
   

 

Chapter 6: WORK, ENERGY AND POWER 
 

Examples 
 

6.1 Find the angle between force (3 4 5 )  F i j k  unit and displacement (5 4 3 )  d i j k

unit. Also find the projection of F on d . 

Solution:  

3(5) 4(4) ( 5)(3)
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x x y y z zF d F d F d   

   
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As a result, cos 16 ni   u tFd   F d  
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6.2 It is well known that a raindrop falls under the influence of the downward gravitational 

force and the opposing resistive force. The latter is known to be proportional to the speed of the 

drop but is otherwise undetermined. Consider a drop of mass 1.00 g  falling from a height

1.00 km . It hits the ground with a speed of 
150.0 m s .

 

 

(a) What is the work done by the gravitational force?  

Solution: The drop's decrease in kinetic energy is 

2

3

1
0

2

1
10 50 50

2

1.25 J

K mv



  

   



 

Where we've assumed the descent is at rest at first. 

Let g  is a constant having value
210 m / s ,  

The gravitational pull does the following work: 

3 310 10 10

10.0 J

gW mgh





  



 

 



   

 

(b) What is the work done by the unknown resistive force? 

Solution: According to the work-energy theorem, 

g rK W W    

Here, rW is the work done on the raindrop by the resistive force. 

1.25 10

8.75 J

r gW K W  

 

 

 

 

 

6.3 A cyclist comes to a skidding stop in 10 m . During this process, the force on the cycle due to 

the road is 200 N  and is directly opposed to the motion.  

(a) How much work does the road do on the cycle? 

Solution: The work done on the bike by the road is the work done on the cycle by the road's stopping 

(frictional) force. The stopping force and the displacement intersect at an angle of 180 ( )rad
. 

So, work done by the road, 

cos

200 10 cos

2000 J

rW Fd 





  

 

 

According to the WE theorem, it is this negative work that draws the cycle to a halt. 

 

 

(b) How much work does the cycle do on the road? 

Solution: 

The cycle, according to Newton's Third Law, exerts an equal and opposite force on the road.  

It has a magnitude of 200 N . The road, on the other hand, does not move.  

As a result, the work done by cycling on the road is nil. 

 

 

6.4 In a ballistics demonstration a police officer fires a bullet of mass 50.0 g with speed 

1200 m s  on soft plywood of thickness 2.00 cm . The bullet emerges with only 10%  of its initial 

kinetic energy. What is the emergent speed of the bullet? 

Solution: The initial kinetic energy of the bullet, 
2 / 2 1000 Jmv  .  

It has a final kinetic energy of 0.1 1000 100 J  .  

If the emergent speed of the bullet is fv  

2

1

1
100 J

2

2 100 J

0.05 kg

63.2 m s

f

f

mv

v










 

The speed is reduced by approx. 68% . 

 

 

6.5 A woman pushes a trunk on a railway platform which has a rough surface. She applies a 

force of 100 N  over a distance of 10 m . Thereafter, she gets progressively tired and her applied 



   

 

force reduces linearly with distance to 50 N . The total distance through which the trunk has 

been moved is 20 m . Plot the force applied by the woman and the frictional force, which is 

50 N  versus displacement. Calculate the work done by the two forces over 20 m . 

Solution:  

 

 
Figure shows a plot of the applied force. 

At 20 m, 50 N( 0)x F   .  

The frictional force f  is | | 50 Nf . 

It opposes motion and acts in the opposite direction of F .  

As a result, it is depicted on the minus side of the force axis. 

The work done by the woman is 

FW Area of the rectangle ABCD  area of the trapezium CEID 

1
100 10 (100 50) 10

2

1000 750

1750 J

FW     

 



 

The frictional force's work is 

fW Area of the rectangle ,AGHI  

( 50) 20 1000 JfW       

The region on the force axis's negative side has a negative sign. 

 

 

6.6 A block of mass 1 kgm  , moving on a horizontal surface with speed 
1

1 2 m sv   enters a 

rough patch ranging from 0.10 mx   to 2.01 mx  . The retarding force rF  on the block in 

this range is inversely proportional to x  over this range, 

r

k
F

x


  for 0.1 2.01 m 0x    for 0.1 mx   and 2.01 mx  , where 0.5 Jk  . What is the 

final kinetic energy and speed rv  of the block as it crosses this patch? 

Solution: 
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Note that the notation ln refers to the natural logarithm to the base e , not the logarithm to the base 

 2 1010 ln log 2.303log .X X X   

 

 

6.7  A bob of mass m is suspended by a light string of length L . It is imparted a horizontal 

velocity 0v  at the lowest point A  such that it completes a semi-circular trajectory in the vertical 

plane with the string becoming slack only on reaching the topmost point,C . This is shown in 

figure. 

 
Obtain an expression for  

(i) iv ;  

Solution: The bob is subjected to two external forces: gravity and string tension ( )T .  

The latter is useless since the bob's displacement is always normal to the string. The bob's potential en

ergy is thus only related to the gravitational pull. The system's entire mechanical energy E
is preserved.  

At the lowest point A , we assume the system's potential energy is zero.  

As a result, at A : 

2

0

1

2
E mv  

2

0
A

mv
T mg

L
  [Newton's Second Law]  



   

 

Here AT is the tension in the string at A . At the highest point C , the string slackens, as the tension in 

the string  cT  becomes 0 . 

At C  

21
2

2
cE mv mgL   

2

cmv
mg

L
  {Newton’s Second Law} 

Here Cv is the speed at C.  

5

2
E mgL  

Equating this to the energy at A  

25

2 2
o

m
mgL v  

or, 
0 5v gL  

 

 

(ii) The speeds at points B  and C ; 

Solution: 

Cv gL  

At B , the energy is 

21

2
BE mv mgL   

Equating this to the energy at A and employing the result from (i), namely
2 5gLov  , 

2 21 1

2 2

5

2

B omv mgL mv

mgL

 



 

3Bv gL   

 

 

(iii) The ratio of the kinetic energies  0/BK K  at B  and C . Comment on the nature of the 

trajectory of the bob after it reaches the point C . 

Solution: The ratio of the kinetic energies at B  and C  is: 

2

2

1
32

1 1

2

B
B

C
C

mv
K

K
mv

   

At point C , The bob's motion is horizontal and to the left as the string grows slack.  

If the connecting thread is severed at this point, the bob will perform a projectile motion with horizont

al projection, similar to a rock kicked horizontally from a cliff's edge.  

Otherwise, the bob will complete the rotation by continuing on its circular route. 

 



   

 

 6.8 To simulate car accidents, auto manufacturers study the collisions of moving cars with 

mounted springs of different spring constants. Consider a typical simulation with a car of mass 

1000 kg  moving with a speed 18.0 km / h  on a smooth road and colliding with a horizontally 

mounted spring of spring constant 
3 16.25 10  N m . What is the maximum compression of the 

spring? 

Solution: 

At maximal compression, the car's kinetic energy is completely transferred into the spring's potential e

nergy. 

A moving car's kinetic energy is 

2

3

4

1

2

1
10 5 5

2

1.25 10  J

K mv

K

K



   

 

 

Here, we changed
118 km h
 to 

15 m s  [
1 136 km h 10 m s  . At maximum compression mx , the 

potential energy V  of the spring   the kinetic energy K  of the moving car from the principle of 

conservation of mechanical energy. 

21

2
mV kx  

2.00 mmx   

We acknowledge that we have exaggerated the problem. The spring is thought to have no bulk.  

The friction on the surface has been estimated to be minimal. 

 

6.9 Consider Example 6.8  taking the coefficient of friction,  , to be 0.5  and calculate the 

maximum compression of the spring. 

Solution: 

Both the spring force and the frictional force operate to counteract the compression of the spring in th

e presence of friction, as shown in figure. 

Rather of the conservation of mechanical energy, we use the work-energy theorem. 

 
The change in kinetic energy is 

21
0

2
f tK K K mv      

The work done by the net force, 

21

2
m mW kx mgx    



   

 

2 21 1

2 2
m mmv kx mgx   

Now
3 3mg 0.5 10 10 5 10  N       (

210.0 m sg  ).  

We get the following quadratic equation in the unknown mx by rearranging the preceding equation. 

2 2

1/2
2 2 2 2

2 0m m

m

kx mgx mv

mg m g mkv
x

k



 

  

    

 

Since mx is positive, we take the positive square root.  

We get what we want by plugging in numerical values. 

1.35 mmx   

The conservation of mechanical energy formula will have to be changed if the two forces on the body 

are a conservative force cF  and a non-conservative force ncF .  

According to the WE theorem, 

   

  

 ( )

c nc

c

nc

nc

F F x K

F x V

K V F x

E F x

   

  

   

  

 

where E is the total mechanical energy.  

f i ncE E W   

here ncW  is the total work done by the non-conservative forces over the path.  

 

 

6.10 Examine Tables . .6 1 6 3  and express  

(a) The energy required to break one bond in DNA in eV: 

Solution: The amount of energy required to break one DNA link is 
20

19

10  J
0.06eV

1.6 10  J / eV




 

0.1eV 100meV.  

 

(b) The kinetic energy of an air molecule  2110 J
 in eV ; 

Solution: An air molecule's kinetic energy equals 
21

19

10  J
0.0062eV

1.6 10  J / eV




 

 

 

(c) The daily intake of a human adult in kilocalories. 

Solution: A day's average human consumption is 
7

3

10  J
2400kcal

4.2 10  J / kcal
 

 



   

 

6.11 An elevator can carry a maximum load of  1800 kg  (elevator + passengers) is moving up 

with a constant speed of 
12 m s . The frictional force opposing the motion is 4000 N . Determine 

the minimum power delivered by the motor to the elevator in watts as well as in horsepower. 

Solution: The elevator's descending force is (1800 10) 4000 22000 NfF mg F       

The motor must be powerful enough to counteract this force. As a result, 

22000 2 44000 W 59hpP      F v  

 

 

6.12 Slowing down of neutrons: In a nuclear reactor a neutron of high speed (typically 
7 110  m s

) must be slowed to 
3 110  m s  so that it can have a high probability of interacting with isotope 

235

92 U  and causing it to fission. Show that a neutron can lose most of its kinetic energy in an 

elastic collision with a light nuclei like deuterium or carbon which has a mass of only a few 

times the neutron mass. The material making up the light nuclei, usually heavy water  2D O  or 

graphite, is called a moderator. 

Solution: The neutron's initial kinetic energy is 

2

1 1 1

1

2
i iK m v  

2

2 21 2
1 1 1 1 1

1 2

1 1

2 2
f f i

m m
K m v m v

m m

 
   

 
 

The kinetic energy lost as a proportion of total kinetic energy is 
2

1 1 2
1

1 1 2

f

i

K m m
f

K m m

 
   

 
 

whereas the moderating nuclei's fractional kinetic energy gain 2 1/f iK K  is 

2 11f f  (elastic collision) } 

 
1 2

2

1 2

4m m

m m



 

For deuterium 2 12m m  and we get 1 1/ 9f   whereas 2 8 / 9f  . Almost 90%  of the neutron's 

energy is travelled to deuterium. For carbon 1 71.6 \ %f  and 2 28.4%f  .  

 

6.13 Consider the collision depicted in Fig. .6 10 to be between two billiard balls with equal 

masses 1 2m m . The first ball is called the cue while the second ball is called the target. The 

billiard player wants to 'sink' the target ball in a corner pocket, which is at an angle 
2 37  . 

Assume that the collision is elastic and that friction and rotational motion are not important. 

Obtain 1 . 

Solution: Because the masses are equivalent, momentum conservation applies. 

1 1 2i f f v v v  

   2

1 1 2 1 2i f f f fv    v v v v  

2 2

1 2 1 22f f f fv v   v v  

  2 2

1 2 1 2 12 cos 37f f f fv v v v       



   

 

Because the collision is elastomeric and 1 2m m  , The conservation of kinetic energy dictates that 

2 2 2

1 1 2i f fv v v   

Now,  1cos 37 0    

1 37 90     

So, 
1 53   

This shows the following: when two equal masses collide in a glancing elastic collision with one of th

em at rest, they will move at right angles to each other after the impact. 

 

 

Exercises 
 

6.1 The sign of work done by a force on a body is important to understand. State carefully if the 

following quantities are positive or negative: 

(a) Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket. 

Solution: Positive. Force and displacement are in the same direction in this example.  

As a result, the indicator of completed job is good. The job is done on the bucket in this example. 

 

(b) Work done by gravitational force in the above case, 

Solution: Negative. 

The direction of force (vertically downward) and displacement (vertically upward) are the polar oppos

ites in this example. As a result, the indication of completed job is negative. 

 

(c) Work done by friction on a body sliding down an inclined plane, 

Solution: Negative 

The work done by frictional force is negative in this scenario because the direction of frictional force i

s opposite the direction of motion. 

 

(d) Work done by an applied force on a body moving on a rough horizontal plane with uniform 

velocity, 

Solution: Positive. The body is travelling on a rough horizontal plane in this image.  

The frictional force resists the body's motion.  

As a result, a uniform force must be given to the body in order to maintain a consistent velocity.  

The work done is positive because the applied force operates in the direction of the body's motion. 

 

(e) Work done by the resistive force of air on a vibrating pendulum in bringing it to rest. 

Solution: Negative. 

Air has a resistive force that operates in the opposite direction of the pendulum's motion. As a result, t

he work completed in this example is negative. 

 

 

6.2 A body of mass 2 kg initially at rest moves under the action of an applied horizontal force of  

7 N  on a table with coefficient of kinetic friction 0.1 . Compute the 

(a) Work done by the applied force in 10 s , 

Solution: Mass of the body, 2 kgm   

Applied force, 7 NF   

Coefficient of kinetic friction, 0.1   



   

 

Initial velocity, 0u   

Time, 10 st   

Newton's second law of motion states that the applied force causes the body to accelerate: 

27
3.5 m / s

2

F
a

m

     

Frictional force is: 

 g

0.1 2 9.8 1.96 N

f m

    
 

The frictional force produces the following acceleration: 

21.96
0.98 m / s

2
a      

Total acceleration of the body: 

23.5 ( 0.98) 2.52 m / s

a a a  

   
 

The equation of motion gives the distance travelled by the body: 

2

2

1

2

1
0 2.52 (10) 126 m

2

s ut at 

    

 

Work done by the applied force, a 7 126 882 JW F s      

 

(b) Work done by friction in10 s , 

Solution: Work done by the friction, f 1.96 126 247 JW F s        

 

(c) Work done by the net force on the body in10 s , 

Solution: Net force 7 ( 1.96) 5.04 N     

Work done by the net force, net 5.04 126 635 JW     

 

(d) Change in kinetic energy of the body in10 s , and interpret your results. 

Solution: The final velocity may be determined using the first equation of motion: 

0 2.52 10 25.2 m / s

v u at 

   
 

Change in kinetic energy, 

 

2 2

2 2 2 2

1 1

2 2

1
2 (25.2) 0 635 J

2

mv mu

v u

 

     

 

 

 

6.3 Given in figure are examples of some potential energy functions in one dimension. The total 

energy of the particle is indicated by a cross on the ordinate axis. In each case, specify the 

regions, if any, in which the particle cannot be found for the given energy. Also, indicate the 



   

 

minimum total energy the particle must have in each case. Think of simple physical contexts for 

which these potential energy shapes are relevant. 

 
Solution:  ;  0x a  

The relationship gives the total energy of a system: 

P.E. K.E

K.E. P.E.

E

E

 

  
 

A body's kinetic energy is a positive number.  

It can't possibly be negative. As a result, at a region where K.E. turns negative, the particle will not ex

ist. 

For x a , the particle's potential energy  0V  exceeds its total energy  E  in the given situation.  

As a result, kinetic energy in this area is negative. As a result, the particle will not be found in this are

a.  

The particle's minimal total energy is zero. 

 

All regions 

In the given case, the potential energy  0V  is more than total energy ( )E  in all regions. 

As a result, the particle will not be found in this area. 



   

 

x a and 1;x b V   

In the given case, the condition regarding the positivity of K.E , is o.k. only in the region between 

x a  and x b . 

In this example, the minimal potential energy is  

1V . 

 1 1K.E. E V E V      

As a result, for the kinetic energy to be positive, the particle's total energy must be larger than 1V . 

As a result, the particle's minimal total energy is  

1 1. ; ;
2 2 2 2

b a a b
V x x V        

In the given case, the potential energy  0V  of the particle becomes greater than the total energy ( )E

for
2 2

2 2

b b
x

a a
x

  

  

 

As a result, the particle will not be found in these areas. 

 

 

6.4 The potential energy function for a particle executing linear simple harmonic motion is 

given by 
2( ) / 2V x kx , where k  is the force constant of the oscillator. For 

10.5 N mk  . The 

graph of  ( )V x  versus x is shown in . .Fig 6 12 . Show that a particle of total energy  1 J moving 

under this potential must 'turn back' when it reaches 2 mx   . 

 

Solution: Total energy of the particle, 1 JE   

Force constant, 
10.5 N mk   

Kinetic energy of the particle, 
21

K
2

mv  

Using conservation law: 

2 21 1
1

2 2

E V K

kx mv

 

 
 

When you 'turn back,' your velocity (and so your K ) becomes zero. 



   

 

2

2 2

1
1

2

1
0.5. 1 4 2

2

kx

x nx nx

 

    

 

As a result, the particle turns back when 2 mx   . 

 

 

6.5 Solution the following: 

 
(a) The casing of a rocket in flight burns up due to friction. At whose expense is the heat energy 

required for burning obtained? The rocket or the atmosphere? 

Solution: 

The burning of a rocket's casing in flight (due to friction) results in the rocket's mass being reduced. 

By using conservation of energy: 

Total Energy (T.E.) = Potential energy (P.E.) + Kinetic energy (K.E.) 

21

2
mgh mv   

The overall energy decreases as the mass of the rocket decreases.  

As a result, the rocket provides the heat energy necessary for the burning. 

 

(b) Comets move around the sun in highly elliptical orbits. The gravitational force on the comet 

due to the sun is not normal to the comet's velocity in general. Yet the work done by the 

gravitational force over every complete orbit of the comet is zero. Why? 

Solution: The force of gravity is a conservative force.  

The work done by the gravitational force across every full orbit of a comet is zero because the work d

one by a conservative force over a closed route is zero. 

 

(c) An artificial satellite orbiting the earth in very thin atmosphere loses its energy gradually 

due to dissipation against atmospheric resistance, however small. Why then does its speed 

mere’s progressively as it comes closer and closer to the earth? 

Solution: 

Because of the decrease in height, the potential energy of an artificial satellite circling the earth reduce

s as it gets closer to it. The decrease in P.E. leads in an increase in K.E. since the total energy of the sy

stem stays constant. As a result, the satellite's velocity rises. However, owing to air friction, the satelli

te's overall energy reduces somewhat. 

 

(d) In figure (i) the man walks 2 m  carrying a mass of 15 kg  on his hands. In figure (ii). He 

walks the same distance pulling the rope behind him. The rope goes over a pulley, and a mass of 

15 kg  hangs at its other end. In which case is the work done greater? 

Solution: Case  i  



   

 

Mass, 15 kgm   

Displacement, 2 ms   

Work done, cosW Fs   

Here,  Angle between force and displacement 

cos 15 2 9.8cos90

0

mgs     


 

Case  ii  

Mass, 15 kg 

Displacement, 2 m

m

s




 

The force applied to the rope and the direction of the rope's displacement are the same in this case. 

Therefore, the angle between them, 0   

Since cos0 1    

Work done, cos 15 9.8 2 294 JW Fs mgsn       

As a result, in the second situation, more work is done. 

 

 

6.6 Underline the correct alternative: 

(a) When a conservative force does positive work on a body, the potential energy of the body 

increases/decreases/remains unaltered. 

Solution: Decreases. 

When a conservative force displaces a body in the direction of force, it puts a positive work on it.  

As a result, the body moves closer to the centre of gravity. It reduces the distance between the two, th

erefore lowering the body's potential energy. 

 

(b) Work done by a body against friction always results in a loss of its kinetic/potential energy. 

Solution: Kinetic energy. 

The velocity of a body is reduced when work is done against the direction of friction.  

As a result, the body's kinetic energy is depleted. 

 

(c) The rate of change of total momentum of a many-particle system is proportional to the 

external force/sum of the internal forces on the system. 

Solution: External force. 

Internal forces, regardless of their direction, cannot cause a change in a body's overall momentum. As 

a result, a many particle system's overall momentum is proportional to the external forces operating 

on it. 

 

(d) In an inelastic collision of two bodies, the quantities which do not change after the collision 

are the total kinetic energy/total linear momentum/total energy of the system of two bodies. 

Solution: Total linear momentum. 

Whether an elastic or inelastic collision occurs, the total linear momentum is always preserved. 

 

 

6.7 State if each of the following statements is true or false. Give reasons for your Solution. 

(a) In an elastic collision of two bodies, the momentum and energy of each body is conserved. 

Solution: False, 

In an elastic collision, the entire energy and momentum of both bodies is preserved, not the energy an

d momentum of each individual body. 



   

 

(b) Total energy of a system is always conserved, no matter what internal and external forces on 

the body are present. 

Solution: False, Internal forces are balanced, yet they do not cause any labour on the body.  

External forces are the ones who can make things happen.  

As a result, external influences have the ability to affect a system's energy. 

 

(c) Work done in the motion of a body over a closed loop is zero for every force in nature. 

Solution: False, 

For a conservation force alone, the work done in the motion of a body across a closed loop is zero. 

 

(d) In an inelastic collision, the final kinetic energy is always less than the initial kinetic energy 

of the system. 

Solution: True, 

The ultimate kinetic energy of an inelastic collision is always smaller than the system's initial kinetic e

nergy. This is because there is always a loss of energy in the form of heat, sound, and other forms of e

nergy in such collisions. 

 

6.8 Solution carefully, with reasons: 

(a) In an elastic collision of two billiard balls, is the total kinetic energy conserved during the 

short time of collision of the balls (i.e. when they are in contact)? 

Solution: No,  

The entire initial kinetic energy of the balls will be equal to the total final kinetic energy of the balls in

 an elastic collision.  

The kinetic energy of the balls is not preserved when they come into touch with each other.  

In reality, the kinetic energy of the balls will be transformed into potential energy during follision. 

 

(b) Is the total linear momentum conserved during the short time of an elastic collision of two 

balls? 

Solution: Yes, in an elastic collision, the system's entire linear momentum is always preserved. 

 

(c) What are the Solutions to (a) and (b) for an inelastic collision? 

Solution: No,  

There is always a loss of kinetic energy in an inelastic collision, i.e. the total kinetic energy of the billi

ard balls before impact is always larger than the total kinetic energy after collision. 

 

(d) If the potential energy of two billiard balls depends only on the separation distance between 

their centers, is the collision elastic or inelastic? (Note, we are talking here of potential energy 

corresponding to the force during collision, not gravitational potential energy). 

Solution: Yes, conservation factors are at work in this situation.  

This is because they rely on the distance between the billiard balls' centres.  

As a result, the collision is pliable.Even in the event of an inelastic collision, the overall linear momen

tum of the billiards balls system will be preserved. 

 

 

6.9 A body is initially at rest. It undergoes one-dimensional motion with constant acceleration. 

The power delivered to it at time t  is proportional to 

(i) 
1/2t  

(ii) t  

(iii) 
3/2t  

(iv) 
2t  



   

 

Solution: (ii) t  

Mass of the body m  

Acceleration of the body a  

The force experienced by the body is provided by the equation: Using Newton's second rule of motion

, the force experienced by the body is given by the equation: 

F ma  

Both m  and a  are constants. As a result, force F  will also be a constant. 

...( )F ma Constant i   

For velocity v , acceleration, 
dv

a
dt

 Constant 

 Constant dv dt

v t

 


 

Where,  is another constant 

...( )v t iii  

Power, P F v   

Using equations ( )i and ( )iii : 

P t  

As a result, P t  

 

 

6.10 A body is moving unidirectional under the influence of a source of constant power. Its 

displacement in time t  is proportional to 

(i) 
1/2t  

(ii) t  

(iii) 
3/2t  

(iv) 
2t  

Solution: (iii) 

3

2t
 

Power, &  P F v  

 Constant ( )
dv

mav mv k
dt

k
vdv dt

m

  

 

 

Integrating both sides: 

2 2

2

v k kt
tv

m m
   

For displacement x  of the body: 

1 1

2 2
2dx k

v t dx k t dt
dt m

    

Here 
2

3

k
k   New constant 

On integrating both sides: 



   

 

3

2

3

2

2

3
x k t

x t



 

 

 

 

6.11 A body constrained to move along the z axis of a coordinate system is subject to a 

constant force F  given by 

2 3 N   F i j k  

Where i , j , k  are unit vectors along the   x y and z axis of the system respectively. What 

is the work done by this force in moving the body a distance of 4 m  along the z axis ? 

Solution: Force, 2 3   F i j kN  

Displacement, m4s  k  

Work done, .W F s  

( 2 3 ) (4 )

0 0 3 4

12 J

    

   



i j k k

 

As a result, work done is 12 J . 

 

 

6.12 An electron and a proton are detected in a cosmic ray experiment, the first with kinetic 

energy 10keV , and the second with 100keV . Which is faster, the electron or the proton? 

Obtain the ratio of their speeds. (Electron mass
319.11 10  kg  , proton mass 

271.67 10  kg  , 

191eV 1.60 10  J   

Solution: The Electron is faster; Ratio of their speeds is 13.54 :1 

Mass of the electron, 
31

e 9.11 10  kgm    

Mass of the proton, 
27

p 1.67 10  kgm    

. .K E  of the electron, 
4

Ke 10keV 10 eVE    

4 19

15

10 1.60 10

1.60 10  J





  

 
 

. .K E of the proton, 
5 14

K 100keV 10 eV 1.60 10  JE      

The kinetic energy of an electron ve is determined by the following relationship: 

2

Ke c

Ke

15
7

31

1

2

2

2 1.60 10
5.93 10  m / s

9.11 10

e

E mv

E
v

m








 

 
  



 



   

 

2

Kp p

14
6

27

1

2

2

2 1.6 10
4.38 10  m / s

1.67 10

p

Kp

p

E mv v

E

m

v









 
   



 

As a result, the electron travels quicker than the proton. 

The following is the ratio of their speeds: 
7

c

6

p

5.93 10
13.54 :1

4.38 10

v

v


 


 

 

 

6. 13 A rain drop of radius 2 mm  falls from a height of 500 m  above the ground. It falls with 

decreasing acceleration (due to viscous resistance of the air) until at half its original height, it 

attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the 

work done by the gravitational force on the drop in the first and second half of its journey? 

What is the work done by the resistive force in the entire journey if its speed on reaching the 

ground is 
110 m s ? 

Solution: Rain drop’s radius is , 
32 mm 2 10  mr     

Rain drop’s Volume, 

 

3

3
3 3

4

3

4
3.14 2 10  m

3

V r

 



   

 

Density of water, 
3 310  kg m   

Rain drop’s Mass, m V  

 
3

3 34
3.14 2 10 10  kg

3

      

Gravitational force,  gF m  

 
3

3 34
3.14 2 10 10 9.8 N

3

       

In the first half of its travel, the gravitational force did the following work on the drop: 

 

1

3
3 34

3.14 2 10 10 9.8 250
3

0.082 J

W Fs





      



 

This quantity of effort is the same as the work done on the drop by gravity in the second half of its jou

rney, i.e. 

I, 0.082 JW   

The total energy of the rain drop will remain the same if there is no resistive force present, according t

o the law of conservation of energy. 

Total energy at the top, 



   

 

 

T

3
3 3 5

0

4
3.14 2 10 10 9.8 500 10

3

0.164 J

E mgh

 

 

       



 

10m / s.  
The drop hits the ground at a velocity of due to the presence of a resistive force. 

Total energy at the ground: 

 

2

G

3
3 3 2

3

1
0

2

1 4
3.14 2 10 10 9.8 (10)

2 3

1.675 10  J

E mv





 

       

 

 

Resistive force G T 0.162 JE E     

 

 

6.14 A molecule in a gas container hits a horizontal wall with speed 
1200 m s and angle 30

 

with the normal, and rebounds with the same speed. Is momentum conserved in the collision? Is 

the collision elastic or inelastic? 

Solution: Collision is elastic, therefore yes. 

Whether the collision is elastic or inelastic, the gas molecule's momentum is preserved. 

The gas molecule has a velocity of 200 m / s   and collides with the container's stationary wall,  

rebounding at the same speed. 

It demonstrates that the wall's rebound velocity stays zero.  

As a result, the molecule's entire kinetic energy is preserved during the impact.  

An elastic collision is exemplified by the above collision. 

 

 

6.15 A pump on the ground floor of a building can pump up water to fill a tank of volume 
330 m in 15 min . If the tank is 40 m  above the ground, and the efficiency of the pump is 30% . 

How much electric power is consumed by the pump? 

Solution: Volume of the tank, 
330 mV   

Time of operation, 15 min 15 60 900 st      

Height of the tank, 40 mh   

Efficiency of the pump, 30%   

Density of water, 
3 310  kg / m   

Mass of water, 
330 10  kgm V    

Output power: 

0

3
3

 Work done 

 Time 

30 10 9.8 40
13.067 10  W

900

mgh
P

t
 

  
  

 

For input power iP , efficiency , 

0 30%
i

P

P
    



   

 

3

5

13.067
100 10

30

0.436 10  W

43.6 kW

iP   

 



 

 

 

6.16 Two identical ball bearings in contact with each other and resting on a frictionless table are 

hit head-on by another ball bearing of the same mass moving initially with a speed V . If the 

collision is elastic, which of the following is a possible result after collision? 

 
Solution: Case (ii) 

It is clear that the overall momentum before and after impact is constant in each situation. 

The total kinetic energy of a system remains constant before and after an elastic collision.Before the i

mpact, the system's total kinetic energy was: 

 

2

2

1 1
(2 )0

2 2

1

2

mV m

mV

 



 

 

 

6.17 The bob A  of a pendulum released from 30
 to the vertical hits another bob B of the same 

mass at rest on a table as shown in figure. How high does the bob A  rise after the collision? 

Neglect the size of the bobs and assume the collision to be elastic. 



   

 

 
Solution: Bob A  will not rise after the collision. 

After an elastic collision between two equal masses, one of which is stationary and the other of which 

is travelling with a velocity, the stationary mass obtains the same velocity as the moving body, while t

he moving mass comes to a complete stop.  

A full transfer of momentum from the advancing mass to the stationary mass occurs in this situation. 

As a result, bob A  of mass m , Will come to a halt after colliding with a bob

B  of same mass, whereas bob B  will travel at the same velocity as bob A  at the time of contact. 

 

 

6.18 The bob of a pendulum is released from a horizontal position. If the length of the pendulum 

Is 1.5 m , what is the speed with which the bob arrives at the lowermost point, given that it 

dissipated 5%  of its initial energy against air resistance? 

Solution: Length of the pendulum,  1.5 ml   

Mass of the bob m  

Energy dissipated  5%  

The overall energy of the system remains constant according to the rule of conservation of energy. 

Positioned horizontally: 

Potential energy of the bob, P  gE m l  

Kinetic energy of the bob, K 0E   

Total energy ( )mgl i   

At the very bottom (mean position): 

Potential energy of the bob, PE 0  

Kinetic energy of the bob, 
2

K

1

2
E mv  

Total energy 
21

( ).
2

. .xE mv ii  

5%  of the bob's energy is wasted as it goes from the horizontal position to the lowest point. 

The entire energy at the bottom is 95%  of the total energy at the top, i.e., 

21 95

2 100

2 95 1.5 9.8
5.28m/s

100

mv mgl

v

 

  
  

 

 

 

6.19 A trolley of mass 300 kg  carrying a sandbag of  25 kg  is moving uniformly with a speed of 

27 km / h  on a frictionless track. After a while, sand starts leaking out of a hole on the floor of 



   

 

the trolley at the rate of 
10.05 kg s . What is the speed of the trolley after the entire sand bag is 

empty? 

Solution: The sand bag is loaded onto a trolley that moves at a constant pace of 27 km / h.  

The external forces operating on the sandbag and trolley system are nil.  

There will be no change in the trolley's velocity when the sand begins to flow from the bag.  

This is due to the fact that the leaking activity has no external force on the system.  

According to Newton's first law of motion, this is the case.  

As a result, the trolley's speed will remain 27 km / h.  

 

 

6.20 A body of mass 0.5 kg  travels in a straight line with velocity 
3/2v ax where 

1/2 15 m  sa   . 

What is the work done by the net force during its displacement from 0x   to 2 mx   ? 

Solution: Mass of the body, 0.5 kgm   

Velocity of the body, 

3

2v ax with 

1

125 m  sa


  

Initial velocity, ( 0) 0u x    

Final velocity (v  at 2 m) 10 2 m / sx    

Work done, W Change in kinetic energy 

 2 2

2 2

1

2

1
0.5 (10 2) (0)

2

m v u 

   
 

 

1
0.5 10 10 2

2

50 J

    



 

 

 

6.21 The blades of a windmill sweep out a circle of area A .  

(a) If the wind flows at a velocity v  perpendicular to the circle, what is the mass of the air 

passing through it in time t ?  

Solution: Area of the circle swept by the windmill A  

Velocity of the wind v  

Density of air   

Volume of the wind flowing through the windmill / sec Av  

Mass of the wind flowing through the windmill / sec Av  

Mass m , of the wind flowing through the windmill in time t Avt  

 

(b) What is the kinetic energy of the air?  

Solution: Kinetic energy of air,  

2

2

3

1

2

1
( )

2

1

2

mv

Avt v

Av t











 



   

 

 

(c) Assume that the windmill converts 25%  of the wind's energy into electrical energy, and that 
230 m , 36km / hA v   and the density of air is 

31.2 kg m
. What is the electrical power 

produced? 

Solution: Area of the circle swept by the windmill 
230 mA   

Velocity of the wind 36 km / hv   

Density of air, 
31.2 kg m   

Electric energy produced 25% of the wind energy 
25

100
  . .K E  of air 

3

3

3 3

3

1

8

 Electrical energy 
Electrical power 

 Time 

1

8

1 1
1.2 30 (10)

8 8

4.5 10  W 4.5 kW

Av t

Av t

t

Av













    

  

 

 

 

6.22 A person trying to lose weight (dieter) lifts a 10 kg mass, one thousand times, to a height of 

0.5 meach time. Assume that the potential energy lost each time she lowers the mass is 

dissipated. (a) How much work does she do against the gravitational force? 

Solution: Mass of the weight, 10 kgm   

The person's height at which the weight is lifted, 0.5 mh   

Number of times the weight is lifted, 1000n   

Work done against gravitational force: 

3

( )

1000 10 9.8 0.5

49 10 49 kJ

n mgh

J



   

  

 

 

(b) Fat supplies 
73.8 10  J  of energy per kilogram which is converted to mechanical energy 

with a 20% efficiency rate. How much fat will the dieter use up? 

Solution: Energy equivalent of 1 kg of fat 
73.8 10  J   

Efficiency rate 20%  

The person's body provides mechanical energy in the form of: 

7 720 1
3.8 10  J 3.8 10  J

100 5
       

Dieter's equivalent mass of fat lost: 



   

 

3

7

4

3

1
49 10

1
3.8 10

5

245
10

3.8

6.45 10  kg





  

 

 

 

 

 

6.23 A family uses 8 kW  of power. 

(a) Direct solar energy is incident on the horizontal surface at an average rate of 200 W per 

square meter. If 20%  of this energy can be converted to useful electrical energy, how large an 

area is needed to supply 8 kW ? 

Solution: 
2200 m  

Power used by the family, 
38 kW 8 10  WP     

Solar energy received per square meter 200 W  

Conversion efficiency from solar to electricity energy 20%   

Area required to generate the desired electricity A  

Now, 
3

3
2

8 10 20% ( 200)

20
200

100

8 10
200 m

40

A

A

A

   

  


  

 

 

(b) Compare this area to that of the roof of a typical house. 

Solution: The size of a solar plate required to create

8 kW  of power is about equal to the roof area of a structure with dimensions of 14 m 14 m.  

 

 

Additional Exercises 
 

6.24 A bullet of mass 0.012 kg and horizontal speed 
170 m s  strikes a block of wood of mass 

0.4 kg  and instantly comes to rest with respect to the block. The block is suspended from the 

ceiling by means of thin wires. Calculate the height to which the block rises. Also, estimate the 

amount of heat produced in the block. 

Solution: Mass of the bullet, 0.012 kgm   

Initial speed of the bullet, b 70 m / su   

Mass of the wooden block, 0.4 kgM   

Initial speed of the wooden block, B 0u   

The final speed of the bullet and block system v  

Using the law of conservation of momentum: 

b B ( )

0.012 70 0.4 0 (0.012 0.4)

mu Mu m M v

v

  

    
 



   

 

0.84
2.04 m / s

0.412
v    

The bullet and wooden block system is as follows: 

Mass of the system, 0.412 kgm   

Velocity of the system 2.04 m / s  

Height up to which the system rises h  

Using the law of conservation of energy: 

At the greatest point, potential energy = kinetic energy at the lowest position 

.

21

2
m gh m v   

21

2

v
h

g

 
   

 
 

21 (2.04)

2 9.8

0.2123 m

 



 

The wooden block will reach a height of 0.2123 m . 

Heat produced   Kinetic energy of the bullet   Kinetic energy of the system 

2 2

2 2

1 1

2 2

1 1
0.012 (70) 0.412 (2.04)

2 2

29.4 0.857 28.54 J

mu m v 

     

  

 

 

 

6.25 Two inclined frictionless tracks, one gradual and the other steep meet at A from where two 

stones are allowed to slide down from rest, one on each track (Fig. .6 16 ). Will the stones reach 

the bottom at the same time? Will they reach there with the same speed? Explain. Given

1 230 , 60 ,    and  10 mh  , what are the speeds and times taken by the two stones? 

 
Solution: No, the stone that is travelling down the steep plane will be the first to reach the bottom. 

Yes, the stones will all arrive at the same time at the bottom. 

B C

1

2

14 m / s

2.86 s;

1.65 s

v v

t

t

 





 

The kinetic energy of the stones at positions B and C will likewise be the same according to the rule o

f conservation of energy, i.e. 



   

 

2 2

1 2

1 1

2 2
mv mv  

1 2v v v  ,  

Where, m Mass of each stone  

v  Speed of each stone at points B  and C  

As a result, both stones will arrive at the bottom at the same time, v . 

For stone I: 

Net force: 

net 1 1

1 1

sin

sin

F ma mg

a g





 


 

For stone II: 

2 2

2 1

2 1

2 1

sin

sin sin

a g

a a



 

 





 

 

 

Applying the first equation of motion,  

( 0)

v u at

v
t u

a

 

  
 

For stone I: 

1

1

v
t

a
  

For stone II: 

2

2

2 1

2 1

v
t

a

a a

t t





 

 

As a result, the stone travelling down the steep plane will be the first to reach the bottom. 
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2 g

2 9.8 10

196 14 m / s

mgh mv

v h



 

  

 

 

The times are: 

1

1 1

2

2 2

14 14
2.86 s

1 g sin 9.8 sin 30
9.8

2

14 14
1.65 s

 g sin 9.8 sin 60 3
9.8

2

v v
t

a

v v
t

a





    




    




 

 



   

 

6.26 A 1 kg  block situated on a rough incline is connected to a spring of spring constant 

1100Nm
 as shown in figure. The block is released from rest with the spring in the unstretched 

position. The block moves 10 cm  down the incline before coming to rest. Find the coefficient of 

friction between the block and the incline. Assume that the spring has a negligible mass and the 

pulley is frictionless. 

 
Solution: Mass of the block, 1 kgm   

Spring constant, 
1100 N mk   

Displacement in the block, 10 cm 0.1 mx    

At equilibrium: 

Normal reaction, cos37R mg   

Frictional force, sin37Rf mg    

Where, coefficient of friction   

Net force acting on the block  g sin 37m f   

 

sin 37 cos37

sin 37 cos37

mg mg

mg





 

 

 

 
 

 

 2

 g sin 37 cos37

1
1 9.8 sin 37 cos37

2

1
100 0.10.602 0.799 0.510

2

0.092
0.115

0.799

m x

kx









 

 



  

     

  

 

 

 

6.27 A bolt of mass 0.3 kg  falls from the ceiling of an elevator moving down with an uniform 

speed of 
17 m s . It hits the floor of the elevator (length of the elevator 3 m ) and does not 

rebound. What is the heat produced by the impact? Would your Solution be different if the 

elevator were stationary? 

Solution: Mass of the bolt, 0.3 kgm   

Speed of the elevator 7 m / s  

Height, 3 mh   

Because the bolt's relative velocity to the lift is zero, potential energy is transferred to thermal energy 

at the instant of impact. 

Heat produced   Loss of potential energy 



   

 

 g 0.3 9.8 3

8.82 J

m h   


 

Even if the lift is motionless, the amount of heat produced remains constant.  

This is due to the fact that the bolt's relative velocity in relation to the lift will stay zero. 

 

 

6.28 A trolley of mass 200 kg  moves with a uniform speed of 36 km / h  on a frictionless track. 

A child of mass 20 kg  runs on the trolley from one end to the other (10 maway) with a speed of 

14 m s  relative to the trolley in a direction opposite to the its motion, and jumps out of the 

trolley. What is the final speed of the trolley? How much has the trolley moved from the time 

the child begins to run? 

Solution: Mass of the trolley, 200 kgM   

Speed of the trolley, 36 km / h 10 m / sv    

Mass of the boy, 20 kgm   

The boy's and trolley's systems' initial velocity 

( )

(200 20) 10

2200 kg m / s

M m v 

  



 

Suppose, final velocity of the trolley v  

Final velocity of the boy 4v   

Final momentum  4Mv m v     

200 20 80

220 80

v v

v

 



  

 
 

Acc. to law of conservation of momentum: 

Initial momentum   Final momentum 

2200 220 80

2280
10.36 m / s

220

v

v





 

  
 

Length of the trolley, 10 ml   

Speed of the boy, 4 m / sv   

Time taken by the boy to run, 
10

2.5 s
4

t    

Distance moved by the trolley 10.36 2.5 25.9 mv t      

 

 

6.29 Which of the following potential energy curves in figure cannot possibly describe the elastic 

collision of two billiard balls? Here r  is the distance between centers of the balls. 



   

 

 

Solution:          ,  ,  ,  ,   i ii iii iv and vi  

A system of two masses has potential energy that is inversely proportional to the distance between the

m. As the two balls go closer to each other in the aforementioned scenario, the potential energy of the 

system will decrease.  

When the two balls touch, i.e. when V( ) 0r 

, where R  is the radius of each billiard ball, it becomes zero (i.e. ( ) 0V r  ).  

Figures,          ,  ,  ,  ,   i ii iii iv and vi

show potential energy curves that do not meet these two requirements.  

As a result, they are unable to characterise the elastic collisions that occur between them. 

 

 

6.30 Consider the decay of a free neutron at rest: n p e   

Show that the two-body decay of this type must necessarily give an electron of fixed energy and, 

therefore, cannot account for the observed continuous energy distribution in the  -decay of a 

neutron or a nucleus. 

 
Solution:  

At rest, the free neutron decays as follows: 

n p e   

The energy of an electron is calculated using Einstein's mass-energy relationship,
2mc  

Where, 



   

 

 Mass defect  Mass of neutron  (Mass of proton  Mass of electron) m    

c  Speed of light   

m and c are constants.  

As a result, the two-body decay cannot account for the energy distribution in the continuous state,

 

decay of a neutron or a nucleus. The continuous energy distribution is appropriately explained by the 

existence of neutrinos from the LHS of the decay. 

 

 


