D is $(1,-2,8)$.

Infinity

Learn
2. Find the lengths of the medians of the triangle with vertices $\mathbf{A}(0,0,6), \mathrm{B}(0,4,0)$ and $(6,0,0)$

Solution

Let $\mathrm{D}, \mathrm{E}, \mathrm{F}$ be the midpoints of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively.
Then
$\mathrm{D}=\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)=(3,2,0)$
So, Length of median AD
$=\sqrt{(3-0)^{2}+(2-0)^{2}+(0-6)^{2}}$
$=\sqrt{9+4+36}$
$=\sqrt{49}$
$=7$
So, coordinates of E
$\mathrm{E}=\left(\frac{6+0}{2}, \frac{0+0}{2}, \frac{0+6}{2}\right)=(3,0,3)$
Therefore, Length of median BE

$$
\begin{aligned}
& =\sqrt{(3-0)^{2}+(0-4)^{2}+(3-0)^{2}} \\
& =\sqrt{9+16+9}=\sqrt{34}
\end{aligned}
$$

Coordinate of point F
$\mathrm{F}=\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)=(0,2,3)$
Then, Length of median CF

$$
\begin{aligned}
& =\sqrt{(0-6)^{2}+(2-0)^{2}+(3-0)^{2}} \\
& =\sqrt{36+4+9}=\sqrt{49}=7
\end{aligned}
$$

The length of medians of triangle is $\mathrm{AD}=7, \mathrm{BE}=\sqrt{34}, \mathrm{CF}=7$
3. If the origin is the centroid of the triangle PQR with vertices $\mathrm{P}(2 a, 2,6), \mathrm{Q}(-4,3 b,-10)$ and $\mathrm{R}(8,14,2 c)$, then find the values of a, b and c.

Solution

Learn
By formula; centroid of the triangle PQR with vertices $\mathrm{P}(2 a, 2,6), \mathrm{Q}(-4,3 b,-10)$ and $\mathrm{R}(8,14,2 c)$ is
$\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)$
Substitute the values
$\left(\frac{2 a-4+8}{3}, \frac{2+3 b+14}{3}, \frac{6-10+2 c}{3}\right)$
$\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)=$ origin $=(0,0,0)$
Equating coordinates,
$\frac{2 a+4}{3}=0$
$2 a+4=0$
Rearrange the equation
$2 a=-4$
$a=-2$
Equating coordinates,
$\frac{3 b+16}{3}=0$
$3 b+16=0$
Rearrange the equation
$3 b=-16$
$b=-\frac{16}{3}$
Equating coordinates
$\frac{2 c-4}{3}=0$
$2 c-4=0$
$2 c=4$
$c=2$.
The value of $a=-2, b=\frac{-16}{3}, c=2$
4. Find the coordinates of a point on y-axis which are at a distance of $5 \sqrt{2}$ from the point $P(3,-2,5)$

Solution

Let the required point on y-axis be $\mathrm{A}(0, \mathrm{y}, 0)$.
Given: Point $\mathrm{P}(3,-2,5)$ and distance $\mathrm{AP}=5 \sqrt{2}$
$\Rightarrow \sqrt{(0-3)^{2}+(y+2)^{2}+(0-5)^{2}}=5 \sqrt{2}$
Squaring, $9+(y+2)^{2}+25=50$
$(y+2)^{2}=50-34$
$\Rightarrow(y+2)^{2}=16$
$y+2= \pm 4$
$\Rightarrow y=-2 \pm 4$
$\Rightarrow y=2$ or -6
Therefore, the required points are $(0, y, 0)=(0,2,0)$ and $(0,-6,0)$
5. A point R with x-coordinate 4 lies on the line segment joining the points $\mathrm{P}(2,-3,4)$ and $Q(8,0,10)$. Find the coordinates of the point R.

Solution

Since R lies on PQ , therefore, R divides PQ in some ratio, say $k: 1$.
Therefore, by section formula, R has coordinates $\left(\frac{8 k+2}{k+1}, \frac{0-3}{k+1}, \frac{10 k+4}{k+1}\right)$
x-coordinate of R is given to be 4
Therefore, $\frac{8 k+2}{k+1}=4$
$\Rightarrow 8 k+2=4(k+1)$
$8 k+2=4 k+4$
Rearrange the equation
$\Rightarrow 4 k=2$
$k=\frac{1}{2}$

Infinity

Learn
Putting this value of k in equation, the required coordinates of R are
$\left(4, \frac{-3}{1 / 2+1}, \frac{10 \times 1 / 2+4}{1 / 2+1}\right)=\left(4, \frac{-3}{\left(\frac{3}{2}\right)}, \frac{9}{\left(\frac{3}{2}\right)}\right)$
$=(4,-2,6)$
The coordinates of the point $\mathrm{R}=(4,-2,6)$
6.If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $\mathrm{PA}^{2}+\mathrm{PB}^{2}=k^{2}$, where k is a constant.

Solution

Let the coordinates of P be (x, y, z).
Given: Points $\mathrm{A}(3,4,5)$ and $\mathrm{B}(-1,3,-7)$ and $\mathrm{PA}^{2}+\mathrm{PB}^{2}=k^{2}$

$$
\left[(x-3)^{2}+(y-4)^{2}+(z-5)^{2}\right]+\left[(x+1)^{2}+(y-3)^{2}+(z+7)^{2}\right]=k^{2}
$$

Rearrange the equation

$$
\left(x^{2}-6 x+9+y^{2}-8 y+16+z^{2}-10 z+25\right)+\left(x^{2}+2 x+1+y^{2}-6 y+9+z^{2}+14 z+49\right)=k^{2}
$$

Rearrange the equation

$$
\begin{aligned}
& 2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109=k^{2} \\
& 2\left(x^{2}+y^{2}+z^{2}-2 x-7 y+2 z\right)=k^{2}-109
\end{aligned}
$$

Dividing by 2 ,
$x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}$
Which is the required equation of set of points P.

