

Chapter 8: Binomial Theorem

Exercise 8.1

1:

The given expression is $(1-2x)^5$

We need to find the binomial expansion of the given expression

The general expansion using binomial theorem is found by $(a+b)^n = \sum_{k=0}^n {}^nC_k a^{n-k}b^k = \sum_{k=0}^n {}^nC_k a^k b^{n-k}$

Substituting a = 1 & b = -2x; n = 5 in the equation

$$(1+(-2x))^{5} = \sum_{k=0}^{3} {}^{5}C_{k} \cdot 1^{5-k} (-2x)^{k}$$

$$(1-2x)^{5}$$

$$= \left({}^{5}C_{0}(1)^{5-0}(-2x)^{0}\right) + \left({}^{5}C_{1}(1)^{5-1}(-2x)^{1}\right) + \left({}^{5}C_{2}(1)^{5-2}(-2x)^{2}\right) + \left({}^{5}C_{3}(1)^{5-3}(-2x)^{3}\right) + \left({}^{5}C_{4}(1)^{5-4}(-2x)^{4}\right) + \left({}^{5}C_{5}(1)^{5-5}(-2x)^{5}\right)$$

$$= \left(1\cdot1\cdot1\right) + \left(5(1)(-2x)\right) + \left(\left(\frac{5x4}{2}\right)\cdot1\cdot4x^{2}\right) + \left(\left(\frac{5x4}{2}\right)\cdot1\cdot(-8x^{3})\right) + \left(5(1)(16x^{4})\right) + \left(1\cdot(1)(-32x^{5})\right) \quad \because {}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$= 1-10x + \left(10\cdot4x^{2}\right) + \left(10\cdot(-8x^{3})\right) + \left(80x^{4} - 32x^{5}\right)$$
is the expansion of $(1-2x)^{5}$.

2:

The given expression is $\left(\frac{2}{x} - \frac{x}{2}\right)^2$

We need to find the binomial expansion of the given expression

The general expansion using binomial theorem is found by $(a+b)^n = \sum_{k=0}^n {}^nC_k a^{n-k}b^k = \sum_{k=0}^n {}^nC_k a^k b^{n-k}$

Substituting $a = \frac{2}{x} \& b = \frac{-x}{2}; n = 5$ in the equation

$$\begin{aligned} \left(\frac{1}{x} + \left(\frac{1}{2}\right)\right) &= \sum_{k=0}^{5} C_{k} \left(\frac{1}{x}\right)^{k} \left(\frac{1}{2}\right) \\ \left(\frac{2}{x} - \frac{x}{2}\right)^{5} \\ &= \left(5C_{0} \left(\frac{2}{x}\right)^{5-0} \left(\frac{-x}{2}\right)^{0}\right) + \left(5C_{1} \left(\frac{2}{x}\right)^{5-1} \left(\frac{-x}{2}\right)^{1}\right) + \left(5C_{2} \left(\frac{2}{x}\right)^{5-2} \left(\frac{-x}{2}\right)^{2}\right) + \left(5C_{3} \left(\frac{2}{x}\right)^{5-3} \left(\frac{-x}{2}\right)^{3}\right) + \left(5C_{4} \left(\frac{2}{x}\right)^{5-4} \left(\frac{-x}{2}\right)^{2}\right) \\ &= \left(1.\frac{32}{x^{5}}.1\right) + \left(5.\frac{16}{x^{4}} \left(\frac{-x}{2}\right)\right) + \left(\left(\frac{5x4}{2}\right).\frac{8}{x^{3}}.\frac{x^{2}}{4}\right)\right) + \left(\left(\frac{5x4}{2}\right).\frac{4}{x^{2}}.\frac{(-x^{3})}{8}\right) + \left(5.\frac{2}{x}.\frac{x^{2}}{4}\right) + \left(1.(1)\left(\frac{-x}{2}\right)\right) \\ &= \frac{32}{x^{5}} - \frac{40}{x^{3}} + \frac{20}{x} - 5x + \frac{5}{8}x^{3} - \frac{x^{5}}{32} \end{aligned}$$
is the expansion of $\left(\frac{2}{x} - \frac{x}{2}\right)^{5}$.

3.

The given expression is $(2x-3)^6$

We need to find the binomial expansion of the given expression

The general expansion using binomial theorem is found by $(a+b)^n = \sum_{k=0}^n {}^nC_k a^{n-k}b^k = \sum_{k=0}^n {}^nC_k a^k b^{n-k}$

Substituting a = 2x & b = -3; n = 6 in the equation

$$(2x-3)^{6} = \sum_{k=0}^{6} {}^{6}C_{k}(2x)^{6-k}(-3)^{k}$$

$$(2x+(-3))^{6} = ({}^{6}C_{0}(2x)^{6}(-3)^{0}) + ({}^{6}C_{1}(2x)^{6-1}(-3)^{1}) + ({}^{6}C_{2}(2x)^{6-2}(-3)^{2}) + ({}^{6}C_{3}(2x)^{6-3}(-3)^{3}) + ({}^{6}C_{4}(2x)^{6-4}(-3)^{4}) + ({}^{6}C_{5}(2x)^{6-5}(-3)^{5}) + ({}^{6}C_{6}(2x)^{6-6}(-3)^{6})$$

$$= (1.(64x^{6}).1) + ((32x^{5})(-18)) + ((\frac{6x5}{2})(16x^{4}).9) + ((\frac{6x5x4}{3})(8x^{3})(-27)) + ((\frac{6x5}{2})(4x^{2})(81)) + (6.(2x)(-243)) + 729 \qquad \because {}^{n}C_{r} = \frac{n!}{(n-r)!r!}$$

$$= 64x^{6} - 576x^{5} + 2160x^{4} + 8640x^{3} + 4860x^{2} - 2916x + 729$$
is the expansion of $(2x-3)^{6}$.

4.

The given expression is $\left(\frac{x}{3} + \frac{1}{x}\right)^5$

We need to find the binomial expansion of the given expression

The general expansion using binomial theorem is found by $(a+b)^n = \sum_{k=0}^n {}^nC_k a^{n-k}b^k = \sum_{k=0}^n {}^nC_k a^k b^{n-k}$

Substituting
$$a = \frac{x}{3} \& b = \frac{1}{x}$$
; $n = 5$ in the equation

$$\begin{aligned} \left(\frac{x}{3} + \frac{1}{x}\right)^5 &= \sum_{k=0}^{5} {}^{5}C_k \left(\frac{x}{3}\right)^{5-k} \left(\frac{1}{x}\right)^k \\ &= \left({}^{5}C_0 \left(\frac{x}{3}\right)^{5-0} \left(\frac{1}{x}\right)^0\right) + \left({}^{5}C_1 \left(\frac{x}{3}\right)^{5-1} \left(\frac{1}{x}\right)^1\right) + \left({}^{5}C_2 \left(\frac{x}{3}\right)^{5-2} \left(\frac{1}{x}\right)^2\right) + \left({}^{5}C_3 \left(\frac{x}{3}\right)^{5-3} \left(\frac{1}{x}\right)^3\right) + \left({}^{5}C_4 \left(\frac{x}{3}\right)^{5-4} \left(\frac{1}{x}\right)^4\right) + \left({}^{5}C_5 \left(\frac{x}{3}\right)^{5-5} \left(\frac{1}{x}\right)^5\right) \\ &= \left(1 \cdot \frac{x^5}{243} \cdot 1\right) + \left(5 \cdot \frac{x^4}{81} \cdot \left(\frac{1}{x}\right)\right) + \left(\left(\frac{5x4}{2}\right) \cdot \frac{x^3}{27} \left(\frac{1}{x^2}\right)\right) + \left(\left(\frac{5x4}{2}\right) \cdot \frac{x^2}{9} \left(\frac{1}{x^3}\right)\right) + \left(5 \cdot \frac{x}{3} \left(\frac{1}{x^4}\right)\right) + \left(1 \cdot \frac{x}{3} \left(\frac{1}{x^5}\right)\right) & \because {}^{n}C_r = \frac{n!}{(n-r)!r!} \\ &= \frac{x^5}{243} + \frac{5x^3}{81} + \frac{10x}{27} + \frac{10}{9x} + \frac{5}{3x^3} + \frac{1}{x^5} \\ &\text{is the expansion of} \left(\frac{x}{3} + \frac{1}{x}\right)^5. \end{aligned}$$

Exercise 8.2

1. Find the coefficient of x^5 in $(x + 3)^8$

Solution:

It is known that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^{n}$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Assuming that x^5 occurs in the $(r + 1)^{th}$ term of the expansion $(x + 3)^8$, we obtain

$$T_{r+1} = {}^{8}C_{r}(x)^{8-r}(3)^{r}$$

Comparing the indices of x in x^5 and in T_{r+1} ,

we obtain r = 3

Thus, the coefficient of x^5 is

$${}^{n}C_{3}(3)^{3} = \frac{8!}{3!5!} \times 3^{3}$$
$$= \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 5!} \cdot 3^{3}$$
$$= 1512$$

2. Find the coefficient of a^5b^7 in $(a-2b)^{12}$

It is known that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^{n}$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Assuming that a^5b^7 occurs in the $(r + 1)^{th}$ term of the expansion $(a - 2b)^{12}$, we obtain

$$T_{r+1} = {}^{12}C_r(a)^{12-r}(-2b)^r$$
$$= {}^{12}C_r(-2)^r(a)^{12-r}(b)^r$$

Comparing the indices of a and b in a^5b^7 and in T_{r+1} ,

we obtain
$$r = 7$$

Thus, the coefficient of a^5b^7 is

$${}^{12}C_{7}(-2)^{7} = \frac{12!}{7!5!} \times 2^{7}$$
$$= \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!} \cdot 2^{7}$$
$$= -(792)(128)$$
$$= -101376$$

3. Write the general term in the expansion of $(x^2 - y)^6$

Solution:

It is known that the general term T_{r+1} {which is the $(r+1)^{th}$ term} in the binomial expansion of $(a+b)^n$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Thus, the general term in the expansion of $(x^2 - y^6)$ is

$$T_{r+1} = {}^{6}C_{r} (x^{2})^{6-r} (-y)^{r}$$
$$T_{r+1} = (-1)^{r} {}^{6}C_{r} . x^{12-2r} . y$$

4. Write the general term in the expansion of $(x^2 - yx)^{12}, x \neq 0$

Solution:

It is known that the general term T_{r+1} {which is the $(r+1)^{th}$ term} in the binomial expansion of

 $(a+b)^n$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Thus, the general term in the expansion of $(x^2 - yx)^{12}$ is

$$T_{r+1} = {}^{12}C_r (x^2)^{12-r} (-yx)^r$$
$$T_{r+1} = (-1)^r {}^{12}C_r . x^{24-2r} . y^r . x$$
$$T_{r+1} = (-1)^r {}^{12}C_r . x^{24-r} . y^r$$

5. Find the 4^{th} term in the expansion of $(x-2y)^{12}$. Solution:

It is known that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^{n}$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{\prime}$$

Thus, the ${}^{4^{th}}$ term in the expansion of $(x-2y)^{12}$ is

$$T_{4} = T_{3+1} = {}^{n}C_{3}(x)^{12-3}(-2y)^{3}$$

$$= (-1) \cdot \left(\frac{12!}{3!9!}\right) \cdot x^{9} \cdot (2)^{3} \cdot y^{3}$$

$$= -\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot (2)^{3} x^{9} y^{3}$$

$$= -1760x^{9}y^{3}$$

6. Find the 13th term in the expansion of $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}, x \neq 0$

Solution:

It is known that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$

is

13th
Thus, the terms in the expansion of
$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$$

 $T_{13} = T_{12+1} = {}^{18}C_{12}(9x)^{18-12}(-\frac{1}{3\sqrt{x}})^{12}$
 $= (-1)^{12} \cdot \left(\frac{18!}{12!6!}\right)(9)^6(x)^6\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$
 $= \frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12! \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^6 \cdot \left(\frac{1}{x^6}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right)$

7. Find the middle terms in the expansions of
$$\left(3 - \frac{x^3}{6}\right)^7$$

Solution:

It is known that in the expansion of $(a+b)^n$, if n is odd, then there are two middle terms, namely

$$\left(\frac{n+1}{2}\right)^{th}$$
 term and $\left(\frac{n+1}{2}+1\right)^{th}$.

Therefore, the middle terms in the expansion of the expansion 3-

$$\left(\frac{x^3}{6}\right)^7$$
 are $\left(\frac{7+1}{2}\right)^{th} = 4^{th}$ term and

$$\left(\frac{7+1}{2}+1\right)^{th} = 5^{th} \text{ term}$$

$$T_4 = T_{3+1} = {}^7C_3(3)^{7-3} \left(-\frac{x^3}{6}\right)^3$$

$$= (-1)^3 \frac{7!}{3!4!} \cdot 3^4 \cdot \frac{x^9}{6^3}$$

$$= -\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4! \cdot 3 \cdot 2} \cdot \frac{3^3}{2^4 \cdot 3^4} \cdot x^9$$

$$= -\frac{105}{8} x^9$$

$$T_5 = T_{4+1} = {}^7C_3(3)^{7-3} \left(-\frac{x^3}{6}\right)^3$$

$$= (-1)^4 \frac{7!}{3!4!} \cdot 3^3 \cdot \frac{x^{12}}{6^4}$$

$$= \frac{7 \cdot 6 \cdot 5 \cdot 4!}{4! \cdot 3 \cdot 2} \cdot \frac{3^3}{2^4 \cdot 3^4} \cdot x^{12}$$

$$= \frac{35}{48} x^{12}$$

Thus, the middle terms in the expansion of $\left(3 - \frac{x^3}{6}\right)^7$ are $-\frac{105}{8}x^9$ and $\frac{35}{48}x^{12}$.

8. Find the middle terms in the expansions of $\left(\frac{x}{3} + 9y\right)^{10}$.

Solution:

It is known that in the expansion of $(a+b)^n$, if *n* is even, then there are two middle terms $\left(\frac{n+1}{2}\right)^m$ term.

Therefore, the middle terms in the expansion of $\left(\frac{x}{3} + 9y\right)^{10}$ is $\left(\frac{10}{2} + 1\right)^{th} = 6^{th}$

$$T_{6} = T_{5+1} = {}^{10}C_{5} \left(\frac{x}{3}\right)^{10-5} (9y)^{5}$$

= $\frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{5}} \cdot 9^{5} \cdot y^{5}$
= $\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot x^{5} \cdot y^{5}$
= $252 \times 3^{5} \cdot x^{5} \cdot y^{5}$
= $61236x^{5}y^{5}$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9y\right)^{10}$ is 61236 x^5y^5 .

9. In the expansion of $(1 + a)^{m+n}$, prove that coefficients of a^m and a^n are equal.

Solution:

It is known that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a+b)^n$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Assuming that a^m occurs in the $(r + 1)^{th}$ term of the expansion $(1 + a)^{m+n}$, we obtain $T_{r+1} = {}^{m+n}C_r(1)^{m+n-r}(a)^r$

 $=^{m+n}C_{r}a^{r}$

Comparing the indices of a in a^m and in T_{r+1} , we obtain

r = m

Therefore, the coefficient of a^m is

$$^{m+n}C_m = \frac{(m+n)!}{m!(m+n-m)!} = \frac{(m+n)!}{m!n!}$$
(1)

Assuming that a^n occurs in the $(k + 1)^{th}$ term of the expansion $(1 + a)^{m+n}$, we obtain

$$T_{k+1} = {}^{m+n}C_k(1)^{m+n-k}(a)^k = {}^{m+n}C_k(a)^k$$

Comparing the indices of a in a^n and in T_{k+1} , we obtain

$$k = n$$

Therefore, the coefficient of a^n is

$$^{m+n}C_m = \frac{(m+n)!}{n!(m+n-n)!} = \frac{(m+n)!}{n!m!}$$
(2)

Thus, from (1) and (2), it can be observed that the coefficients of a^m and a^n in the expansion of $(1 + a)^{m+n}$ are equal.

10. The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find *n* and *r*.

Solution:

It is known that $(k + 1)^{th}$ term, (T_{k+1}) , in the binomial expansion of $(a+b)^n$ is given by

$$T_{k+1} = {}^{n}C_{k}a^{n-k}b^{k}$$

Therefore, $(r-1)^{th}$ term in the expansion of $(x+1)^n$ is

$$T_{r-1} = {}^{n}C_{r-2}(x)^{n-(r-2)}(1)^{(r-2)}$$

$$T_{r-1} = {}^{n}C_{r-2}(x)^{n-r+2}$$

(r+1) term in the expansion of $(x+1)^n$ is

$$T_{r+1} = {}^{n}C_{r}(x)^{n-r}(1)^{r}$$

 $T_{r+1} = {^nC_r(x)^{n-r}}$

 r^{th} term in the expansion of $(x + 1)^n$ is $T_r = {}^n C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}$ $T_r = {}^n C_{r-1}(x)^{n-r+1}$

Therefore, the coefficients of the $(r-1)^{th}$, r^{th} , and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ ${}^{n}C_{r-2}$, ${}^{n}C_{r-1}$, and ${}^{n}C_{r}$ are respectively. Since these coefficients are in the ratio 1:3:5, we obtain

$$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{1}{3} \text{ and } \frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{3}{5}$$
$$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}$$

$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!}$
$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{r-1}{n-r+2}$
$\therefore \frac{r-1}{n-r+2} = \frac{1}{3}$
$\Rightarrow 3r-3=n-r+2$
$\Rightarrow n - 4r + 5 = 0 \dots (1)$
$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}$
$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!}$
$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{r}{n-r+1}$
$\therefore \frac{r}{n-r+1} = \frac{3}{5}$
$\Rightarrow 5r = 3n - 3r + 3$
$\Rightarrow 3n - 8r + 3 = 0 \dots (2)$
Multiplying (1) by 3 and subtracting it from (2), 4r - 12 = 0 $\Rightarrow r = 3$
Putting the value of r in (1), we obtain $n - 12$ $\Rightarrow n = 7$

Thus, n = 7 and r = 3

11. Prove that the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$.

, we obtain

+ 5 = 0

Solution:

It is known that $(k + 1)^{th}$ term, (T_{k+1}) , in the binomial expansion of $(a+b)^n$ is given by

$$T_{r+1} = {}^{n}C_{r}a^{n-r}b^{r}$$

Assuming that x^n occurs in the $(r+1)^{th}$ term of the expansion of $(1+x)^{2n}$, we obtain

 $T_{r+1} = {}^{2n}C_r(1)^{2n-r}(x)^r = {}^{2n}C_r(x)^r$ Comparing the indices of x in x^n and in T_{r+1} , we obtain r = nTherefore, the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is

$${}^{2n}C_{n} = \frac{(2n)!}{n!(2n-n)!}$$
$${}^{2n}C_{n} = \frac{(2n)!}{n!n!}$$
$${}^{2n}C_{n} = \frac{(2n)!}{(n!)^{2}} \qquad \dots (1)$$

Assuming that x^n occurs in the $(k + 1)^{th}$ term of the expansion $(1 + x)^{2n-1}$, we obtain $T_{k+1} = {}^{2n-1}C_k(1)^{2n-1-k}(x)^k = {}^{2n-1}C_k(x)^k$

Comparing the indices of x in x^n and T_{k+1} , we obtain k = n

Therefore, the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$ is

(2)

$${}^{2n-1}C_n = \frac{(2n-1)!}{n!(2n-1-n)!}$$
$${}^{2n-1}C_n = \frac{(2n-1)!}{n!(n-1)!}$$
$${}^{2n-1}C_n = \frac{2n(2n-1)!}{2n \cdot n!(n-1)!}$$
$${}^{2n-1}C_n = \frac{2n!}{2 \cdot n! \cdot n!}$$
$${}^{2n-1}C_n = \frac{1}{2} \left[\frac{(2n)!}{(n!)^2} \right] \dots$$

From (1) and (2), it is observed that

$$\frac{1}{2} \left({}^{2n}C_n \right) = {}^{2n-1}C_n$$
$$\implies {}^{2n}C_n = 2({}^{2n-1}C_n)$$

Therefore, the coefficient of x^n in the expansion of $(1 + x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1 + x)^{2n-1}$.

Hence, proved.

12. Find a positive value of **m** for which the coefficient of \mathbf{x}^2 in the expansion $(\mathbf{1} + \mathbf{x})^m$ is 6.

Solution:

It is known that $(r + 1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a + b)^n$ is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$.

Assuming that x^2 occurs in the $(r + 1)^{th}$ term of the expansion $(1 + x)^m$, we obtain

$$T_{r+1} = {}^{m}C_{r}(1)^{m-r}(x)^{r} = {}^{m}C_{r}(x)^{r}$$

Comparing the indices of x in x^2 and in T_{r+1} , we obtain r = 2Therefore, the coefficient of x^2 is ${}^{m}C_2$

-

It is given that the coefficient of x^2 in the expansion $(1 + x)^m$ is 6.

$$\therefore {}^{m}C_{2} = 6$$

$$\Rightarrow \frac{m!}{2!(m-2)!} = 6$$
$$\Rightarrow \frac{m(m-1)(m-2)!}{2 \times (m-2)!} = 6$$

 $\Rightarrow m(m-1) = 12$

$$\Rightarrow m^2 - m - 12 = 0$$

- $\Rightarrow m^2 4m + 3m 12 = 0$
- $\Rightarrow m(m-4) + 3(m-4) = 0$
- $\Rightarrow (m-4)(m+3) = 0$
- $\Rightarrow (m-4) = 0 \text{ or } (m+3) = 0$

$$\Rightarrow m = 4 \text{ or } m = -3$$

Thus, the positive value of m, for which the coefficient of x^2 in the expansion $(1 + x)^m$ is 6, is 4.

1: Find a, b and n in the expansion of $(a + b)^n$ if the first three terms of the expansion are 729,7290, and 30375 respectively.

Answer: We know that $(r + 1)^{th}$ term, (T_{r+1}) , from the binomial expansion of $(a + b)^n$ is given as $T_{r+1} = {}^{n}C_{r}a^{a-r}b^{r}$

The first three terms of the expansion are given as 729, 7290, and 30375 respectively. So, we obtain

 $T_{1} = {}^{n}C_{0}a^{n-0}b^{0} = a^{n} = 729....(1)$ $T_{2} = {}^{n}C_{1}a^{n-1}b^{1} = n a^{n-1}b = 7290...(2)$ $T_{3} = {}^{n}C_{2}a^{n-2}b^{2} = \frac{n(n-1)}{2}a^{n-2}b^{2} = 30375...(3)$ (2) / (1), we get $\frac{na^{n-1}b}{a^{n}} = \frac{7290}{729}$ $\Rightarrow \frac{nb}{a} = 10...(4)$ (3) / (4), we get $n(n-1)a^{n-2}b^{2} = 30375$

From equation (4) & (5), we get

$$n \cdot \frac{5}{3} = 10$$
$$\Rightarrow n = 6$$

Put n = 6 in equation (1), we get a^6

$$= 729$$
$$\Rightarrow a = \sqrt[6]{729} = 3$$

From equation (5), we get

 $\frac{b}{3} = \frac{5}{3} \Longrightarrow b = 5$ Thus, a = 3, b = 5, and n = 6

2: Find a if the coefficients of x^2 and x^3 in the expansion of $(3 + ax)^9$ are equal.

Answer: We know that $(r + 1)^{th}$ term, (T_{r+1}) , from the binomial expansion of $(a + b)^n$ is given as $T_{r+1} = {}^nC_r a^{a-r}b^r$

Let x^2 occur in the $(r + 1)^{th}$ term, of the expansion $(3 + ax)^9$, we get

$$T_{r+1} = {}^{9}C_{r}(3)^{9-r}(ax)^{r} = {}^{9}C_{r}(3)^{9-r}a^{r}x^{r}$$

Now, we compare the indices of x in x^2 in T_{r+1} , we get

r = 2

So, the coefficient of x^2 is

$${}^{9}C_{2}(3)^{9-2}a^{2} = \frac{9!}{2!7!} (3)^{7}a^{2} = 36(3)^{7}a^{2}$$

Let x^3 have in $(k + 1)^{th}$ term from the expansion $(3 + ax)^9$, we get

$$T_{k+1} = {}^{9}C_{k}(3)^{9-k}(ax)^{k} = {}^{9}C_{k}(3)^{9-k}a^{k}x^{k}$$

Now, we compare the indices of $x \mbox{ in } x^3 \mbox{ in } T_{k+1}$ we get

So, the coefficient of x^3 is

$${}^{9}C_{3}(3)^{9-3}a^{3} = \frac{9!}{3!6!}(3)^{6}a^{3} = 84(3)^{6}a^{3}$$

Also, we know the coefficient of x^2 and x^3 are same

$$84(3)^{6}a^{3} = 36(3)^{7}a^{2}$$
$$\Rightarrow 84a = 36 \times 3$$
$$\Rightarrow a = \frac{36 \times 3}{84} = \frac{104}{84}$$
$$\Rightarrow a = \frac{9}{7}$$

So, the value of $a = \frac{9}{7}$

3: Find the coefficient of x^5 in the product $(1 + 2x)^6(1 - x)^7$ using binomial theorem.

Answer: By binomial theorem, the given expression can be expanded as

$$(1 + 2x)^{6} = {}^{6}C_{0} + {}^{6}C_{1}(2x) + {}^{6}C_{2}(2x)^{2} + {}^{6}C_{3}(2x)^{3} + {}^{6}C_{4}(2x)^{4} + {}^{6}C_{5}(2x)^{5} + {}^{6}C_{6}(2x)^{6}$$

= 1 + 6(2x) + 15(2x)² + 20(2x)³ + 15(2x)⁴ + 6(2x)⁵ + (2x)⁶
= 1 + 12x + 60x² + 160x³ + 240x⁴ + 192x⁵ + 64x⁶
(1 - x)⁷ = {}^{7}C_{0} - {}^{7}C_{1}(x) + {}^{7}C_{2}(x)^{2} - {}^{7}C_{3}(x)^{3} + {}^{7}C_{4}(x)^{4} - {}^{7}C_{5}(x)^{5} + {}^{7}C_{6}(x)^{6} - {}^{7}C_{7}(x)^{7}
= 1 - 7x + 21x² - 35x³ + 35x⁴ - 21x⁵ + 7x⁶ - x⁷
 $\therefore (1 + 2x)^{6} (1 - x)^{7}$
= $(1 + 12x + 60x^{2} + 160x^{3} + 240x^{4} + 192x^{5} + 64x^{6})(1 - 7x + 21x^{2} - 35x^{3} + 35x^{4} - 21x^{5} + 7x^{6} - x^{7})$

$$= 171x^{5}$$

Product in the two bracket is not required.

Those terms which terms are include in x⁵, are required

Those term which containing x^5

So, the product is 171 of the given coefficient x^5

4: If a and b are distinct integers, prove that a - b is a factor of $a^n - b^n$, whenever n is a positive integer. [Hint: write $a^n = (a - b + b)^n$ and expand]

Answer: It is required to prove that a - b is a factor of $a^n - b^n$,

Now, we will prove that $a^n - b^n = k(a - b)$, for some natural number k

Let
$$\mathbf{a} = \mathbf{a} - \mathbf{b} + \mathbf{b}$$

 $\mathbf{a}^{n} = (\mathbf{a} - \mathbf{b} + \mathbf{b})^{n} = [(\mathbf{a} - \mathbf{b}) + \mathbf{b}]^{n}$
 $= {}^{n}C_{0}(\mathbf{a} - \mathbf{b})^{n} + {}^{n}C_{1}(\mathbf{a} - \mathbf{b})^{n-1}\mathbf{b} + ... + {}^{n}C_{n-1}(\mathbf{a} - \mathbf{b})\mathbf{b}^{n-1} + {}^{n}C_{n}\mathbf{b}^{n}$
 $= (\mathbf{a} - \mathbf{b})^{n} + {}^{n}C_{1}(\mathbf{a} - \mathbf{b})^{n-1}\mathbf{b} + ... + {}^{n}C_{n-1}(\mathbf{a} - \mathbf{b})\mathbf{b}^{n-1} + \mathbf{b}^{n}$
 $= (\mathbf{a} - \mathbf{b})^{n} + {}^{n}C_{1}(\mathbf{a} - \mathbf{b})^{n-1}\mathbf{b} + ... + {}^{n}C_{n-1}(\mathbf{a} - \mathbf{b})\mathbf{b}^{n-1} + \mathbf{b}^{n}$
 $\Rightarrow \mathbf{a}^{n} - \mathbf{b}^{n} = (\mathbf{a} - \mathbf{b})\Big[(\mathbf{a} - \mathbf{b})^{n-1} + {}^{n}C_{1}(\mathbf{a} - \mathbf{b})^{n-2}\mathbf{b} + ... + {}^{n}C_{n-1}\mathbf{b}^{n-1}\Big]$
 $\Rightarrow \mathbf{a}^{n} - \mathbf{b}^{n} = \mathbf{k}(\mathbf{a} - \mathbf{b})$
 $\mathbf{k} = \Big[(\mathbf{a} - \mathbf{b})^{n-1} + {}^{n}C_{1}(\mathbf{a} - \mathbf{b})^{n-2}\mathbf{b} + ... + {}^{n}C_{n-1}\mathbf{b}^{n-1}\Big]$ for some natural number

5: Evaluate $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6$

Answer: By binomial theorem given expression $(a + b)^6 - (a - b)^6$ can solved as

$$(a+b)^{6} = {}^{6}C_{0}a^{6} + {}^{6}C_{1}a^{5}b + {}^{6}C_{2}a^{4}b^{2} + {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{4}a^{2}b^{4} + {}^{6}C_{5}a^{1}b^{5} + {}^{6}C_{6}b^{6}$$

= $a^{6} + 6a^{5}b + 15a^{4}b^{2} + 20a^{3}b^{3} + 15a^{2}b^{4} + 6ab^{5} + b^{6}$
 $(a - b)^{6} = {}^{6}C_{0}a^{6} - {}^{6}C_{1}a^{5}b + {}^{6}C_{2}a^{4}b^{2} - {}^{6}C_{3}a^{3}b^{3} + {}^{6}C_{4}a^{2}b^{4} - {}^{6}C_{5}a^{1}b^{5} + {}^{6}C_{6}b^{6}$
= $a^{6} - 6a^{5}b + 15a^{4}b^{2} - 20a^{3}b^{3} + 15a^{2}b^{4} - 6ab^{5} + b^{6}$
 $\therefore (a + b)^{6} - (a - b)^{6} = 2[6a^{5}b + 20a^{3}b^{3} + 6ab^{5}]$
 $a = \sqrt{3} \text{ and } b = \sqrt{2}.$

Put
$$a = \sqrt{3}$$
 and $b = \sqrt{2}$,
 $(\sqrt{3} + \sqrt{2})^6 - (\sqrt{3} - \sqrt{2})^6 = 2 \Big[6(\sqrt{3})^5 (\sqrt{2}) + 20(\sqrt{3})^3 (\sqrt{2})^3 + 6(\sqrt{3})(\sqrt{2}) \Big]$
 $= 2 [54\sqrt{6} + 120\sqrt{6} + 24\sqrt{6}]$
 $= 2 \times 198\sqrt{6}$
 $= 396\sqrt{6}$

6: Find the value of
$$(a^2 + \sqrt{a^2 - 1})^4 + (a^2 - \sqrt{a^2 - 1})^4$$

Answer: By Binomial theorem, given expression $(x + y)^4 + (x - y)^4$ can be solved as

$$(x + y)^{4} = {}^{4}C_{0}x^{4} + {}^{4}C_{1}x^{3}y + {}^{4}C_{2}x^{2}y^{2} + {}^{4}C_{3}xy^{3} + {}^{4}C_{4}y^{4}$$

= x⁴ + 4x³y + 6x²y² + 4xy³ + y⁴
(x - y)^y = {}^{4}C_{0}x^{4} - {}^{4}C_{1}x^{3}y + {}^{4}C_{2}x^{2}y^{2} - {}^{4}C_{3}xy^{3} + {}^{4}C_{4}y^{4}
= x⁴ - 4x³y + 6x²y² - 4xy³ + y⁴
 \therefore (x + y)⁴ + (x - y)⁴ = 2(x⁴ + 6x²y² + y⁴)

Put the value of $x = a^2$ and $y = \sqrt{a^2 - 1}$

$$\left(a^{2} + \sqrt{a^{2} - 1}\right)^{4} + \left(a^{2} - \sqrt{a^{2} - 1}\right)^{4} = 2\left[\left(a^{2}\right)^{4} + 6\left(a^{2}\right)^{2}\left(\sqrt{a^{2} - 1}\right)^{2} + \left(\sqrt{a^{2} - 1}\right)^{4}\right]$$

$$= 2\left[a^{8} + 6a^{4}\left(a^{2} - 1\right) + \left(a^{2} - 1\right)^{2}\right]$$

$$= 2\left[a^{8} + 6a^{6} - 6a^{4} + a^{4} - 2a^{2} + 1\right]$$

$$= 2\left[a^{8} + 6a^{6} - 5a^{4} - 2a^{2} + 1\right]$$

$$= 2a^{8} + 12a^{6} - 10a^{4} - 4a^{2} + 2$$

7: Find an approximation of $(0.99)^5$ using the first three terms of its expansion.

Answer:

Sri Chaitanya Learn 0.99 = 1 - 0.01 $\therefore (0.99)^5 = (1 - 0.01)^5$ $= {}^{3}C_{0}(1)^5 - {}^{3}C_{1}(1)^4(0.01) + {}^{5}C_{2}(1)^3(0.01)^2$ $= 1 - 5(0.01) + 10(0.01)^2$ = 1 - 0.05 + 0.001= 1.001 - 0.05

Value of $(0.99)^5$ approx. = 0.951

8: Find *n* if the ratio of the fifth term from the beginning to the fifth term from the end in the

expansion of $\left(\frac{4}{2} + \frac{1}{4\sqrt{2}}\right)^n$ is $\sqrt{6}$: 1 Answer: we know that $(a + b)^n = {}^nC_b a^n + {}^nC_1 a^{n-1}b + {}^nC_2 a^{n-2}b^2 + ... + {}^nC_{n-1}ab^{n-1} + {}^nC_n b^n$ 5th term from the beginning $= {}^nC_4 a^{n-4}b^4$ 5th term from the end $= {}^nC_{n-4}a^4b^{n-4}$ So, from the expansion $\left(\frac{4}{2} + \frac{1}{4\sqrt{2}}\right)^n$ 5th term from the beginning $= {}^nC_4(\sqrt[4]{2})^{0-4}\left(\frac{1}{4\sqrt{3}}\right)^4$ & 5th term from the end $= {}^nC_{n-4}(\sqrt[4]{2})^4\left(\frac{1}{4\sqrt{3}}\right)^{n-4}$ ${}^nC_4(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[3]{3}}\right)^4 = {}^nC_4\frac{(\sqrt[3]{2})^n}{(\sqrt[4]{2})^4}, \frac{1}{3} = {}^nC_4\frac{(\sqrt[3]{2})^n}{2}, \frac{1}{3} = \frac{n!}{6.4!(n-4)!}(\sqrt[4]{2})^n$(1) ${}^nC_{n-4}(\sqrt[4]{2})^4\left(\frac{1}{\sqrt[3]{3}}\right)^{n-4} = {}^nC_{n-4}2.\frac{(\sqrt[3]{3})^4}{(\sqrt[4]{3})^n} = {}^nC_{n-4}2.\frac{3}{(\sqrt[3]{3})^n} = \frac{6n!}{(n-4)!4!}, \frac{1}{(\sqrt[3]{3})^n}$(2)

We have also given that the ratio of the 5th term from the beginning and the 5th term from the end = $\sqrt{6}$: 1

From equation (1) & (2), we get

(approximately)

$$\frac{n!}{6.4!(n-4)!} (\sqrt[3]{2})^n = \frac{6n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[3]{3})^n} = \sqrt{6}:1$$

$$\Rightarrow \frac{(\sqrt[4]{2})^n}{6} \cdot \frac{6}{(\sqrt[4]{3})^n} = \sqrt{6}:1$$

$$\Rightarrow \frac{(\sqrt[4]{2})^n}{6} \cdot \frac{(\sqrt[4]{3})^n}{6} = \sqrt{6}$$

$$\Rightarrow (\sqrt{6})^n = 36\sqrt{6}$$

$$\Rightarrow 6^{n/4} = 6^{5/2}$$

$$\Rightarrow \frac{n}{4} = \frac{5}{2}$$

$$\Rightarrow n - 4 \cdot \frac{5}{2} = 10$$

So, the value of n = 10.

9: Expand using Binomial theorem $\left(1 + \frac{x}{2} - \frac{2}{x}\right)^4, x \neq 0$

Answer: We will use Binomial theorem in the given expression $\left(1 + \frac{x}{2} - \frac{2}{x}\right)^4$, $x \neq 0$

$$\begin{split} &\left[\left(1 + \frac{x}{2} \right) - \frac{2}{x} \right]^4 \\ &= {}^4C_0 \left(1 + \frac{x}{2} \right)^4 - {}^4C_1 \left(1 + \frac{x}{2} \right)^3 \left(\frac{2}{x} \right) + {}^4C_2 \left(1 + \frac{x}{2} \right)^2 \left(\frac{2}{x} \right)^2 - {}^4C_3 \left(1 + \frac{x}{2} \right) \left(\frac{2}{x} \right)^3 + {}^4C_4 \left(\frac{2}{x} \right)^4 \\ &= \left(1 + \frac{x}{2} \right)^4 - 4 \left(1 + \frac{x}{2} \right)^3 \left(\frac{2}{x} \right) + 6 \left(1 + x + \frac{x^2}{4} \right) \left(\frac{4}{x^2} \right) - 4 \left(1 + \frac{x}{2} \right) \left(\frac{8}{x^3} \right) + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{24}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} - \frac{16}{x^2} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x^4} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^4} + \frac{24}{x^4} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x^4} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^4} + \frac{24}{x^4} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x^4} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^4} + \frac{24}{x^4} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 - \frac{8}{x^4} \left(1 + \frac{x}{2} \right)^3 + \frac{8}{x^4} + \frac{24}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 + \frac{8}{x^4} + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 + \frac{16}{x^4} \\ &= \left(1 + \frac{x}{2} \right)^4 \\ &=$$

Now, we will use again Binomial theorem, then

$$\left(1 + \frac{x}{2}\right)^4 = {}^4C_0(1)^4 + {}^4C_1(1)^3\left(\frac{x}{2}\right) + {}^4C_2(1)^2\left(\frac{x}{2}\right)^2 + {}^4C_3(1)^1\left(\frac{x}{2}\right)^3 + {}^4C_4\left(\frac{x}{2}\right)^3$$

$$= 1 + 4 \cdot \frac{x}{2} + 6 \cdot \frac{x^2}{4} + 4 \cdot \frac{x^3}{8} + \frac{x^4}{16}$$

$$= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$

$$= 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$

$$= 1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8}$$

From equation (1), (2) & (3)

$$\begin{bmatrix} \left(1 + \frac{x}{2}\right) - \frac{2}{x} \end{bmatrix}^4$$

= $1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} \left(1 + \frac{3x}{2} + \frac{3x^2}{4} + \frac{x^3}{8}\right) + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}$
= $1 + 2x + \frac{3}{2}x^2 + \frac{x^3}{2} + \frac{x^4}{16} - \frac{8}{x} - 12 - 6x - x^2 + \frac{8}{x^2} + \frac{24}{x} + 6 - \frac{32}{x^3} + \frac{16}{x^4}$
= $\frac{16}{x} + \frac{8}{x^2} - \frac{32}{x^3} + \frac{16}{x^4} - 4x + \frac{x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16} - 5$

10: Find the expansion of $(3x^2 - 2ax + 3a^2)^3$ using binomial theorem.

Answer: given expression $(3x^2 - 2ax + 3a^2)^3$ can be expressed using of Binomial theorem

Now, we will use again Binomial theorem, then

$$(3x^{2} - 2ax)^{3}$$

= ${}^{3}C_{0}(3x^{2})^{3} - {}^{3}C_{1}(3x^{2})^{2}(2ax) + {}^{3}C_{2}(3x^{2})(2ax)^{2} - {}^{3}C_{3}(2ax)^{3}$

 $= 27x^{6} - 3(9x^{4})(2ax) + 3(3x^{2})(4a^{2}x^{2}) - 8a^{3}x^{3}$ $= 27x^{6} - 54ax^{3} + 36a^{2}x^{4} - 8a^{3}x^{3}$

From equation (1) & (2), we get

$$(3x^{2} - 2ax + 3a^{2})^{3}$$

= 27x⁶ - 54ax⁵ + 36a²x⁴ - 8a³x³ + 81a²x⁴ - 108a³x³ + 117a⁴x² - 54a³x + 27a⁶
= 27x⁶ - 54ax⁵ + 117a²x⁴ - 116a³x³ + 117a⁴x² - 54a³x + 27a⁶