
   

 

Chapter 13: KINETIC THEORY 

 

Examples 

Example 13.1 The density of water is 
31000kgm

. The density of water vapour at 100 C and 

 1 atm pressure is
30.6 kg m

. The volume of a molecule multiplied by the total number gives, 

what is called, molecular volume. Estimate the ratio (or fraction) of the molecular volume to the 

total volume occupied by the water vapour under the above conditions of temperature and 

pressure. 

Answer:  

When the volume of water molecules is big, the density is smaller for a given quantity of water molec

ules. 

So, the volume of the vapour is  41000 / 0.6 1/ 6 10   times larger. 

If the densities of bulk water and water molecules are comparable, the molecular volume fraction to th

e total volume in the liquid state is  

As the volume of the vapour state increases, the fractional volume reduces by the same amount, i.e., 
46 10 .  

 

Example 13.2 Estimate the volume of a water molecule using the data in Example 13.1. 

Answer:  Water molecules are very densely packed in the liquid (or solid) phase.  

As a result, the density of a water molecule is about equivalent to the density of bulk water. 
31000 kg m .  

We need to know the mass of a single water molecule to determine the volume of a water molecule.  

We know that one mole of water has a mass of roughly (2 16)g 18 g 0.018 kg   . 

Since 1 mole contains about 
236 10  molecules (Avogadro's number), the mass of a molecule of 

water is  23 26(0.018) / 6 10 kg 3 10  kg   . 

As a result, a rough estimation of a water molecule's volume is as follows: 

Volume of a water molecule, 

   26 3

29 3

3

3 10  kg / 1000 kg m

3 10  m

(4 / 3) ( Radius )

 



 

 



 

So, Radius 
102 10  m 2Å    

 

Example 13.3 What is the average distance between atoms (interatomic distance) in water? Use 

the data given in  .Examples 13 1 and . .13 2  



   

 

Answer:  

The volume of a particular quantity of water in the vapour state is 
31.67 10  that of the same mass of 

water in the liquid state  .1  3.1 . Ex  

This also refers to the increase in the quantity of space available for each water molecule.  

The radius rises by 
1/3V  or 10 times when the volume increases by 103 , i.e., 10 2 20Å Å  . 

As a result, the average distance is 2 20 40 .Å   

 

 

Example 13.4 A vessel contains two nonreactive gases : neon (monatomic) and oxygen 

(diatomic). The ratio of their partial pressures is 3: 2 . Estimate the ratio of (i) number of 

molecules and (ii) mass density] of neon and oxygen in the vessel. Atomic mass of Ne 20.2u , 

molecular mass of 2O 32.0u.  

Answer:  

The partial pressure of a gas in a mixture is the pressure it would have if it were alone in the vessel at t

he same volume and temperature. (A mixture of non-

reactive gases has a total pressure equal to the sum of partial pressures owing to its component gases.)

 The gas law applies to each gas (assumed ideal). 

Since V and T  are common to the two gases, we have, 

   

1 1

2 2

1 2 1 2

,

. . / / .

PV RTand

PV RT

i e P P





 







 

 Here 1 and 2  refer to neon and oxygen respectively. Since 

   1 2 1 2/ (3 / 2)( ) / 3 / 2.P P given     

(i) By definition, 

 

 

1 1 A

2 2

/

/ A

N N and

N N








 

where 1 2N andN are the number of molecules of 1 and 2  , and AN  is the Avogadro's number. 

Therefore,    1 2 1 2/ / 3 / 2.N N     

(ii) We can also write  1 1 1/m M   and  2 2 2/m M   where 1m and 2m  are the masses of 1and 

2  ; and 1 2M andM  are their molecular masses. (Both 1 1;m andM  as well as 2m  and 2M should be 

expressed in the same units). 

If 1 2and   are the mass densities of 1 and 2  respectively, we have 

1 1 1 1 1

2 2 2 2 2

/

/

3 20.2
0.947

2 32.0

m V m M

m V m M

 

 

 
    

 

  

 



   

 

 

Example 13.5 Aflask contains argon and chlorine in the ratio of 2 :1by mass. The temperature 

of the mixture is 27 C . Obtain the ratio of (i) average kinetic energy per molecule, and (ii) root 

mean square speed? rms v of the molecules of the two gases. Atomic mass of argon 39.9u ; 

Molecular mass of chlorine 70.9u . 

Answer:  

The crucial thing to remember is that every (ideal) gas's average kinetic energy (per molecule), wheth

er monatomic, diatomic, or polyatomic, is always equal to (3 / 2) Bk T . 

It is only affected by temperature and is unaffected by the gas's composition. 

(i)Because the temperature of argon and chlorine in the flask is the same, the average kinetic energy (

per molecule) of the two gases is 1:1.  

(ii) Now 2

rms 1/ 2mv   average kinetic energy per molecule B(3 / 2))k T where m  is the mass of a 

molecule of the gas. Therefore, 

 
 

2

Cl Cl

2
Ar

Cl

( ) ( ) 70.9
1.77

( ) ( ) 39.9

mms Ar

Armms

m M

m M
   

v

v
 

where M denotes the molecular mass of the gas. (For argon, a molecule is just an atom of argon.) 

By multiplying both sides by the square root of the square root of the square root of the square root of 

the, 

 

 
nms 

mms 1

1.33Ar

C


v

v
 

It's worth noting that the mass composition of the combination has no bearing on the computation.  

If the temperature is not changed, any other proportion of argon and chlorine by mass will provide the

 identical responses to ( )i  and ( )ii . 

 

Example 13.6 Uranium has two isotopes of masses 235  and 238  units. If both are present in 

Uranium hexafluoride gas which would have the larger average speed? If atomic mass of 

fluorine is  19 units . Estimate the percentage difference in speeds at any temperature. 



   

 

 

Answer:  At a fixed temperature the average energy 
21/ 2m v    is constant. 

The lower the molecule's mass, the faster it will move. The square root of the mass-to-

speed ratio is inversely proportional to the ratio of speeds. 

The masses are 349  and 352  units. So, 

v 1/2

349 352/ (352 / 349) 1.0044v    

Hence difference 0.44%
V

V


   

235 U is the isotope needed for nuclear fission. 

The mixture is encased by a porous cylinder to segregate it from the more prevalent isotope 
233 U . 

The porous cylinder must be thick and narrow enough for the molecule to wander through it alone, cla

shing with the lengthy pore's walls. Because the quicker molecule leaks out more than the slower one,

 the lighter molecule (enrichment) is found outside the porous cylinder  .1  3.5 . Fig

The procedure is inefficient, and it must be performed numerous times to get adequate enrichment.] 

 

Example 13. (a) When a molecule (or an elastic ball) hits a (massive) wall, it. rebounds with the 

same speed. When a ball hits a massive bat held firmly, the same thing happens. However, when 

the bat is moving towards the ball, the ball rebounds with a different speed. Does the ball move 

faster or slower? (Ch.6 will refresh your memory on elastic collisions.) 



   

 

Answer:  Allow the ball's speed to be proportional to the wicket behind the bat.  

The relative speed of the ball to bat is V u towards the bat, 

if the bat is travelling towards the ball at a speed V relative to the wicket.  

When the ball rebounds (after hitting the enormous bat), it moves away from the bat at a speed of 

. V u The rebounding ball's speed relative to the wicket is ( ) 2V V u V u   

as it moves away from the wicket.  

As a result of the hit with the bat, the ball accelerates.  

If the bat is not enormous, the rebound speed will be less than u .  

A molecule's temperature would rise because of this. 

 

(b) When gas in a cylinder is compressed by pushing in a piston, its temperature rises. Guess at 

an explanation of this in terms of kinetic theory using (a) above. 

Answer:  

When a bat strikes the ball after compressing gas in a cylinder using a piston, the ball goes quicker, an

d the temperature of the gas rises. 

 

(c) What happens when a compressed gas pushes a piston out and expands. What would you 

observe? 

Answer:  The speed of the molecules slows down as a compressed gas pushes a piston out.  

Their KE is decreasing. 

 

(d) Sachin Tendulkar used a heavy cricket bat while playing. Did it help him in anyway? 

Answer:  Yes!! It makes extensive use of physics ideas and principles!! 

One of the fundamental principles is...  

When the ball strikes the bat, a big impulsive force is formed, but owing to the heavier mass of the bat

, the impulse communicated to the bat offers less backward velocity.  

Another cause might be that.., even at a very low velocity, a huge momentum is created, therefore the 

ball moves with more velocity. 

 

Example 13.8 Acylinder of fixed capacity .  44 8 litres contains helium gas at standard 

temperature and pressure. What is the amount of heat needed to raise the temperature of the 

gas in the cylinder by  1 115.0 C? 8.31 J mol  KR    

Answer:  According to the gas law PV RT ,  

i.e., 1 mol  of any (ideal) gas at standard temperature (273 K)  and pressure  51 atm 1.01 10  Pa   

occupies a volume of 22.4 litres . Molar volume is the name given to this global volume.  

In this case, the cylinder contains 2   mol  of helium. 

Furthermore, because helium is monatomic, its molar specific heat at constant volume is expected (an

d observed). 



   

 

(3 / 2)vC R , and molar specific heat at constant pressure, (3 / 2) (5 / 2)pC R R R   . As the 

volume of the cylinder is fixed, the heat required is determined by *v
C So, 

Heat required   no. of moles molar specific heat x  rise in temperature 

2 1.5 15.0 45

45 8.31 374 J

R

R

   

  
 

 

Example 13.9 Estimate the mean free path for a water molecule in water vapour at 373 K . Use 

information from Exercises 13.1and  . .Eq 13 41 . 

Answer:  Water vapour has the same d value as air.  

The absolute temperature is inversely related to the numerical density. 

So 
25 25 3273

2.7 10 2 10  m
373

n       

Hence, mean free path 
74 10  ml   . 

 

Exercises 

 

13.1 Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at 

STP. Take the diameter of an oxygen molecule to be 3 .Å  

Answer:  Diameter of an oxygen molecule, 3d Å  

Radius, 
83

1.5 1.5 10  cm
2 2

d
r Å       

Actual volume occupied by 1 mole of oxygen gas at 
3STP 22400 cm  

Molecular volume of oxygen gas, 
3 24

3
V r N   

Where, N  is Avogadro's No.
236.023 10 molecules / mole   

 
3

1 23 34
3.14 1.5 10 6.023 10 8.51 cm

3
V          

Ratio of the molecular volume to the actual volume of oxygen, 

4

8.51

22400

3.8 10



 

 

 



   

 

13.2 Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard temperature 

and pressure ( :    STP 1 atmossheric pressure , 0 C . Show that it is .  .22 4 litres  

Answer:  The ideal gas equation relating pressure ( )P , volume ( )V , and absolute temperature ( )T  is 

given as: 

   P V n R T  

Where, 

R is the universal gas constant 

1 18.314 J mol  K

 Number of  moles 1n

 

 
 

 Standard temperature 273 KT    

5 2 Standard pressure 1 atm 1.013 10 NmP

nRT
V

P

   

 
 

3

5

1 8.314 273
0.0224 m

1.013 10

 
 


 

So, the molar volume of a gas at STP is 22.4 .litres  

 

13.3 Figure shows plot of /PV T versus P  for 
31.00 10  kg  of oxygen gas at two different 

temperatures, What does the dotted plot signify? 

Which is true: 1 2 1 2 ?T T orT T   

What is the value of /PV T  where the curves meet on the y axis ? 

If we obtained similar plots for 
31.00 10  kg  of hydrogen, would we get the same value of 

/PV T  at the point where the curves meet on the y axis ? If not, what mass of hydrogen yields 

the same value of /PV T  (for low pressure high temperature region of the plot)? (Molecular 

mass of 2H 2.02u, of 
1 1

2O 32.0u, 8.31 J mol  K .R    ) 



   

 

 

Answer:  The ideal behaviour of the gas is represented by the dotted plot in the graph.i.e., the ratio 

PV

T
 is equal. (R  is the number of moles and R is the universal gas constant) is a constant 

quality. It isn't affected by the gas's pressure. 

The ideal gas is represented by the dotted plot in the graph. 

The dotted plot is closer to the curve of the gas at temperature 

1T  than the curve of the gas at temperature 2T .  

When the temperature of a real gas rises, it approaches the behaviour of an ideal gas.  

As a result, 1 2T T  for the given plot, is true. 

The ratio value /PV T at the intersection of the two curves is R . This is because the ideal gas 

equation is given as:  

PV RT

PV
R

T








 

Where, 

P  is the pressure 

T  is the temperature  

V is the volume  

 is the number of moles 

R is the universal constant 

Molecular mass of oxygen 32.0 g  

Mass of oxygen 
31 10  kg 1 g    



   

 

1 1

1

8.314 J mole  K

1
8.314

32

0.26 J K

PV

R

T

 





 



 

Therefore, the value of the ratio /PV T , where the curves meet on the y axis , is 
10.26 J K

. 

If we obtain similar plots for 
31.00 10  kg  of hydrogen, then we will not get the same value of 

/PV T  at the point where the curves meet the y axis . This is because the molecular mass of 

hydrogen (2.02u) is different from that of oxygen (32.0u). We have: 

1

1 1

0.26 J K

8.314 J mole  K

PV

T

R



 





 

Molecular mass ( )M  of 2H 2.02u  

PV
R

T
 at constant temperature 

Where, 
m

M
   

2

2 5

 Mass of H

0.26 2.02

8.31

6.3 10  g 6.3 10  kg

m

PV M
m

T R
 




   

   

 

Hence, 
56.3 10  kg of 2H  will yield the same value of  /  .P V T  

 

13.4 An oxygen cylinder of volume  30 litres has an initial gauge pressure of 15 atm  and a 

temperature of 27 C . After some oxygen is withdrawn from the cylinder, the gauge pressure 

drops to 11 atm  and its temperature drops to17 C . Estimate the mass of oxygen taken out of 

the cylinder  1 18.31 J mol  KR   , molecular mass of 2O 32u .  

Answer:  Volume of oxygen, 
3 3

1 30 30 10  mV litres     

Gauge pressure, 
5

1 15 atm 15 1.013 10  PaP      

Temperature, 
1 27 C 300 KT    

Universal gas constant, 
1 18.314 J  KR mole   

Let's say there are 1n moles of oxygen gas in the cylinder at the start. 



   

 

The gas equation is given as: 

1 1 1 1

1 1
1

1

5 315.195 10 30 10
18.276

(8.314) 300

PV n RT

PV
n

RT





 

  
 



 

But, 1
1 1,

m
n Where m

M
  Initial mass of oxygen 

M Molecular mass of oxygen 32 g  

1 1 18.276 32 584.84 gm n M     

The pressure and temperature drop when some oxygen is removed from the cylinder. 

Volume, 3 3

2 30 30 10  mV litres     

Gauge pressure, 5

2 11 atm 11 1.013 10  PaP      

Temperature, 
2 17 C 290 KT    

Assume 2n  is no. of moles of oxygen remains in the cylinder. 

The gas equation is : 

 

2 2 2 2

2 2
2

2

5 311.143 10 30 10
13.86

8.314 290

PV n RT

PV
n

RT





 

  
 



 

But, 2
2

m
n

M
 Where, 2m is the mass of oxygen 

remaining in the cylinder 2 2: 13.86 32 453.1 gm n M     

The amount of oxygen extracted from the cylinder is: 

Mass of oxygen in the cylinder at the start   Mass of oxygen in the cylinder at the end

1 2

584.84 g 453.1 g

131.74 g

0.131 kg

m m 

 





 

So, 0.131 kg of oxygen is taken out of the cylinder. 



   

 

 

13.5 An air bubble of volume 
31.0 cm  rises from the bottom of a lake 40 m  deep at a 

temperature of12 C . To what volume does it grow when it reaches the surface, which is at a 

temperature of 35 C ? 

Answer:  Volume of the air bubble, 3 6 3

1 1.0 cm 1.0 10  mV     

Bubble rises to height, 40 md   

Temperature at a depth of 
140 m, 12 C 285 KT    

Temperature at the surface of the lake, 
2 35 C 308 KT    

The pressure on the lake's surface is as follows: 

5

2 1 atm 1 1.013 10  PaP      

The pressure at the depth of 40 m : 

1 1 atm gP d   

Where,  is the density of water 
3 310  kg / m  g  is the acceleration due to gravity  

5 3

1 1.013 10 40 10 9.8 493300 PaP        

We have: 1 1 2 2

1 2

PV PV

T T
  

Moment the air bubble reaches the surface, its volume 2V
 is   1 1 2

2

1 2

PVT
V

T P


 6

5

(493300) 1.0 10 308

285 1.013 10




 
 

6 35.263 10  m  or 
35.263 cm  

As a result, when the air bubble reaches the surface, its volume is 
35.263 cm .  

 

13.6 Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and 

other constituents) in a room of capacity 
325.0 m at a temperature of 27 C  and 1 atm  pressure. 

Answer:  Volume of the room, 
325.0 mV   

Temperature of the room, 27 C 300 KT    

Pressure in the room, 
51 1 1.013 10  PaP atm     

The ideal gas equation relating pressure ( )P , Volume ( )V , and absolute temperature ( )T  can be 

written as: 



   

 

  BP V k N T  

Where, 

BK is Boltzmann constant 
23 2 2 11.38 10  m  kg s  K     

N is the number of air molecules in the room 

BN PVk T   

5
26

23

1.013 10 25
6.11 10  molecules 

1.38 10 300

 
  

 
 

As a result, the total number of air molecules in a room is 
266.11 10 .  

 

13.7 Estimate the average thermal energy of a helium atom at 

 (i) room temperature  27 C ,  

Answer:  At room temperature, 27 C 300 KT    

Average thermal energy 
3

2
kT  

Where k is Boltzmann constant 
23 2 2 11.38 10  m  kg s  K     

38

21

3 3
1.38 10 300

2 2

6.21 10  J

kT 



    

 

 

As a result, at ambient temperature, the average thermal energy of a helium atom is 

  2127 C 6.21 10  Jis   

 

(ii) the temperature on the surface of the Sun (6000 K) ,  

Answer:  On the surface of the sun, 6000 KT   

Average thermal energy 
3

2
kT  

38

19

3
1.38 10 6000

2

1.241 10  J





   

 

 

As a result, a helium atom on the sun's surface has an average thermal energy of 
191.241 10  J . 

 



   

 

(iii) the temperature of 10  million Kelvin (the typical core temperature in the case of a star). 

Answer:  At temperature, 
710  KT   

Average thermal energy 
3

2
kT  

23 7 163
1.38 10 10 2.07 10  J

2

        

Hence, the average thermal energy of a helium atom at the core of a star is 
162.07 10 .J  

 

13.8 Three vessels of equal capacity hoopen with first vessel contains neon (monatomic), the 

second contains chlorine (diatomic), and the third contains uranium hexafluoride (polyatomic). 

Do the vessels contain equal number of respective molecules? Is the root mean square speed of 

molecules the same in the three cases? If not, in which case is msv  the largest? 

Answer:  

Yes. All of them have the same number of molecules in them.No. Neon has the highest root mean squ

are speed. 

 

The three jars have the same volume since their capacities are equal. 

As a result, each gas has the same pressure, volume, and temperature. 

 

 

According to Avogadro's law, each of the three containers will contain an equal amount of the corresp

onding molecules.  

This is the same as Avogadro's number, 
236.023 10 .N    

The root mean square speed  rmsv of a gas of mass m , and temperatureT , is given by the relation: 

mss

3kT
v

m
  

Where, k  is Boltzmann constant 

For the given gases, k  and T  are constants. 

So, rmsv  rely on the mass of the atoms, 

rms

1
v

m
  

As a result, in each of the three cases, the root mean square speed of the molecules vary. 

The smallest of the three elements, neon, chlorine, and uranium hexafluoride, is neon. 

As a result, neon has the quickest root mean square speed of all the gases given. 

 



   

 

13.9 At what temperature is the root mean square speed of an atom in an argon gas cylinder 

equal to the rms speed of a helium gas atom at 20 C ? (Atomic mass of Ar 39.9u , of 

He 4.0u)  

Answer:  Temperature of the helium atom, 
He 20 C 253 KT     

Atomic mass of argon, r 39.9uM   

Atomic mass of helium, He 4.0uM   

Let,  rms Ar
v be the rms speed of argon. 

Let  rms He
v  be the rms speed of helium. 

The rms speed of argon is given by: 

  Ar
mss At

Ar

3
( )

RT
v i

M
   

Where, 

R  is the universal gas constant 

ArT is temperature of argon gas 

The rms  speed of helium is given by: 

 

  He
mss He

He

3
( )

RT
v ii

M
   

It is given that: 

   rms rmsAr Hev v  

   rms rmsAr

Ac He He

He He

Hk

He

3 3
He Ar

Ar At

At At

v v

RT RT TT

M M M M

T
T M

M



 

 

 

3

253
39.9

4

2523.675 2.52 10  K

 

  

 

So, the temperature of the argon atom is 
32.52 10  K.  

 



   

 

13.10 Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder 

containing nitrogen at 2.0 atm and temperature17 C . Take the radius of a nitrogen molecule to 

be roughly1.0Å . Compare the collision time with the time the molecule moves freely between 

two successive collisions (Molecular mass of 2N 28.0u ). 

Answer:  Mean free path 
71.11 10  m   

Collision frequency 
9 14.58 10  s   

Successive collision time 500 ( )Collisiontime   

Pressure inside the cylinder containing nitrogen, 
52.0 atm 2.026 10  PaP     

Temperature inside the cylinder, 17 C 290 KT    

Radius of a nitrogen molecule, 
101.0 1 10  mr Å    

Diameter, 
10 102 1 10 2 10  md       

Molecular mass of nitrogen, 
328.0 g 28 10  kgM     

The root mean square speed of nitrogen is: 

rms

3RT
v

M
  

Where, 

R  is the universal gas constant 
1 18.314 J  Kmole   

ms 3

3 8.314 290
508.26 m / s

28 10
v



 
  


 

The mean free path ( )l is given by the relation: 

22

kT
I

d P


 
 

Where, k  is the Boltzmann constant 
231.38 10  kg   

 

2 2 1

23

2
10 5

7

m  s  K

1.38 10 290

2 3.14 2 10 2.026 10

1.11 10  m

l

 







 
 

    

 

 

Collision frequency rms v

l
  

9 1

7

508.26
4.58 10  s

1.11 10




  


 



   

 

Collision time is: 

rms 

d
T

v
  

10
132 10

3.93 10  s
508.26




    

Time taken between successive collisions: 

rms

l
T

v

   

7
10

10

13

1.11 10  m
2.18 10  s

508.26 m / s

2.18 10
500

3.93 10

T

T




 




  


  



 

As a result, the period between subsequent collisions is 500   times that of a single collision. 

 

Additional Exercises 

 

13.11 A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm  long 

mercury thread, which traps a 15 cm  column of air. What happens if the tube is held vertically 

with the open end at the bottom? 

Answer:  Length of the narrow bore, 1 m 100 cmL    

Length of the mercury thread, 76 cml   

Length of the air column between mercury and the closed end, 15 cmal   

The mercury length that occupies the air space is: Because the bore is held vertically in air with the op

en end at the bottom, the mercury length that occupies the air space is:100 (76 15) 9 cm    

Hence, the total length of the air column 15 9 24 cm    

Let  cmh  of mercury flow out because of atmospheric pressure. 

So, Length of the air column in the bore 24  cmh   

And length of the mercury column 76  cmh   

Initial pressure, 1 76 cmP  of mercury 

Initial volume, 3

1 15 cmV   

Final pressure, 2 76 (76 )  cmP h h    of mercury 



   

 

Final volume, 3

2 (24 )cmV h   

Throughout the procedure, the temperature remains constant. 

1 1 2 2

2

2

76 15 (24 ) 24 1140 0

24 (24) 4 1 1140

2 1

23.8 cm or 47.8 cm

PV PV

h h h h

h

 

     

    
 



 

 

Height cannot be negative. Hence, 23.8 cmof mercury will flow out from the bore and 52.2 cm  of 

mercury will remain in it. The length of the air column will be 24 23.8 47.8 cm  . 

 

13.12 From a certain apparatus, the diffusion rate of hydrogen has an average value of
3 128.7 cm s . The diffusion of another gas under the same conditions is measured to have an 

average rate of
3 17.2 cm  s . Identify the gas. 

[Hint: Use Graham's law of diffusion:  
1/2

1 2 2 1R / R M / M , where 1 2R ,R  are diffusion rates 

of gases 1 and 2 , and 1M and 2M  their respective molecular masses. The law is a simple 

consequence of kinetic theory.] 

Answer:  Rate of diffusion of hydrogen, 3 1

1 28.7 cm  sR   

Rate of diffusion of another gas, 3 1

2 7.2 cm  sR   

Using Graham's Law of diffusion, 

1 2

2 1

R M

R M
  

Where, 

1M is the molecular mass of hydrogen 2.020 g  

2M is the molecular mass of the unknown gas. 

2

1
2 1

2

2
28.7

2.02 32.09 g
7.2

R
M M

R

 
   

 

 
  

 

 

So, the molecular mass of oxygen is 32 g . Hence, the unknown gas is oxygen. 

 

13.13 A gas in equilibrium has uniform density and pressure throughout its volume. This is 

strictly true only if there are no external influences. A gas column under gravity, for example, 



   

 

does not have uniform density (and pressure). As you might expect, its density decreases with 

height. The precise dependence is given by the so-called law of atmospheres 

 2 1 2 1exp / Bn n mg h h k T      

Where 2 1,n n  refer to number density at heights 2 1h andh  respectively. Use this relation to derive 

the equation for sedimentation equilibrium of a suspension in a liquid column: 

  2 1 2 1exp / ( )An n mgN P h h RT     
 

 

Where  is the density of the suspended particle, and ' that of surrounding medium. AN is 

Avogadro's number, and R  the universal gas constant.] [Hint: Use Archimedes principle to find 

the apparent weight of the suspended particle.] 

Answer:  Using the law of atmospheres: 

 2 1 2 1exp / ( )n n mg h h kBT i       

here, 1n number density at height 1h  

2n    number density at height 2h  

mg  weight of the particle suspended in the gas column, 

Density of the medium    

Density of the suspended particle   

Mass of one suspended particle m  

Mass of the medium displaced m  

Volume of a suspended particle V  

Archimedes' principle asserts that for a particle suspended in a liquid column, the effective weight of t

he suspended particle is: Weight of the medium displaced - Weight of the suspended particle, 

1

mg m g mg V

m
g mg g

mg

 








 



   

 
   

 

 
  

 

 

Gas constant, 

R

( iii )

B

B

k

R
k

N



 
 

Putting equation ( )ii  in place of 



   

 

 2 1

1 exp 1

h h

N
n mg

RT









  
    
   

 

 
 2 1

1 exp
h h

N
n mg

RT
 







 
   

 
 

 

13.14 Given below are densities of some solids and liquids. Give rough estimates of the size of 

their atoms: 

Substance  Atomic Mass (u)   3 3Density 10 Kgm
 

Carbon (diamond) 12.01 2.22  

Gold 197.00  19.32  

Nitrogen (liquid) 14.01 1.00  

Lithium 6.94  0.53  

Fluorine (liquid) 19.00  1.14  

[Hint: Assume the atoms to be 'tightly packed' in a solid or liquid phase and use the known 

value of Avogadro's number. You should, however, not take the actual numbers you obtain for 

various atomic sizes too literally. Because of the crudeness of the tight packing approximation, 

the results only indicate that atomic sizes are in the range of a few Å ]. 

Answer:   

Substance Radius Å  

Carbon (diamond) 1.29  

Gold 1.59  

Nitrogen (liquid) 1.77  

Lithium 1.73  

Fluorine (liquid) 1.88  

 

Atomic mass of a substance M  

Density of the substance   

Avogadro's number 
236.023 10N    

Volume of each atom 
34

3
r  

Volume of N  number of molecules 
34

( )
3

r N i   

Volume of one mole of a substance ( )
M

ii


   



   

 

3

3

4

3

3

4

r

M
N

M
r

N









 

 

For carbon: M 
312.01 10  kg,  3 32.22 10  kg m  

1
3 3

3 23

3 12.01 10
1.29

4 2.22 10 6.023 10
r Å



  
   

    
 

Hence, the radius of a carbon atom is 1.29 .Å  

For gold: 197.00M   

3 3 3

1
3 3

3 23

10  kg 19.32 10  kg m

3 197 10
1.59

4 19.32 10 6.023 10
r Å





 



  

  
   

    
3 3 3

1
3 3

3 23

10  kg 19.32 10  kg m

3 197 10
1.59

4 19.32 10 6.023 10
r Å





 



  

  
   

    

 

Hence, the radius of a gold atom is 1.59 .Å  

For liquid nitrogen: 

3

3 3

1
3 3

3 23

14.01 10  kg

1.00 10  kg m

3 14.01 10
1.77

4 1.00 10 6.23 10

M

r Å











 

 

  
   

    

 

Hence, the radius of a liquid nitrogen atom is 1.77 .Å  

 For lithium:  

3

3 3

1
3 3

3 23

6.94 10  kg

0.53 10  kg m

3 6.94 10
1.73

4 0.53 10 6.23 10

M

r Å











 

 

  
   

    

 

Hence, the radius of a lithium atom is 1.73 .Å  



   

 

For liquid fluorine: 

3

3 3

19.00 10  kg

1.14 10  kg m

M







 

 
 

1
3 3

3 23

3 19 10
1.88

4 1.14 10 6.023 10
r Å



  
   

    
 

As a result, a liquid fluorine atom's radius is1.88 .Å  

 

 


