Chapter 8: Binomial Theorem

Exercise 8.1

1 :
The given expression is $(1-2 x)^{5}$
We need to find the binomial expansion of the given expression
The general expansion using binomial theorem is found by $(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{n-k} b^{k}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{k} b^{n-k}$
Substituting $a=1 \& b=-2 x ; n=5$ in the equation
$(1+(-2 x))^{5}=\sum_{k=0}^{5}{ }^{5} C_{k} \cdot 1^{5-k}(-2 x)^{k}$
$(1-2 x)^{5}$
$=\left({ }^{5} C_{0}(1)^{5-0}(-2 x)^{0}\right)+\left({ }^{5} C_{1}(1)^{5-1}(-2 x)^{1}\right)+\left({ }^{5} C_{2}(1)^{5-2}(-2 x)^{2}\right)+\left({ }^{5} C_{3}(1)^{5-3}(-2 x)^{3}\right)+\left({ }^{5} C_{4}(1)^{5-4}(-2 x)^{4}\right)+\left({ }^{5} C_{5}(1)^{5-5}(-2 x)^{5}\right)$
$=(1.1 .1)+(5(1)(-2 x))+\left(\left(\frac{5 x 4}{2}\right) \cdot 1 \cdot 4 x^{2}\right)+\left(\left(\frac{5 \times 4}{2}\right) \cdot 1 \cdot\left(-8 x^{3}\right)\right)+\left(5(1)\left(16 x^{4}\right)\right)+\left(1 \cdot(1)\left(-32 x^{5}\right)\right) \quad \because{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}$
$=1-10 x+\left(10 \cdot 4 x^{2}\right)+\left(10 \cdot\left(-8 x^{3}\right)\right)+\left(80 x^{4}-32 x^{5}\right)$
$=1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$
is the expansion of $(1-2 x)^{5}$.

2 :
The given expression is $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$
We need to find the binomial expansion of the given expression
The general expansion using binomial theorem is found by $(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{n-k} b^{k}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{k} b^{n-k}$
Substituting $a=\frac{2}{x} \& b=\frac{-x}{2} ; n=5$ in the equation

$$
\begin{aligned}
& \left(\frac{2}{x}+\left(\frac{-x}{2}\right)\right)^{5}=\sum_{k=0}^{5}{ }^{5} C_{k}\left(\frac{2}{x}\right)^{5-k}\left(\frac{-x}{2}\right)^{k} \\
& \left(\frac{2}{x}-\frac{x}{2}\right)^{5} \\
& =\left({ }^{5} C_{0}\left(\frac{2}{x}\right)^{5-0}\left(\frac{-x}{2}\right)^{0}\right)+\left({ }^{5} C_{1}\left(\frac{2}{x}\right)^{5-1}\left(\frac{-x}{2}\right)^{1}\right)+\left({ }^{5} C_{2}\left(\frac{2}{x}\right)^{5-2}\left(\frac{-x}{2}\right)^{2}\right)+\left({ }^{5} C_{3}\left(\frac{2}{x}\right)^{5-3}\left(\frac{-x}{2}\right)^{3}\right)+\left({ }^{5} C_{4}\left(\frac{2}{x}\right)^{5-4}\left(\frac{-x}{2}\right)^{4}\right. \\
& =\left(1 \cdot \frac{32}{x^{5}} \cdot 1\right)+\left(5 \cdot \frac{16}{x^{4}} \cdot\left(\frac{-x}{2}\right)\right)+\left(\left(\frac{5 x 4}{2}\right) \cdot \frac{8}{x^{3}} \cdot\left(\frac{x^{2}}{4}\right)\right)+\left(\left(\frac{5 x 4}{2}\right) \cdot \frac{4}{x^{2}} \cdot\left(\frac{-x^{3}}{8}\right)\right)+\left(5 \cdot \frac{2}{x} \cdot \frac{x^{2}}{4}\right)+\left(1 \cdot(1)\left(\frac{-x}{2}\right)\right) \quad \because{ }^{n} C_{r} \\
& =\frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5}{8} x^{3}-\frac{x^{5}}{32}
\end{aligned}
$$

is the expansion of $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$.
3.

The given expression is $(2 x-3)^{6}$
We need to find the binomial expansion of the given expression
The general expansion using binomial theorem is found by $(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{n-k} b^{k}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{k} b^{n-k}$
Substituting $a=2 x \& b=-3 ; n=6$ in the equation
$(2 x-3)^{6}=\sum_{k=0}^{6}{ }^{6} C_{k}(2 x)^{6-k}(-3)^{k}$
$(2 x+(-3))^{6}$
$=\left({ }^{6} C_{0}(2 x)^{6}(-3)^{0}\right)+\left({ }^{6} C_{1}(2 x)^{6-1}(-3)^{1}\right)+\left({ }^{6} C_{2}(2 x)^{6-2}(-3)^{2}\right)+\left({ }^{6} C_{3}(2 x)^{6-3}(-3)^{3}\right)+\left({ }^{6} C_{4}(2 x)^{6-4}(-3)^{4}\right)+\left({ }^{6} C_{5}(2 x)^{6-5}(-3)^{5}\right)+\left({ }^{6} C_{6}(2 x)^{6-6}(-3)^{6}\right)$
$=\left(1 .\left(64 x^{6}\right) \cdot 1\right)+\left(\left(32 x^{5}\right)(-18)\right)+\left(\left(\frac{6 \times 5}{2}\right)\left(16 x^{4}\right) .9\right)+\left(\left(\frac{6 \times 5 \times 4}{3}\right)\left(8 x^{3}\right)(-27)\right)+\left(\left(\frac{6 \times 5}{2}\right)\left(4 x^{2}\right)(81)\right)+(6 .(2 x)(-243))+729 \quad \because^{n} C_{r}=\frac{n!}{(n-r)!r!}$
$=64 x^{6}-576 x^{5}+2160 x^{4}+8640 x^{3}+4860 x^{2}-2916 x+729$
is the expansion of $(2 x-3)^{6}$.
4.

The given expression is $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$
We need to find the binomial expansion of the given expression
The general expansion using binomial theorem is found by $(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{n-k} b^{k}=\sum_{k=0}^{n}{ }^{n} C_{k} a^{k} b^{n-k}$

Learn
Substituting $a=\frac{x}{3} \& b=\frac{1}{x} ; n=5$ in the equation

$$
\begin{aligned}
& \left(\frac{x}{3}+\frac{1}{x}\right)^{5}=\sum_{k=0}^{5} C_{k}\left(\frac{x}{3}\right)^{5-k}\left(\frac{1}{x}\right)^{k} \\
& =\left({ }^{5} C_{0}\left(\frac{x}{3}\right)^{5-0}\left(\frac{1}{x}\right)^{0}\right)+\left({ }^{5} C_{1}\left(\frac{x}{3}\right)^{5-1}\left(\frac{1}{x}\right)^{1}\right)+\left({ }^{5} C_{2}\left(\frac{x}{3}\right)^{5-2}\left(\frac{1}{x}\right)^{2}\right)+\left({ }^{5} C_{3}\left(\frac{x}{3}\right)^{5-3}\left(\frac{1}{x}\right)^{3}\right)+\left({ }^{5} C_{4}\left(\frac{x}{3}\right)^{5-4}\left(\frac{1}{x}\right)^{4}\right)+\left({ }^{5} C_{5}\left(\frac{x}{3}\right)^{5-5}\left(\frac{1}{x}\right)^{5}\right) \\
& =\left(1 \cdot \frac{x^{5}}{243} \cdot 1\right)+\left(5 \cdot \frac{x^{4}}{81} \cdot\left(\frac{1}{x}\right)\right)+\left(\left(\frac{5 x 4}{2}\right) \cdot \frac{x^{3}}{27} \cdot\left(\frac{1}{x^{2}}\right)\right)+\left(\left(\frac{5 \times 4}{2}\right) \cdot \frac{x^{2}}{9} \cdot\left(\frac{1}{x^{3}}\right)\right)+\left(5 \cdot \frac{x}{3} \cdot\left(\frac{1}{x^{4}}\right)\right)+\left(1 \cdot \frac{x}{3}\left(\frac{1}{x^{5}}\right)\right) \quad \because{ }^{n} C_{r}=\frac{n!}{(n-r)!r!} \\
& =\frac{x^{5}}{243}+\frac{5 x^{3}}{81}+\frac{10 x}{27}+\frac{10}{9 x}+\frac{5}{3 x^{3}}+\frac{1}{x^{5}}
\end{aligned}
$$

is the expansion of $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$.

Exercise 8.2

1. Find the coefficient of x^{5} in $(x+3)^{8}$

Solution:
It is known that $(r+1)^{t h}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Assuming that x^{5} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+3)^{8}$, we obtain $T_{r+1}={ }^{8} C_{r}(x)^{8-r}(3)^{r}$

Comparing the indices of x in x^{5} and in T_{r+1},
we obtain $r=3$
Thus, the coefficient of x^{5} is
${ }^{n} C_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}$
$=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 5!} \cdot 3^{3}$
$=1512$
2. Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$

Infinity

Learn

Solution:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{t h}$ term of the expansion $(a-2 b)^{12}$, we obtain
$T_{r+1}={ }^{12} C_{r}(a)^{12-r}(-2 b)^{r}$
$={ }^{12} C_{r}(-2)^{r}(a)^{12-r}(b)^{r}$
Comparing the indices of a and b in $a^{5} b^{7}$ and in T_{r+1},
we obtain $r=7$
Thus, the coefficient of $a^{5} b^{7}$ is

$$
\begin{aligned}
& { }^{12} C_{7}(-2)^{7}=\frac{12!}{7!5!} \times 2^{7} \\
& =\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!} \cdot 2^{7} \\
& =-(792)(128) \\
& =-101376
\end{aligned}
$$

3. Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$

Solution:

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Thus, the general term in the expansion of $\left(x^{2}-y^{6}\right)$ is
$T_{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}$
$T_{r+1}=(-1)^{r}{ }^{6} C_{r} \cdot x^{12-2 r} \cdot y^{r}$
4. Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$

Solution:

Infinity

Learn
It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is
$T_{r+1}={ }^{12} C_{r}\left(x^{2}\right)^{12-r}(-y x)^{r}$
$T_{r+1}=(-1)^{r}{ }^{12} C_{r} \cdot x^{24-2 r} \cdot y^{r} \cdot x^{r}$
$T_{r+1}=(-1)^{r}{ }^{12} C_{r} \cdot x^{24-r} \cdot y^{r}$
5. Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.

Solution:
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Thus, the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$ is
$T_{4}=T_{3+1}={ }^{n} C_{3}(x)^{12-3}(-2 y)^{3}$
$=(-1) \cdot\left(\frac{12!}{3!9!}\right) \cdot x^{9} \cdot(2)^{3} \cdot y^{3}$
$=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} x^{9} y^{3}$
$=-1760 x^{9} y^{3}$
6. Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Solution:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Thus, the $13^{\text {th }}$ terms in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is
$T_{13}=T_{12+1}={ }^{18} C_{12}(9 x)^{18-12}\left(-\frac{1}{3 \sqrt{x}}\right)^{12}$
$=(-1)^{12} \cdot\left(\frac{18!}{12!6!}\right)(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$
$=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!\cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6} \cdot\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right)$

Learn
$=18564$
7. Find the middle terms in the expansions of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Solution:

It is known that in the expansion of $(a+b)^{n}$, if n is odd, then there are two middle terms, namely $\left(\frac{n+1}{2}\right)^{\text {th }}$ term and $\left(\frac{n+1}{2}+1\right)^{\text {th }}$.

Therefore, the middle terms in the expansion of the expansion $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{\text {th }}=4^{\text {th }}$ term and $\left(\frac{7+1}{2}+1\right)^{\text {th }}=5^{\text {th }}$ term
$T_{4}=T_{3+1}={ }^{7} C_{3}(3)^{7-3}\left(-\frac{x^{3}}{6}\right)^{3}$
$=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}}$
$=-\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!\cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{9}$
$=-\frac{105}{8} x^{9}$
$T_{5}=T_{4+1}={ }^{7} C_{3}(3)^{7-3}\left(-\frac{x^{3}}{6}\right)^{3}$
$=(-1)^{4} \frac{7!}{3!4!} \cdot 3^{3} \cdot \frac{x^{12}}{6^{4}}$
$=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!\cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}$
$=\frac{35}{48} x^{12}$
Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Infinity

 Learn8. Find the middle terms in the expansions of $\left(\frac{x}{3}+9 y\right)^{10}$.

Solution:
It is known that in the expansion of $(a+b)^{n}$, if n is even, then there are two middle terms $\left(\frac{n+1}{2}\right)^{\text {th }}$ term.
Therefore, the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$
$T_{6}=T_{5+1}={ }^{10} C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5}$
$=\frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{5}} \cdot 9^{5} \cdot y^{5}$
$=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot x^{5} \cdot y^{5}$
$=252 \times 3^{5} \cdot x^{5} \cdot y^{5}$
$=61236 x^{5} y^{5}$
Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$.
9. In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

Solution:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

Assuming that a^{m} occurs in the $(r+1)^{t h}$ term of the expansion $(1+a)^{m+n}$, we obtain
$T_{r+1}={ }^{m+n} C_{r}(1)^{m+n-r}(a)^{r}$
$={ }^{m+n} C_{r} a^{r}$
Comparing the indices of a in a^{m} and in T_{r+1}, we obtain
$r=m$
Therefore, the coefficient of a^{m} is
${ }^{m+n} C_{m}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m+n)!}{m!n!}$
Assuming that a^{n} occurs in the $(k+1)^{t h}$ term of the expansion $(1+a)^{m+n}$, we obtain
$T_{k+1}={ }^{m+n} C_{k}(1)^{m+n-k}(a)^{k}={ }^{m+n} C_{k}(a)^{k}$
Comparing the indices of a in a^{n} and in T_{k+1}, we obtain
$k=n$
Therefore, the coefficient of a^{n} is
${ }^{m+n} C_{m}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!}$
Thus, from (1) and (2), it can be observed that the coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.
10. The coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio $1: 3: 5$. Find n and r.

Solution:

It is known that $(k+1)^{\text {th }}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{k+1}={ }^{n} C_{k} a^{n-k} b^{k}$
Therefore, $(r-1)^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is
$T_{r-1}={ }^{n} C_{r-2}(x)^{n-(r-2)}(1)^{(r-2)}$
$T_{r-1}={ }^{n} C_{r-2}(x)^{n-r+2}$
$(r+1)$ term in the expansion of $(x+1)^{n}$ is
$T_{r+1}={ }^{n} C_{r}(x)^{n-r}(1)^{r}$
$T_{r+1}={ }^{n} C_{r}(x)^{n-r}$
$r^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is
$T_{r}={ }^{n} C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}$
$T_{r}={ }^{n} C_{r-1}(x)^{n-r+1}$
Therefore, the coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$, and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ ${ }^{n} C_{r-2},{ }^{n} C_{r-1}$, and ${ }^{n} C_{r}$ are respectively. Since these coefficients are in the ratio 1:3:5, we obtain
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{1}{3}$ and $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{3}{5}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)(n-r+1)!}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{r-1}{n-r+2}$
$\therefore \frac{r-1}{n-r+2}=\frac{1}{3}$
$\Rightarrow 3 r-3=n-r+2$
$\Rightarrow n-4 r+5=0$
$\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{n!}{(r-1)!(n-r+1)!} \times \frac{r!(n-r)!}{n!}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{r}{n-r+1}$
$\therefore \frac{r}{n-r+1}=\frac{3}{5}$
$\Rightarrow 5 r=3 n-3 r+3$
$\Rightarrow 3 n-8 r+3=0$
Multiplying (1) by 3 and subtracting it from (2), we obtain
$4 r-12=0$
$\Rightarrow r=3$
Putting the value of r in (1), we obtain $n-12+5=0$
$\Rightarrow n=7$
Thus, $n=7$ and $r=3$
11. Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Solution:

It is known that $(k+1)^{\text {th }}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Assuming that x^{n} occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n}$, we obtain
$T_{r+1}={ }^{2 n} C_{r}(1)^{2 n-r}(x)^{r}={ }^{2 n} C_{r}(x)^{r}$
Comparing the indices of x in x^{n} and in T_{r+1}, we obtain $r=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is

$$
\begin{align*}
{ }^{2 n} C_{n} & =\frac{(2 n)!}{n!(2 n-n)!} \\
{ }^{2 n} C_{n} & =\frac{(2 n)!}{n!n!} \\
{ }^{2 n} C_{n} & =\frac{(2 n)!}{(n!)^{2}} \tag{1}
\end{align*}
$$

Assuming that x^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+x)^{2 n-1}$, we obtain

$$
T_{k+1}={ }^{2 n-1} C_{k}(1)^{2 n-1-k}(x)^{k}={ }^{2 n-1} C_{k}(x)^{k}
$$

Comparing the indices of x in x^{n} and T_{k+1}, we obtain $k=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is

$$
\begin{align*}
& { }^{2 n-1} C_{n}=\frac{(2 n-1)!}{n!(2 n-1-n)!} \\
& { }^{2 n-1} C_{n}=\frac{(2 n-1)!}{n!(n-1)!} \\
& { }^{2 n-1} C_{n}=\frac{2 n(2 n-1)!}{2 n \cdot n!(n-1)!} \\
& { }^{2 n-1} C_{n}=\frac{2 n!}{2 \cdot n!\cdot n!} \\
& { }^{2 n-1} C_{n}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \quad . \tag{2}
\end{align*}
$$

From (1) and (2), it is observed that

$$
\frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n}
$$

$$
\Rightarrow{ }^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)
$$

Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Hence, proved.
12. Find a positive value of \mathbf{m} for which the coefficient of \mathbf{x}^{2} in the expansion $(\mathbf{1}+\mathbf{x})^{m}$ is 6 .

Solution:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.

Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+x)^{m}$, we obtain
$T_{r+1}={ }^{m} C_{r}(1)^{m-r}(x)^{r}={ }^{m} C_{r}(x)^{r}$
Comparing the indices of x in x^{2} and in T_{r+1}, we obtain $r=2$

Therefore, the coefficient of x^{2} is ${ }^{m} C_{2}$
It is given that the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .
$\therefore{ }^{m} C_{2}=6$
$\Rightarrow \frac{m!}{2!(m-2)!}=6$
$\Rightarrow \frac{m(m-1)(m-2)!}{2 \times(m-2)!}=6$
$\Rightarrow m(m-1)=12$
$\Rightarrow m^{2}-m-12=0$
$\Rightarrow m^{2}-4 m+3 m-12=0$
$\Rightarrow m(m-4)+3(m-4)=0$
$\Rightarrow(m-4)(m+3)=0$
$\Rightarrow(m-4)=0$ or $(m+3)=0$
$\Rightarrow m=4$ or $m=-3$
Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4 .

1: Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729,7290 , and 30375 respectively.

Answer: We know that $(\mathrm{r}+1)^{\text {th }}$ term, $\left(\mathrm{T}_{\mathrm{r}+1}\right)$, from the binomial expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ is given as $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{a}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$

The first three terms of the expansion are given as 729,7290 , and 30375 respectively. So, we obtain
$\mathrm{T}_{1}={ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}-0} \mathrm{~b}^{0}=\mathrm{a}^{\mathrm{n}}=729$.
$\mathrm{T}_{2}={ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{1}=\mathrm{n} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}=7290$.
$\mathrm{T}_{3}={ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}=\frac{\mathrm{n}(\mathrm{n}-1)}{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}=30375$
(2) / (1), we get
$\frac{n \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}}{\mathrm{a}^{\mathrm{n}}}=\frac{7290}{729}$
$\Rightarrow \frac{\mathrm{nb}}{\mathrm{a}}=10$.
(3) / (4), we get
$\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{2}}{2 \mathrm{na}^{\mathrm{n}-1} \mathrm{~b}}=\frac{30375}{7290}$
$\Rightarrow \frac{(\mathrm{n}-1) \mathrm{b}}{2 \mathrm{a}}=\frac{30375}{7290}$
$\Rightarrow \frac{(\mathrm{n}-1) \mathrm{b}}{\mathrm{a}}=\frac{30375 \times 2}{7290}=\frac{25}{3}$
$\Rightarrow \frac{\mathrm{nb}}{\mathrm{a}}-\frac{\mathrm{b}}{\mathrm{a}}=\frac{25}{3}$
$\Rightarrow 10-\frac{\mathrm{b}}{\mathrm{a}}=\frac{25}{3} \quad[\mathrm{Using}(4)]$
$\Rightarrow \frac{\mathrm{b}}{\mathrm{a}}=10-\frac{25}{3}=\frac{5}{3}$.
From equation (4) \& (5), we get
n. $\frac{5}{3}=10$
$\Rightarrow \mathrm{n}=6$
Put $n=6$ in equation (1), we get a^{6}
$=729$
$\Rightarrow a=\sqrt[6]{729}=3$
From equation (5), we get
$\frac{\mathrm{b}}{3}=\frac{5}{3} \Rightarrow \mathrm{~b}=5$
Thus, $\mathrm{a}=3, \mathrm{~b}=5$, and $\mathrm{n}=6$

2: Find a if the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are equal.

Infinity

 LearnAnswer: We know that $(\mathrm{r}+1)^{\text {th }}$ term, $\left(\mathrm{T}_{\mathrm{r}+1}\right)$, from the binomial expansion of $(\mathrm{a}+\mathrm{b})^{\mathrm{n}}$ is given as $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{a}-\mathrm{r}} \mathrm{b}^{\mathrm{r}}$

Let x^{2} occur in the $(\mathrm{r}+1)^{\text {th }}$ term, of the expansion $(3+\mathrm{ax})^{9}$, we get
$\mathrm{T}_{\mathrm{r}+1}={ }^{9} \mathrm{C}_{\mathrm{r}}(3)^{9-\mathrm{r}}(\mathrm{ax})^{\mathrm{r}}={ }^{9} \mathrm{C}_{\mathrm{r}}(3)^{9-\mathrm{r}} \mathrm{a}^{r} \mathrm{x}^{\mathrm{r}}$
Now, we compare the indices of x in x^{2} in T_{r+1}, we get
$\mathrm{r}=2$
So, the coefficient of x^{2} is

$$
{ }^{9} C_{2}(3)^{9-2} a^{2}=\frac{9!}{2!7!}(3)^{7} a^{2}=36(3)^{7} a^{2}
$$

Let x^{3} have in $(\mathrm{k}+1)^{\text {th }}$ term from the expansion $(3+\mathrm{ax})^{9}$, we get
$\mathrm{T}_{\mathrm{k}+1}={ }^{9} \mathrm{C}_{\mathrm{k}}(3)^{9-\mathrm{k}}(\mathrm{ax})^{\mathrm{k}}={ }^{9} \mathrm{C}_{\mathrm{k}}(3)^{9-\mathrm{k}} \mathrm{a}^{\mathrm{k}} \mathrm{x}^{\mathrm{k}}$
Now, we compare the indices of x in x^{3} in T_{k+1} we get
$\mathrm{k}=3$
So, the coefficient of x^{3} is

$$
{ }^{9} C_{3}(3)^{9-3} a^{3}=\frac{9!}{3!6!}(3)^{6} a^{3}=84(3)^{6} a^{3}
$$

Also, we know the coefficient of x^{2} and x^{3} are same
$84(3)^{6} \mathrm{a}^{3}=36(3)^{7} \mathrm{a}^{2}$
$\Rightarrow 84 \mathrm{a}=36 \times 3$
$\Rightarrow \mathrm{a}=\frac{36 \times 3}{84}=\frac{104}{84}$
$\Rightarrow \mathrm{a}=\frac{9}{7}$
So, the value of $\mathrm{a}=\frac{9}{7}$

3: Find the coefficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.
Answer: By binomial theorem, the given expression can be expanded as

$$
\begin{aligned}
& (1+2 \mathrm{x})^{6}={ }^{6} \mathrm{C}_{0}+{ }^{6} \mathrm{C}_{1}(2 \mathrm{x})+{ }^{6} \mathrm{C}_{2}(2 \mathrm{x})^{2}+{ }^{6} \mathrm{C}_{3}(2 \mathrm{x})^{3}+{ }^{6} \mathrm{C}_{4}(2 \mathrm{x})^{4}+{ }^{6} \mathrm{C}_{5}(2 \mathrm{x})^{5}+{ }^{6} \mathrm{C}_{6}(2 \mathrm{x})^{6} \\
& =1+6(2 \mathrm{x})+15(2 \mathrm{x})^{2}+20(2 \mathrm{x})^{3}+15(2 \mathrm{x})^{4}+6(2 \mathrm{x})^{5}+(2 \mathrm{x})^{6} \\
& =1+12 \mathrm{x}+60 \mathrm{x}^{2}+160 \mathrm{x}^{3}+240 \mathrm{x}^{4}+192 \mathrm{x}^{5}+64 \mathrm{x}^{6} \\
& (1-\mathrm{x})^{7}={ }^{7} \mathrm{C}_{0}-{ }^{7} \mathrm{C}_{1}(\mathrm{x})+{ }^{7} \mathrm{C}_{2}(\mathrm{x})^{2}-{ }^{7} \mathrm{C}_{3}(\mathrm{x})^{3}+{ }^{7} \mathrm{C}_{4}(\mathrm{x})^{4}-{ }^{7} \mathrm{C}_{5}(\mathrm{x})^{5}+{ }^{7} \mathrm{C}_{6}(\mathrm{x})^{6}-{ }^{7} \mathrm{C}_{7}(\mathrm{x})^{7} \\
& =1-7 \mathrm{x}+21 \mathrm{x}^{2}-35 \mathrm{x}^{3}+35 \mathrm{x}^{4}-21 \mathrm{x}^{5}+7 \mathrm{x}^{6}-\mathrm{x}^{7} \\
& \therefore(1+2 \mathrm{x})^{6}(1-\mathrm{x})^{7} \\
& =\left(1+12 \mathrm{x}+60 \mathrm{x}^{2}+160 \mathrm{x}^{3}+240 \mathrm{x}^{4}+192 \mathrm{x}^{5}+64 \mathrm{x}^{6}\right)\left(1-7 \mathrm{x}+21 \mathrm{x}^{2}-35 \mathrm{x}^{3}+35 \mathrm{x}^{4}-21 \mathrm{x}^{5}+7 \mathrm{x}^{6}-\mathrm{x}^{7}\right)
\end{aligned}
$$

$=171 \mathrm{x}^{5}$
Product in the two bracket is not required.
Those terms which terms are include in X^{5}, are required
Those term which containing x^{5}
So, the product is 171 of the given coefficient x^{5}

4: If a and b are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever n is a positive integer. [Hint: write $a^{n}=(a-b+b)^{n}$ and expand]

Answer: It is required to prove that $\mathrm{a}-\mathrm{b}$ is a factor of $\mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}$,
Now, we will prove that $a^{n}-b^{n}=k(a-b)$, for some natural number k
Let $\mathrm{a}=\mathrm{a}-\mathrm{b}+\mathrm{b}$
$a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$
$={ }^{n} C_{0}(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots+{ }^{n} C_{n-1}(a-b) b^{n-1}+{ }^{n} C_{n} b^{n}$
$=(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots+{ }^{n} C_{n-1}(a-b) b^{n-1}+b^{n}$
$=(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots+{ }^{n} C_{n-1}(a-b) b^{n-1}+b^{n}$
$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+{ }^{n} C_{1}(a-b)^{n-2} b+\ldots+{ }^{n} C_{n-1} b^{n-1}\right]$
$\Rightarrow \mathrm{a}^{\mathrm{n}}-\mathrm{b}^{\mathrm{n}}=\mathrm{k}(\mathrm{a}-\mathrm{b})$
$\mathrm{k}=\left[(\mathrm{a}-\mathrm{b})^{\mathrm{n}-1}+{ }^{\mathrm{n}} \mathrm{C}_{1}(\mathrm{a}-\mathrm{b})^{\mathrm{n}-2} \mathrm{~b}+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1} \mathrm{~b}^{\mathrm{n}-1}\right]$ for some natural number

5: Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$
Answer: By binomial theorem given expression $(a+b)^{6}-(a-b)^{6}$ can solved as

Learn

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{a}^{1} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6} \\
& =\mathrm{a}^{6}+6 \mathrm{a}^{5} \mathrm{~b}+15 \mathrm{a}^{4} \mathrm{~b}^{2}+20 \mathrm{a}^{3} \mathrm{~b}^{3}+15 \mathrm{a}^{2} \mathrm{~b}^{4}+6 \mathrm{ab}^{5}+\mathrm{b}^{6} \\
& (\mathrm{a}-\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}-{ }^{6} \mathrm{C}_{5} \mathrm{a}^{1} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} b^{6} \\
& =\mathrm{a}^{6}-6 \mathrm{a}^{5} \mathrm{~b}+15 \mathrm{a}^{4} \mathrm{~b}^{2}-20 \mathrm{a}^{3} \mathrm{~b}^{3}+15 \mathrm{a}^{2} \mathrm{~b}^{4}-6 \mathrm{ab}^{5}+\mathrm{b}^{6} \\
& \therefore(\mathrm{a}+\mathrm{b})^{6}-(\mathrm{a}-\mathrm{b})^{6}=2\left[6 \mathrm{a}^{5} \mathrm{~b}+20 \mathrm{a}^{3} \mathrm{~b}^{3}+6 \mathrm{~b}^{5}\right] \\
& \mathrm{a}=\sqrt{3} \text { and } \mathrm{b}=\sqrt{2},
\end{aligned}
$$

Put $a=\sqrt{3}$ and $b=\sqrt{2}$,

$$
\begin{aligned}
& (\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2\left[6(\sqrt{3})^{5}(\sqrt{2})+20(\sqrt{3})^{3}(\sqrt{2})^{3}+6(\sqrt{3})(\sqrt{2})^{5}\right] \\
& =2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}] \\
& =2 \times 198 \sqrt{6} \\
& =396 \sqrt{6}
\end{aligned}
$$

6: Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$
Answer: By Binomial theorem, given expression $(x+y)^{4}+(x-y)^{4}$ can be solved as

$$
\begin{aligned}
& (x+y)^{4}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}+{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x-y){ }^{y}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}-{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
& =x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4} \\
& \therefore(\mathrm{x}+\mathrm{y})^{4}+(\mathrm{x}-\mathrm{y})^{4}=2\left(\mathrm{x}^{4}+6 \mathrm{x}^{2} \mathrm{y}^{2}+\mathrm{y}^{4}\right)
\end{aligned}
$$

Put the value of $x=a^{2}$ and $y=\sqrt{a^{2}-1}$

$$
\begin{aligned}
& \left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right] \\
& =2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right] \\
& =2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right] \\
& =2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right] \\
& =2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2
\end{aligned}
$$

7: Find an approximation of $(0.99)^{5}$ using the first three terms of its expansion.

Answer:

Infinity

Learn

$0.99=1-0.01$
$\therefore(0.99)^{5}=(1-0.01)^{5}$
$={ }^{3} \mathrm{C}_{0}(1)^{5}-{ }^{3} \mathrm{C}_{1}(1)^{4}(0.01)+{ }^{5} \mathrm{C}_{2}(1)^{3}(0.01)^{2} \quad$ (approximately)
$=1-5(0.01)+10(0.01)^{2}$
$=1-0.05+0.001$
$=1.001-0.05$
$=0.951$
Value of $(0.99)^{5}$ approx. $=0.951$

8: Find n if the ratio of thefifth term from the beginning to thefifth term from the end in the

 expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{2}}\right)^{\mathrm{n}}$ is $\sqrt{6}: 1$Answer: we know that $(a+b)^{n}={ }^{n} C_{b} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$ $5^{\text {th }}$ term from the beginning $={ }^{\mathrm{n}} \mathrm{C}_{4} \mathrm{a}^{\mathrm{n}-4} \mathrm{~b}^{4}$
$5^{\text {th }}$ term from the end $={ }^{n} C_{n-4} a^{4} b^{n-4}$
So, from the expansion $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{2}}\right)^{\text {n }} 5^{\text {th }}$ term from the beginning $={ }^{\mathrm{n}} \mathrm{C}_{4}(\sqrt[4]{2})^{0-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4} \& 5^{\text {th }}$ term from the end $={ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}-4}$

$$
\begin{align*}
& { }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[3]{3}}\right)^{4}={ }^{n} C_{4} \frac{(\sqrt[3]{2})^{n}}{(\sqrt[4]{2})^{4}} \cdot \frac{1}{3}={ }^{n} C_{4} \frac{(\sqrt[3]{2})^{n}}{2} \cdot \frac{1}{3}=\frac{n!}{6 \cdot 4!(n-4)!}(\sqrt[4]{2})^{n} \cdot \ldots \ldots . . \tag{1}\\
& { }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[3]{3}}\right)^{n-4}={ }^{n} C_{n-4} 2 \cdot \frac{(\sqrt[3]{3})^{4}}{(\sqrt[4]{3})^{n}}={ }^{n} C_{n-4} \cdot 2 \cdot \frac{3}{(\sqrt[3]{3})^{n}}=\frac{6 n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[3]{3})^{n}} .
\end{align*}
$$

We have also given that the ratio of the $5^{\text {th }}$ term from the beginning and the $5^{\text {th }}$ term from the end $=\sqrt{6}: 1$

From equation (1) \& (2), we get

Learn

$$
\begin{aligned}
& \frac{\mathrm{n}!}{6.4!(\mathrm{n}-4)!}(\sqrt[3]{2})^{n}=\frac{6 \mathrm{n}!}{(\mathrm{n}-4)!4!} \cdot \frac{1}{(\sqrt[2]{3})^{n}}=\sqrt{6}: 1 \\
& \Rightarrow \frac{(\sqrt[4]{2})^{n}}{6} \cdot \frac{6}{(\sqrt[4]{3})^{n}}=\sqrt{6: 1} \\
& \Rightarrow \frac{(\sqrt[4]{2})^{\mathrm{n}}}{6} \cdot \frac{(\sqrt[4]{3})^{\mathrm{n}}}{6}=\sqrt{6} \\
& \Rightarrow(\sqrt{6})^{\mathrm{n}}=36 \sqrt{6} \\
& \Rightarrow 6^{\mathrm{n} / 4}=6^{5 / 2} \\
& \Rightarrow \frac{\mathrm{n}}{4}=\frac{5}{2} \\
& \Rightarrow \mathrm{n}-4 \cdot \frac{5}{2}=10
\end{aligned}
$$

So, the value of $\mathrm{n}=10$.

9: Expand using Binomial theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$
Answer: We will use Binomial theorem in the given expression $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$

$$
\begin{align*}
& {\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}} \\
& ={ }^{4} C_{0}\left(1+\frac{x}{2}\right)^{4}-{ }^{4} C_{1}\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+{ }^{4} C_{2}\left(1+\frac{x}{2}\right)^{2}\left(\frac{2}{x}\right)^{2}-{ }^{4} C_{3}\left(1+\frac{x}{2}\right)\left(\frac{2}{x}\right)^{3}+{ }^{4} C_{4}\left(\frac{2}{x}\right)^{4} \\
& =\left(1+\frac{x}{2}\right)^{4}-4\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+6\left(1+x+\frac{x^{2}}{4}\right)\left(\frac{4}{x^{2}}\right)-4\left(1+\frac{x}{2}\right)\left(\frac{8}{x^{3}}\right)+\frac{16}{x^{4}} \\
& =\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{24}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}-\frac{16}{x^{2}}+\frac{16}{x^{4}} \\
& =\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \ldots \ldots(1) \tag{1}
\end{align*}
$$

Now, we will use again Binomial theorem, then

Learn
$\left(1+\frac{x}{2}\right)^{4}={ }^{4} C_{0}(1)^{4}+{ }^{4} C_{1}(1)^{3}\left(\frac{x}{2}\right)+{ }^{4} \mathrm{C}_{2}(1)^{2}\left(\frac{\mathrm{x}}{2}\right)^{2}+{ }^{4} \mathrm{C}_{3}(1)^{1}\left(\frac{\mathrm{x}}{2}\right)^{3}+{ }^{4} \mathrm{C}_{4}\left(\frac{\mathrm{x}}{2}\right)^{4}$
$=1+4 \cdot \frac{x}{2}+6 \cdot \frac{x^{2}}{4}+4 \cdot \frac{x^{3}}{8}+\frac{x^{4}}{16}$
$=1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}$
$\left(1+\frac{x}{2}\right)^{3}={ }^{3} \mathrm{C}_{0}(1)^{3}+{ }^{3} \mathrm{C}_{1}(1)^{2}\left(\frac{\mathrm{x}}{2}\right)+{ }^{3} \mathrm{C}_{2}(1)\left(\frac{\mathrm{x}}{2}\right)^{2}+{ }^{3} \mathrm{C}_{3}\left(\frac{\mathrm{x}}{2}\right)^{3}$
$=1+\frac{3 \mathrm{x}}{2}+\frac{3 \mathrm{x}^{2}}{4}+\frac{\mathrm{x}^{3}}{8} \ldots \ldots \ldots \ldots(3)$
From equation (1), (2) \& (3)
$\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}$
$=1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}\left(1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8}\right)+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
$=1+2 x+\frac{3}{2} x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}-12-6 x-x^{2}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
$=\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}-4 x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-5$

10: Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem.
Answer: given expression $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ can be expressed using of Binomial theorem

$$
\begin{align*}
& {\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}} \\
& ={ }^{3} C_{0}\left(3 x^{2}-2 a x\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)+{ }^{3} C_{2}\left(3 x^{2}-2 a x\right)\left(3 a^{2}\right)^{2}+3 C_{3}\left(3 a^{2}\right)^{3} \\
& =\left(3 x^{2}-2 a x\right)^{3}+3\left(9 x^{4}-12 a x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)+27 a^{6} \\
& =\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6} \\
& =\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6} \ldots \ldots(1) \tag{1}
\end{align*}
$$

Now, we will use again Binomial theorem, then

$$
\begin{aligned}
& \left(3 \mathrm{x}^{2}-2 \mathrm{ax}\right)^{3} \\
& ={ }^{3} \mathrm{C}_{0}\left(3 \mathrm{x}^{2}\right)^{3}-{ }^{3} \mathrm{C}_{1}\left(3 \mathrm{x}^{2}\right)^{2}(2 \mathrm{ax})+{ }^{3} \mathrm{C}_{2}\left(3 \mathrm{x}^{2}\right)(2 \mathrm{ax})^{2}-{ }^{3} \mathrm{C}_{3}(2 \mathrm{ax})^{3}
\end{aligned}
$$

Infinity

Learn
$=27 \mathrm{x}^{6}-3\left(9 \mathrm{x}^{4}\right)(2 \mathrm{ax})+3\left(3 \mathrm{x}^{2}\right)\left(4 \mathrm{a}^{2} \mathrm{x}^{2}\right)-8 \mathrm{a}^{3} \mathrm{x}^{3}$
$=27 x^{6}-54 a x^{3}+36 a^{2} x^{4}-8 a^{3} x^{3}$
From equation (1) \& (2), we get

$$
\begin{aligned}
& \left(3 x^{2}-2 a x+3 a^{2}\right)^{3} \\
& =27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{3} x+27 a^{6} \\
& =27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{3} x+27 a^{6}
\end{aligned}
$$

