
   

 

Chapter 2: Units and Measurement 

 

Fill in the blanks: 

The volume of a cube of side  1 cm is equal to..... 
3

m . The surface area of a solid cylinder of 

radius .  2 0 cm  and height .  10 0 cm  is equal to...  
2

mm . A vehicle moving with a speed of 

–  1
18 km h covers .... m  in  1 s . The relative density of lead is  .11 3 . Its density is .... 

– 3
g cm

or .... 
– 3

kg m . 

Solution: 

1
1  

100
cm m  

Volume of the cube  
3 1 cm  

But, 
31   1   1   1  cm cm cm cm    

1 1 1

100 100 100
m m m

     
       
     

 

3 –6 31   10  cm m   

Hence, the volume of a cube of side 1 cm is equal to 
–6 310  m . 

The total surface area of a cylinder of radius r  and height h is 

   2    S r r h  .  

Given that,  

  2  r cm  

 2  1  r cm   

 2  10  r mm   

 20 r mm  

  10 h cm  

  10  10 h mm   

h  100  mm  

 15072 h   

4 2 1.5  10  h mm   

2 3.14 20 (20 100)S       

Using the conversion, 



   

 

5
1 / /

18
km h m s  

5
18 / 18 5 /

18
km h m s    

Therefore, distance can be obtained using the relation: 

 Distance = Speed × Time  

 5  1Distance    

 5 m  

Hence, the vehicle covers 5m  in 1s . 

Relative density of a substance is given by the relation, 

  
  

  

Density of substance
Relative density

Density of water
  

Density of water 
3 1 /g cm  

Density of lead = Relative density of lead   Density of water 

11.3 1   

311.3 /g cm  

Again, 
1

1  
1000

g kg  

3 –6 31   10  cm m  

3
3 3

6

10
1 /  /

10
g cm kg m




  

3 310 /kg m  

3 3 311.3 /   11.3  10  /g cm kg m    

 

2.2  Fill in the blanks by suitable conversion of units: 

– –     ....   2 2 2 2
1 kg m s g cm s  

   ..... 1 m ly  

– –.    ....  2 2
3 0 m s km h  

   
–– – –  .        ....   .  
2 311 2 2 1

G 6 67 10 N m kg cm s g  

Solution: 



   

 

31   10  kg g  

2 4 21   10  m cm  

2 –2 2 –21     1   1   1 kg m s kg m s    

3 4 2 –2 7 2 –210    10    1   10    g cm s g cm s     

Light year is the total distance travelled by light in one year. 

1        ly Speed of light One year   

   8 3  10  /   365  24  60  60 m s s       

15 9.46  10  m   

15

1
1

9.46 10
m 


 

161.057 10   ly 

–31   10  m km  

Again, 
1

1  
3600

s h  

–1 –11   3600 s h  

 
2–2 –21   3600  s h  

    2–2 –3 –23    3  10    3600  m s km h     

–4 –2 3.88  10   km h   

–21   1   N kg m s  

–3 –11   10  kg g  

3 6 31   10  m cm  

–11 2 –26.67  10    N m kg   

     –11 –2 2 –2 6.67  10  1    1  1 kg m s m s    

 –11 3 –2 6.67  10   1   1   1 kg m s      

     –11 –3 –1 6 3 –2 6.67  10   10    10    1 g cm s      

–8 3 –2 –1 6.67  10    cm s g   



   

 

 

2.3 A calorie is a unit of heat or energy and it equals about .  4 2 J  where  
–      2 2

1J 1 kg m s . 

Suppose we employ a system of units in which the unit of mass equals   α kg , the unit of length 

equals  β m , the unit of time is  γ s . Show that a calorie has a magnitude 
– –.     1 2 2

4 2 α β γ in 

terms of the new units. 

Solution: 

Given that, 

     2 –21   4.2 1  1  1 calorie kg m s  

New unit of mass   kg  

Hence, in terms of the new unit, 
11

1  kg 


   

In terms of the new unit of length,  

11
1 m 



   or 
2 21 m    

And, in terms of the new unit of time, 

11
1 s 



   

2 21 s    

2 21 s    

     –1 –2 2 –1 –2 21   4.2 1  1  1   4.2   calorie          

 

2.4 Explain this statement clearly: 

“To call a dimensional quantity ‘large’ or ‘small’ is meaningless without specifying a standard 

for comparison”. In view of this, reframe the following statements wherever necessary: 

Atoms are very small objects a jet plane moves with great speed the mass of Jupiter is very 

large the air inside this room contains a large number of molecules a proton is much more 

massive than an electron the speed of sound is much smaller than the speed of light. 

Solution: 

Because a dimensionless quantity can be large or tiny in comparison to some standard reference, the 

above assertion is correct. The coefficient of friction, for example, is dimensionless. Sliding friction 

has a higher coefficient than rolling friction, although it is lower than static friction. In comparison to 

a soccer ball, an atom is an extremely little item. A jet plane can go at a faster rate than a bicycle. 

Jupiter's mass is enormous when compared to that of a cricket ball. In comparison to the air in a 



   

 

geometric box, the air in this room includes a huge number of molecules. A proton has a mass that is 

larger than that of an electron. Sound travels at a slower rate than light.  

2.5 A new unit of length is chosen such that the speed of light in vacuum is unity. What is the 

distance between the Sun and the Earth in terms of the new unit if light takes 8  min and 20  s 

to cover this distance? 

Solution: 

Distance between the Sun and the Earth: 

            Speed of light Time taken by light to cover the distance   

Given that in the new unit,  

Speed of light  1 unit  

Time taken,  

  8  20 t min s  

 500 t s  

Distance between the Sun and the Earth  

 1  500   

 500 units  

 

2.6 Which of the following is the most precise device for measuring length: a Vernier calipers 

with 20  divisions on the sliding scale a screw gauge of pitch  1 mm and 100  divisions on the 

circular scale an optical instrument that can measure length to within a wavelength of light? 

Solution: 

A device with minimum count is the most suitable to measure length. 

Least count of Vernier callipers 

    1    –  1   standard division SD vernier division VD  

9
1

10
   

1

10
  

0.01 cm  

Least count of screw gauge = 

  

Pitch

Number of Divisions
  



   

 

1

1000
  

0.001 cm  

Least count of an optical device 
–5   10  Wavelength of light cm   

 0.00001 cm  

Hence, it can be inferred that an optical instrument is the most suitable device to measure length. 

 

2.7 A student measures the thickness of a human hair by looking at it through a microscope of 

magnification 100 . He makes 20  observations and finds that the average width of the hair in 

the field of view of the microscope is .  3 5 mm . What is the estimate on the thickness of hair? 

Solution: 

Magnification of the microscope  100  

Average width of the hair in the field of view of the microscope  3.5 mm  

∴ Actual thickness of the hair is   
3.5

100
 0.035 mm . 

 

2.8 Answer the following: 

You are given a thread and a metre scale. How will you estimate the diameter of the thread? A 

screw gauge has a pitch of .  1 0 mm and 200  divisions on the circular scale. Do you think it is 

possible to increase the accuracy of the screw gauge arbitrarily by increasing the number of 

divisions on the circular scale? 

The mean diameter of a thin brass rod is to be measured by vernier callipers. Why is a set of 

100  measurements of the diameter expected to yield a more reliable estimate than a set of 5  

measurements only? 

Solution: 

Wrap the thread around a smooth, homogeneous rod in such a way that the resulting coils are very 

close together. Using a metre scale, determine the thread's length. The thread's diameter is determined 

by the relationship,  

  

  

Length of thread
Diameter

Number of turns
  

The number of divisions on a circular scale cannot be increased to improve the accuracy of a screw 

gauge. The precision of the circular scale can be improved by increasing the number of divisions, but 

only to a limited amount. 

A collection of 100  measurements is more dependable than a set of  5  measurements because the 

former has many fewer random mistakes than the latter.  



   

 

 

2.9 The photograph of a house occupies an area of .  2
1 75 cm  on a  35 mm slide. The slide is 

projected on to a screen, and the area of the house on the screen is .  2
1 55 m . What is the linear 

magnification of the projector-screen arrangement? 

Solution: 

Area of the house on the slide 
2 1.75 cm  

Area of the image of the house formed on the screen 
2 1.55 m  

4 2 1.55  10  cm   

Arial magnification, 
  

 
  

a

Area of image
m

Area of object
  

41.55
10

1.75
   

 Linear magnifications,  l am m  

41.55
10

1.75
   

94.11  

 

2.10 State the number of significant figures in the following: 

a) .  2
0 007 m  

b) .     24
2 64 10 kg  

c) 
–.   3

0 2370 g cm  

d) .  6 320 J  

e) 
–.   2

6 032 N m  

f) .  2
0 0006032 m  

Solution: 

a) The given quantity is 
20.007 m . 

If the number is less than one, then all zeros on the right of the decimal point (but left to 

the first non-zero) are insignificant. This means that here, two zeros after the decimal are 

not significant. Hence, only 7 is a significant figure in this quantity. 

 



   

 

b) The given quantity is 
242.64  10  kg . 

Here, the power of 10  is irrelevant for the determination of significant figures. Hence, all digits 

i.e., 2,  6  4and  are significant figures. 

 

c) The given quantity is 
–30.2370  g cm . 

For a number with decimals, the trailing zeroes are significant. Hence, besides digits 2,  3  

and 7,  0 that appears after the decimal point is also a significant figure. 

d) The given quantity is 6.320 J . 

The trailing zeroes in a decimal number are crucial. As a result, all four digits in the supplied amount 

are meaningful.  

e) The given quantity is 
–26.032 Nm . 

All zeroes between two non-zero digits are always significant. 

f) The given quantity is 
20.0006032 m . 

The zeroes to the right of the decimal point (but left to the first non-zero) are meaningless if the 

number is less than one. As a result, all three zeroes preceding 6  are not significant figures. Between 

two non-zero digits, all zeros are always meaningful. As a result, the last four numbers are significant 

figures.  

 

2.11 The length, breadth and thickness of a rectangular sheet of metal are .  4 234 m , .  1 005 m , 

and .  2 01 cm  respectively. Give the area and volume of the sheet to correct significant figures. 

Solution: 

Length of sheet,   4.234 l m  

Breadth of sheet,   1.005 b m  

Thickness of sheet,   2.01   0.0201 h cm m   

The given table lists the respective significant figures: 

                  Quantity                      Number           Significant Figure 

                       l 4.234  4  

                       b 1.005  4  

                       h 2.01  3  

Hence, area and volume both must have least significant figures i.e. 3 . 

Surface area of the sheet   2           l b b h h l       

  2 4.234  1.005  1.005  0.0201  0.0201  4.234       



   

 

  2 4.25517  0.02620  0.08510    

 2  4.360   

2 8.72 m  

Volume of the sheet      l b h    

 4.234  1.005  0.0201    

3 0.0855 m  

This number has only 3 significant figures i.e., 8,  5,   5and . 

 

2.12 The mass of a box measured by a grocer’s balance is .  2 300 kg . Two gold pieces of masses 

.  20 15 g  and .  20 17 g are added to the box. What is  

(a) The total mass of the box,  

(b) The difference in the masses of the pieces to correct significant figures? 

Solution: 

Mass of grocer’s box  2.300 kg  

Mass of gold piece I  20.15   0.02015 g kg   

Mass of gold piece II  20.17   0.02017 g kg   

Total mass of the box  

 2.3  0.02015  0.02017    

 2.34032 kg  

In addition, the final result should retain as many decimal places as there are in the number with the 

least decimal places. Hence, the total mass of the box is 2.3 kg . 

Difference in masses  

 20.17 –  20.15  

 0.02 g  

In subtraction, the final result should retain as many decimal places as there are in the number with 

the least decimal places. 

 

2.13 A physical quantity P is related to four observables ,  ,  a b c  and d  as follows: 

 

3 2a b
P

cd
  



   

 

The percentage errors of measurement in ,  ,  a b c  and d  are %, %,  %  %1 3 4 and 2 , 

respectively. What is the percentage error in the quantity P ? If the value of P  calculated using 

the above relation turns out to be .3 763 , to what value should you round off the result?  

Solution: 

 

3 2a b
P

cd
  

3 2 1

2

P a b c d

P a b c d
     

1
100 % 3 100 2 100 100 100 %

2

P a b c d

P a b c d

   
             

   
 

1
3 1 2 3 4 2

2
        

3 6 2 2     

13%  

Percentage error in   13 %P   

Value of P  is given as 3.763 . 

By rounding off the given value to the first decimal place, we get   3.8P  . 

 

2.14 A book with many printing errors contains four different formulas for the displacement y 

of a particle undergoing a certain periodic motion: 

2
    

t

T

 
  

 
y a sin  

    y a sin vt  

    
t

T a

   
    

   

a
y sin  

 
2 2

  2  sin cos
t t

a
T T

  
  

 
y  

a = maximum displacement of the particle,  

v = speed of the particle.  

T = time-period of motion).  

Rule out the wrong formulas on dimensional grounds. 

Solution: 



   

 

Correct: 

2
y  a sin 

t

T

 
  

 
 

Dimension of 
0 1 0    y M L T  

Dimension of 
0 1 0    a M L T  

Dimension of 
0 0 02

sin    
t

M L T
T


  

Dimension of L.H.S = Dimension of R.H.S 

Hence, the given formula is dimensionally correct. 

 

Incorrect  

    y a sin vt  

Dimension of 
0 1 0    y M L T  

Dimension of 
0 1 0    a M L T  

Dimension of 
0 1 –1 0 0 1 0 1 0            vt M L T M L T M L T    

But the argument of the trigonometric function must be dimensionless, which is not so in the given 

case. Hence, the given formula is dimensionally incorrect. 

 

Incorrect: 

    
t

T a

   
    

   

a
y sin  

Dimension of 
0 1 0    y M L T  

Dimension of 
0 1 –1 

a
M LT

T
  

Dimension of 
0 –1 1 

t
M L T

a
  

But the argument of the trigonometric function must be dimensionless, which is not so in the given 

case. Hence, the formula is dimensionally incorrect.  

 

Correct : 

 
2 2

  2  sin cos
t t

a
T T

  
  

 
y  

Dimension of 
0 1 0    y M L T  

Dimension of 
0 1 0    a M L T  



   

 

Dimension of 
0 0 0 

t
M L T

T
  

The dimensions of y and an are the same since the trigonometric function's argument must be 

dimensionless (which is true in this case). As a result, the formula given is dimensionally correct.  

 

2.15 A famous relation in physics relates ‘moving mass’ m to the ‘rest mass’ m0 of a particle in 

terms of its speed v and the speed of light, c. (This relation first arose as a consequence of special 

relativity due to Albert Einstein). A boy recalls the relation almost correctly but forgets where 

to put the constant c. He writes: 

1

2 2(1 )

om
m

v





 

Solution: 

Given the relation,  

1

2 2(1 )

om
m

v





 

Dimension of 
1 0 0 m M L T  

Dimension of 
1 0 0

0  m M L T  

Dimension of 
0 1 –1 v M LT  

Dimension of 
2 0 2 –2 v M L T  

Dimension of 
0 1 –1 c M LT  

Only when the dimensions of L.H.S and R.H.S are the same will the supplied formula be 

dimensionally correct.  

This is only possible when the factor, 

1

2 2(1 )v is dimensionless i.e.,
2(1– )v  is dimensionless. Only if 

2v  is split by 2c  is this possible. As a result, the right relationship is  

12

2
2

(1 )

om
m

v

c





 

 

2.16 The unit of length convenient on the atomic scale is known as an angstrom and is denoted 

by 
10:1 10

o o

A A m .The size of a hydrogen atom is about 0.5Å , what is the total atomic volume 

in m3 of a mole of hydrogen atoms?  

Solution: 

Radius of hydrogen atom,  
–10 0.5 0.5  10

o

r A m    

Volume of hydrogen atom 
34

3
r  



   

 

10 34 22
(0.5 10 )

3 7

     

30 30.524 10 m   

1mole of hydrogen contains 
236.023  10  hydrogen atoms.  

Volume of 1 mole of hydrogen atoms  

23 –30 6.023  10  0.524  10     
–7 3 3.16  10 m   

 

2.17 One mole of an ideal gas at standard temperature and pressure occupies  22.4 L  (molar 

volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen? (Take 

the size of hydrogen molecule to be about 1
o

A  ). Why is this ratio so large? 

Solution: 

Radius of hydrogen atom, 
–10 0.5  0.5  10

o

r A m    

Volume of hydrogen atom 
34

3
r  

10 34 22
(0.5 10 )

3 7

     

30 30.524 10 m   

Now, 1 mole of hydrogen contains 
236.023  10  hydrogen atoms.  

Volume of 1 mole of hydrogen atoms, 
23 –30 6.023  10  0.524  10aV      

–7 3 3.16  10 m   

Molar volume of 1 mole of hydrogen atoms at STP,  
–3 3 22.4   22.4  10mV L m    

3

7

22.4 10

3.16 10

m

a

V

V






 


 

47.08 10   

As a result, the molar volume is 
47.08 10  times the atomic volume. As a result, in hydrogen gas, the 

inter-atomic separation is substantially larger than the size of a hydrogen atom.  

 

2.18 Explain this common observation clearly: If you look out of the window of a fast moving 

train, the nearby trees, houses etc. seem to move rapidly in a direction opposite to the train’s 

motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, 

since you are aware that you are moving, these distant objects seem to move with you). 

Solution: 



   

 

A line of sight is an imaginary line that connects an object with the observer's eye. When we look at 

nearby stationary objects like as trees, houses, and other structures while riding in a moving train, they 

appear to move quickly in the other direction because the line of sight changes so quickly. 

Distant things, such as trees, stars, and other celestial bodies, on the other hand, appear to be 

immobile due to their great distance. As a result, the line of sight does not abruptly change direction.  

 

2.19 The principle of ‘parallax’ in section . .2 3 1 is used in the determination of distances of very 

distant stars. The baseline AB  is the line joining the Earth’s two locations six months apart in 

its orbit around the Sun. That is, the baseline is about the diameter of the Earth’s orbit 
11 3  10 m  . However, even the nearest stars are so distant that with such a long baseline, 

they show parallax only of the order of ”1  (second) of arc or so. A parsec is a convenient unit of 

length on the astronomical scale. It is the distance of an object that will show a parallax of ”1  

(second) of arc from opposite ends of a baseline equal to the distance from the Earth to the Sun. 

How much is a parsec in terms of meters?  

Solution: 

Diameter of Earth’s orbit 
11 3  10 m   

Radius of Earth’s orbit, 
11 1.5  10r m   

Let the distance parallax angle be 
–6 4.847  10 rad  .  

Let the distance of the star be D.  

Parsec is defined as the distance at which the average radius of the Earth’s orbit subtends an angle of  

”1 . 

We have 
r

D
   

11

6

1.5 10

4.847 10

r
D

 


 


 

6 160.309 10 3.09 10 m     

Hence, 
161   3.09  10parsec m  . 

 

2.20 The nearest star to our solar system is .4 29 light years away. How much is this distance in 

terms of parsecs? How much parallax would this star (named Alpha Centauri) show when 

viewed from two locations of the Earth six months apart in its orbit around the Sun? 

Solution: 

Distance of the star from the solar system  4.29 ly  

1 light year is the distance travelled by light in one year.  

1 light year = Speed of light × 1 year  
8 3  10  365  24  60  60       

11 94608 10 m   
114.29   405868.32  10ly m    

161   3.08  10parsec m   



   

 

11

16

405868.32 10
4.29   1.32 

3.08 10
ly parsec


  


 

Using the relation,  

d

D
   

Where, 

Diameter of Earth’s orbit, 

113 10d m   

Distance of the star from the Earth, 

 

11

11

3 10

405868.32 10



 


 

67.39 10 rad   

But,
–61   4.85  10  sec rad   

6
6

6

7.39 10
7.39 10

4.85 10
rad







 


 

1.52o  

 

2.21 Precise measurements of physical quantities are a need of science. For example, to 

ascertain the speed of an aircraft, one must have an accurate method to find its positions at 

closely separated instants of time. This was the actual motivation behind the discovery of radar 

in World War II. Think of different examples in modern science where precise measurements of 

length, time, mass etc. are needed. Also, wherever you can, give a quantitative idea of the 

precision needed. 

Solution: 

It is undeniably true that exact measurements of physical quantities are critical for scientific progress. 

Ultra-shot laser pulses, for example, are used to monitor time intervals in a variety of physical and 

chemical processes (time intervals of 
–1510  s). 

The inter-atomic separation or inter-planer spacing is determined using X-ray spectroscopy. The 

advancement of mass spectrometers has made it feasible to precisely measure the mass of atoms.  

 

2.22 Just as precise measurements are necessary in science, it is equally important to be able to 

make rough estimates of quantities using rudimentary ideas and common observations. 

Think of ways by which you can estimate the following (where an estimate is difficult to obtain, 

try to get an upper bound on the quantity): 

12405868.32 10D m 



   

 

The total mass of rain-bearing clouds over India during the Monsoon the mass of an elephant 

the wind speed during a storm the number of strands of hair on your head the number of air 

molecules in your classroom.  

Solution: 

During monsoons, a metrologist records about 215 cm  of rainfall in India i.e., the height of water 

column,  

  215   2.15 h cm m   

Area of country, 
12 2  3.3  10  A m   

Hence, volume of rain water,  

    V A h   

12 3  7.09  10  m   

Density of water, 
3 –3  1  10   kg m    

Hence, mass of rainwater 
15     7.09  10  V kg     

Hence, the total mass of rain-bearing clouds over India is approximately 
157.09  10  kg . 

Consider a ship of known base area floating in the sea. Measure its depth in sea (say 1d ). 

Volume of water displaced by the ship, 1   bV A d  

Now, move an elephant on the ship and measure the depth of the ship ( 2d ) in this case. 

Volume of water displaced by the ship with the elephant on board, 2 beV Ad  

Volume of water displaced by the elephant 2 1  –  Ad Ad  

Density of water  D  

Mass of elephant  2 1   –  AD d d  

Wind speed during a storm can be measured by an anemometer. As wind blows, it rotates. 

The value of wind speed is determined by the anemometer's revolution in one second.  

Area of the head surface carrying hair  A  

A screw gauge can be used to calculate the diameter and thus the radius of a hair.  

Let it be r . 

Area of one hair 
2 r  

Number of strands of hair 

  

   

Total surface area

Area of one hair
  



   

 

2

A

r
  

Let the volume of the room be V. 

One mole of air at NTP occupies   22.41  

i.e., 
–3 322.4  10  m volume  

Number of molecules in one mole 
23 6.023  10   

Number of molecules in room of volume V 

23

3

6.023 10

22.4 10
V




 


 

26134.915 10 V   

281.35 10 V   

 

2.23 The Sun is a hot plasma (ionized matter) with its inner core at a temperature exceeding 

 107 K , and its outer surface at a temperature of about  6000 K . At these high temperatures, 

no substance remains in a solid or liquid phase. In what range do you expect the mass density of 

the Sun to be, in the range of densities of solids and liquids or gases? Check if your guess is 

correct from the following data: mass of the Sun  .      30
2 0 10 kg , radius of the Sun 

 .      8
7 0 10 m . 

Solution: 

Mass of the Sun, 
30  2.0  10  M kg   

Radius of the Sun, 
8  7.0  10  R m   

Volume of the Sun,  

34
 

3
V R  

 
3

84 22
7.0 10

3 7
     

2488
343 10

21
    

24 31437.3 10 m   

Density of the Sun  

Mass

Volume
  



   

 

30
3 5

24

2.0 10
1.4 10 /

1437.3 10
kg m


 


 

The Sun has a density that is similar to that of solids and liquids. The enormous gravitational 

attraction of the inner layers on the outer layer of the Sun is responsible for the high density.  

 

2.24 When the planet Jupiter is at a distance of .824 7 million kilometers from the Earth, its 

angular diameter is measured to be of arc. Calculate the diameter of Jupiter.  

Solution: 

Distance of Jupiter from the Earth,  

6 824.7  10  D km   

9  824.7  10 m   

Angular diameter 35.72o
635.72 4.874 10 rad    

Diameter of Jupiter d  

Using the relation,  

d

D
   

d D  

9 6824.7 10 35.72 4.872 10      

3143520.76 10   

51.435 10 km   

 

Additional Exercises 

2.25 A man walking briskly in rain with speed v must slant his umbrella forward making an 

angle θ  with the vertical. A student derives the following relation between θ  and v :  tan v 

and checks that the relation has a correct limit: as , θ 0v , 0   as expected. (We are 

assuming there is no strong wind and that the rain falls vertically for a stationary man). Do you 

think this relation can be correct? If not, guess the correct relation. 

Solution:  

Answer is Incorrect:  

On dimensional ground, the relation is tan    

Dimension of R.H.S 
0 1 1    M L T   

Dimension of L.H.S 
0 0 0   M L T  

( The trigonometric function is considered to be a dimensionless quantity)  

Dimension of R.H.S is not equal to the dimension of L.H.S. Hence, the given relation is not correct 

dimensionally.  



   

 

 

2.26 It is claimed that two cesium clocks, if allowed to run for 100  years, free from any 

disturbance, may differ by only about .  0 02 s . What does this imply for the accuracy of the 

standard cesium clock in measuring a time-interval of  1 s ? 

Solution: 

Difference in time of caesium clocks  0.02 s  

Time required for this difference  100 years  

 100  365  24  60  60      

9 3.15  10  s   

In 
93.15  10  s , the caesium clock shows a time difference of 0.02 s . 

In 1 s , the clock will show a time difference of 
9

0.02

3.15 10
s


. 

Hence, the accuracy of a standard caesium clock in measuring a time interval of 1 s  is 

9
9 113.15 10

157.5 10 1.5 10
0.02

s s


     

 

2.27 Estimate the average mass density of a sodium atom assuming its size to be about .2 5  (Use 

the known values of Avogadro’s number and the atomic mass of sodium). Compare it with the 

density of sodium in its crystalline phase: 
–  3

970 kg m . Are the two densities of the same order 

of magnitude? If so, why? 

Solution: 

Diameter of sodium atom = Size of sodium atom  2.5
o

A  

Radius of sodium atom, 
1

 2.5 1.25
2

o o

r A A    

–10 1.25  10  m   

According to the Avogadro hypothesis, one mole of sodium contains 
236.023  10 atoms has a mass 

of  23 g or 
–323  10  kg .  

Mass of one atom 

3

23

23 10

6.023 10
kg





 

Density of sodium atom,  



   

 

3

23

10 3

23 10

6.023 10 
4

3.14 (1.25 10 )
3











  

 

3 34.67 10 kg m    

It is given that the density of sodium in crystalline phase is 
–3970  kg m .  

Hence, the density of sodium atom and the density of sodium in its crystalline phase are not in the 

same order. This is because in solid phase, atoms are closely packed. Thus, the inter-atomic separation 

is very small in the crystalline phase.  

 

2.28 The unit of length convenient on the nuclear scale is a fermi:  
–151   10f m . Nuclear sizes 

obey roughly the following empirical relation: 
1/3

0  r r A where r is the radius of the nucleus, A 

its mass number, and 0r is a constant equal to about, .  1 2 f . Show that the rule implies that 

nuclear mass density is nearly constant for different nuclei. Estimate the mass density of sodium 

nucleus. Compare it with the average mass density of a sodium atom obtained in Exercise. .2 27  

Solution: 

Radius of nucleus r is given by the relation,  
1

3
0r r A …. (i)  

0  1.2 r f  

–15 1.2  10  m   

Volume of nucleus, 
34

 
3

V R
 

3
1

3
0

4

3
r A
 

  
 

 

3

0

4

3
r A  

Now, the mass of a nuclei M is equal to its mass number i.e.  
–27       1.66  10  M A amu A kg     

Density of nucleus,  

  

  

Mass of nucleus

Volume of nucleus
   

27

3

0

1.66 10

4

3

A

r A

 
  



   

 

27
3

3

0

3 1.66 10
/

4
kg m

r

 
  

This relation shows that nuclear mass depends only on constant 0r . As a result, all nuclei's nuclear 

mass densities are almost the same.  

Density of sodium nucleus is given by,  

27

15 3

3 1.66 10

4 3.14 (1.2 10 )
Sodium





 


  
 

184.98
10

21.17
   

17 32.29 10 kg m   

 

2.29 A LASER is a source of very intense, monochromatic, and unidirectional beam of light. 

These properties of a laser light can be exploited to measure long distances. The distance of the 

Moon from the Earth has been already determined very precisely using a laser asa source of 

light. A laser light beamed at the Moon takes .  2 56 s to return after reflection at the Moon’s 

surface. How much is the radius of the lunar orbit around the Earth? 

Solution: 

Time taken by the laser beam to return to Earth after reflection from the Moon  2.56 s  

Speed of light 
8 3  10 /m s   

Time taken by the laser beam to reach Moon 
1

2.56
2

   

1.28 s  

Radius of the lunar orbit  

= Distance between the Earth and the Moon  
8 1.28  3  10    

83.84  10 m   

5 3.84  10 km   

 

2.30 A SONAR (sound navigation and ranging) uses ultrasonic waves to detect and locate 

objects under water. In a submarine equipped with a SONAR the time delay between 

generation of a probe wave and the reception of its echo after reflection from an enemy 

submarine is found to be .  77 0 s . What is the distance of the enemy submarine? (Speed of sound 

in water 
–1 1450  m s ). 

Solution: 

Allow a space of 'S' between the ship and the enemy submarine.   

Sound speed in water  1450 /m s   

Transmission and reception of sonar waves have a time lag  77 s  

Sound waves travel twice as far as the distance between the ship and the submarine during this time 



   

 

lag.  

The amount of time it takes for the sound to reach the submersible is measured in seconds.  

1
77

2
   

38.5 s  

Distance between the ship and the submarine  

  1450  38.5( )S    

 55825 m  

 55.8 km  

 

2.31The farthest objects in our Universe discovered by modern astronomers are so distant that 

light emitted by them takes billions of years to reach the Earth. These objects (known as 

quasars) have many puzzling features, which have not yet been satisfactorily explained. What is 

the distance in km of a quasar from which light takes  .3 0 billion years to reach us?  

Solution: 

Time taken by quasar light to reach Earth  3  billion years  

9 3  10  years  
9 3  10  365  24  60  60 s       

Speed of light 
8 3  10 /m s   

Distance between the Earth and quasar  
8 9( ) ( ) 3  10   3  10  365  24  60  60         

20 283824  10 m   

22 2.8  10 km   

 

2.32 It is a well-known fact that during a total solar eclipse the disk of the moon almost 

completely covers the disk of the Sun. From this fact and from the information you can gather 

from examples .2 3 and 2.4, determine the approximate diameter of the moon. 

Solution: 

The position of the Sun, Moon, and Earth during a lunar eclipse is shown in the given figure.  

 



   

 

Distance of the Moon from the Earth 
8 3.84  10 m   

Distance of the Sun from the Earth 
11 1.496  10 m   

Diameter of the Sun 
9 1.39  10 m   

It can be observed that ΔTRS and ΔTPQ are similar. Hence, it can be written as: 

PQ VT

RS UT
  

9 11

8

1.39 10 1.496 10

3.84 10RS

 



 

61.39 3.84
10

1.496
RS


   

63.57 10 m   

Hence, the diameter of the Moon is 
63.57  10 m . 

 

2.33 A great physicist of this century (P.A.M. Dirac) loved playing with numerical values of 

Fundamental constants of nature. This led him to an interesting observation. Dirac found that 

from the basic constants of atomic physics (c, e, mass of electron, mass of proton) and the 

gravitational constant G, he could arrive at a number with the dimension of time. Further, it 

was a very large number, its magnitude being close to the present estimate on the age of the 

universe ( ~ 15 billion years). From the table of fundamental constants in this book, try to see if 

you too can construct this number (or any other interesting number you can think of). If its 

coincidence with the age of the universe were significant, what would this imply for the 

constancy of fundamental constants? 

Solution: 

One relation consists of some fundamental constants that give the age of the Universe by:  
2

2

2 3

0

1

4

e
t

m m c G 

 
  
 

 

Where,  

t   Age of Universe  

 e   Charge of electrons  

–19  1.6 10e C   

0   Absolute permittivity  

pm   Mass of protons  

–27 1.67  10 kg   

em   Mass of electrons  

–31 9.1  10 kg   

c  Speed of light  



   

 

8 3  10 /m s   

G = Universal gravitational constant  

11 2 –2 6.67  10 Nm kg   

Also, 
9 2 2

0

1
9 10 /

4
Nm C


   

Substituting these values in the equation, we get 

19 4 9 2

31 2 27 8 3 11

(1.6 10 ) (9 10 )

(9.1 10 ) 1.67 10 (3 10 ) 6.67 10
t



  

  


      
 

4
76 18 62 27 24 11(1.6) 81

10
9.1 1.67 27 6.67

     
 

  
 

4
76 18 62 27 24 11(1.6) 81

10
9.1 1.67 27 6.67 365 24 3600

     
 

     
 

9 186 10 10 years    

6  billion years 

 


