
   

 

Chapter-8: Gravitation 

 

EXAMPLES 

8.1: Let the speed of the planet at the perihelion P in Fig.  .8 1 a  be Pv and the Sun-planet 

distance SP be 
,Pr . Relate {

,P Pr v } to the corresponding quantities at the aphelion {
,A Ar v }. Will 

the planet take equal times to traverse BAC and CPB? 

Solution: Angular Momentum at P:
p p p pL m r v  

Since 
,Pr & Pv   are mutually perpendicular 

Similarly: 
A p A AL m r v  

 By angular momentum conservation: 
p p p p A Am r v m r v  

 
p A

A p

v r

v r
  

As ,A p p Ar r v v  .  

SBAC is larger than SBPC because it is circumscribed by an ellipse and the radius vectors SB and SC. 

So, from Kepler’s second law, equal areas are swept in equal times. 

Equal regions are swept in equal periods, according to Kepler's second law. 

 

8.2 Three equal masses of m kg each are fixed at the vertices of an equilateral triangle ABC.  

(a) What is the force acting on a mass 2m  placed at the centroid G of the triangle?  

Solution: (a)The angle formed by GC and the positive x-axis, as well as the angle formed by GB and 

the negative x-axis, is 30 .   

 



   

 

Individual forces in vector notation are:
GA

ˆ(2 )

1

Gm m
F j  

  GB iˆ 0 ˆ(2 )
cos3 s n 30

1

Gm m
  F i j  

  GC iˆ 0 ˆ(2 )
cos3 s n 30

1

Gm m
  F i j  

Using the principle of superposition and the law of vector addition. The resultant gravitational force 

RF on  2m  is: R CA GB GC  F F F F  

2

R 2GmF  22Gm cos30 siˆ n30  j i j  22 cos30 sin30 0ˆ ˆGm  i j  

On the other hand, one may expect the resultant force to be zero due to symmetry. 

(b) What is the force if the mass at the vertex A is doubled? (Take AG = BG = CG = 1   m) 

 (b) If the mass at vertex A is doubled, the result is : 
2

GA

G2m 2m
F j 4Gm jˆ ˆ

1

 
   

 F F  and F FGB GB GC GC

    

 
GAF F F FR GB GC

       

 
2

RF 2Gm ĵ   

8.3:  Find the potential energy of a system of four particles placed at the vertices of a square of 

side l  Also obtain the potential at the centre of the square. 

Solution: Consider four masses, each with a mass of m, at the four corners of a square with a side 

length of l . 

 

Ata distance of l , we have four mass pairs and two diagonal pairs at a distance of  2l  



   

 

Hence, 

2 2G
( ) 4 2

2

m Gm
W r

l l
   .  

2 22 1
( ) 2 5.41

2

Gm Gm
W r

l l

 
     

 
 

Now, gravitational potential at the centre of the square ( 2 / 2)r l  is:   

Gm
( ) 4 2U r

l
   

 

8.4 Two uniform solid spheres of equal radii R, but mass M and  4 M  have a centre-to-centre 

separation  6 R , as Shown. The two spheres are held fixed. A projectile of mass m is projected 

from the surface of the sphere of mass M directly towards the centre of the second sphere. 

Obtain an expression for the minimum speed v of the projectile so that it reaches the surface of 

the second sphere.  

 

Solution: The projectile is acted on by two spheres mutually opposed gravitational forces. The neutral 

point N is the point at which the two forces perfectly cancel each other out. 

If ON = r:  

2 2

4

(6 )

GMm GMm

r R r



 

 
2 2(6 ) 4R r r   

 2  or  6r R R   

In this case, the neutral point –6r R  is irrelevant. As a result, ON = r = 2 .R  It is enough to project 

the particle at a speed that will allow it to reach N. the greater gravitational pull of 4M   would 

suffice. 

Mechanical energy: 
21 4

2 5
i

GMm GMm
E mv

R R
    

The speed approaches zero at the neutral point N. 

 

Mechanical energy at N:
4

2 4
N

GMm GMm
E

R R
    



   

 

By the principle of conservation of mechanical energy:
21 4

2 5 2

GM GM GM GM
v

R R R R
      

2 2 4 1

5 2

GM
v

R

 
  

   

1/2
3

5

GM
v

R

 
  
   

It's worth noting that the projectile's speed is zero at N, but nonzero when it hits the heavier sphere 

4M . 

 

8.5:  The planet Mars has two moons, phobos and delmos. 

 (i) phobos has a period 7   hours, 39  minutes, and an orbital radius of .    3
9 4 10 km . 

Calculate the mass of mars. 

Solution: (i) Using the equation: 

2
2 34

m

T R
GM


   (with the sun’s mass replaced by the Martian mass 

mM )  

2 3

2

4
Mm

R

G T




2 3 18

11 2

4 (3.14) (9.4) 10

6.67 10 (459 60)

  


  
 

2 3 18

2 5

4 (3.14) (9.4) 10

6.67 (4.59 6) 10
mM



  


  

236.48 10 kg.   

 

(ii) Assume that earth and mars move in circular orbits around the sun, with the Martian orbit 

being .1 52  times the orbital radius of the earth. What is the length of the Martian year in days? 

 (ii) From Kepler’s third law: 

32

2 3

MSM

E ES

RT

T R
  

where 
MSR is the mars -sun distance and 

ESR is the earth-sun distance. 

3/2(1.52) 365MT    

684 days MT   

Example 8.6 Weighing the Earth: You are given the following data: 
– ,. 2

g 9 81ms  

66.37 10 mER   , the distance to the moon 
83.84 10 mR   and the time period of the moon’s 

revolution is .27 3  days. Obtain the mass of the Earth E
M  in two different ways. 



   

 

Solution: Using Equation: 

2

E
E

gR
M

G
  

 
 

2
6

11

9.81 6.37 10

6.67 10
EM



 



 

 
245.97 10 kgEM    

By the derivation of Kepler’s third law: 

2 3
2 4

E

R
T

GM


  

2 3

2

4
E

R
M

GT




3 24

11 2

4 3.14 3.14 (3.84) 10

6.67 10 (27.3 24 60 60)

   


    
 

246.02 10 kgEM    

Both procedures produce nearly identical results, with the difference between them being less than 

1%.  Example 8.7 Express the constant k of eq.    
32 2 where  4 /E ET k R h k GM   in 

days and kilometres. Given
13 2 310 s mk   . The moon is at a distance of  .    5

3 84 10  km from 

the earth. Obtain its time-period of revolution in days. 

Solution: Given: 
13 2 310 s mk    

13 2

2 3 3

1 1
10 d

(24 60 60) (1/1000) km
k     
    

    

14 2 31.33 10 d km    

Using Eq.    
32 2 where  4 /E ET k R h k GM    and the given value of k, the time period of 

the moon is:   
3

2 14 51.33 10 3.84 10T     

27.3dT   

 

Example 8.8: A  400 kg  satellite is in a circular orbit of radius E
2R   about the Earth. How 

much energy is required to transfer it to a circular orbit of radius E
4R  ? What are the changes 

in the kinetic and potential energies? 

Solution: Initially: 
4

E
i

E

GM m
E

R
   

Finally: 
8

E
f

E

GM m
E

R
   

Now, change in the total energy: Δ f iE E E   



   

 

28 8

E E E

E E

GM m GM mR

R R

 
   

 
 

6
99.81 400 6.37 10

Δ 3.13 10 J
8 8

EgmR
E

  
     

kinetic energy is reduced, and it mimics:
9Δ :Δ 3.13 10 Jf iE K K K      

The change in potential energy is equal to the total energy change:
9Δ 6.25 10 Jf iV V V      

 

Exercise: 

 

8.1: Answer the following: 

(a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can 

you shield a body from the gravitational influence of nearby matter by putting it inside a hollow 

sphere or by some other means? 

Solution: (a) No 

The gravitational pull of adjacent objects on matter cannot be shielded in any way. This is because, 

unlike electrical forces, gravitational force is unaffected by the nature of the medium. It is also 

unaffected by the status of other items. 

(b) An astronaut inside a small spaceship orbiting around the earth cannot detect gravity. If the 

space station orbiting around the earth has a large size, can he hope to detect gravity?  

 (b) Yes 

The astronaut will be able to detect the change in Earth’s gravity if the space station is large enough 

(g). 

(c) If you compare the gravitational force on the earth due to the sun to that due to the moon, 

you will find that the Sun’s pull is greater than the moon’s pull. (You can check this yourself 

using the data available in the succeeding exercises). However, the tidal effect of the moon’s pull 

is greater than the tidal effect of sun. Why? 

(c)  

The tidal effect is proportional to the distance cubed, whereas gravitational force is proportional to the 

distance squared. The tidal effect of the Moon’s pull is stronger than the tidal effect of the Sun’s pull 

because the distance between the Moon and the Earth is smaller than the distance between the Sun 

and the Earth. 

 

8.2: Choose the correct alternative: 

(a) Acceleration due to gravity increases/decreases with increasing altitude. 



   

 

(b) Acceleration due to gravity increases/decreases with increasing depth (assume the earth to 

be a sphere of uniform density).  

I Acceleration due to gravity is independent of mass of the earth/mass of the body. 

(d) The formula   2 11/ 1/GMm r r    is more/less accurate than the formula  2 Img r r for 

the difference of potential energy between two points 2
r  and 1

r  distance away from the centre 

of the earth. 

Solution: 

a) Decreases 

b) Decreases 

c) Mass of the body 

d) More  

Explanation: The relationship gives the acceleration due to gravity at height: 
2

g 1 gh

e

h

R

 
  
 

 

Here,  eR = Radius of the earth 

.  11
2 5 10 = Acceleration due to gravity 

The given relationship shows that as height increases, the acceleration due to gravity decreases. 

The relationship: gives the acceleration due to gravity at depth d: 

g 1 g
e

d

d

R

 
  
 

 

The given relationship shows that as depth increases, the acceleration due to gravity decreases. 

The relation gives the acceleration due to gravity of a body of mass m : 
2

G
g

M

R
  

where, G = Universal gravitational constant  

 Mass of the Earth M   

 Radius of the Earth R   

As a result, it may be deduced that gravity’s acceleration is independent of the body’s mass. 

The gravitational potential energy of two sites separated by 2r  and 1r  from the Earth's centre is 

given by:  1

1

G Mm
V r

r
  &  2

2

GmM
V r

r
   

Difference in potential energy:    2 1

2 1

1 1
GV V r V r mM

r r

 
     

 
 

As a result, this formula is more precise than the formula  



   

 

 
 2 Img r r  

8.3: Suppose there existed a planet that went around the sun twice as fast as the earth. What 

would be its orbital size as compared to that of the earth? 

Solution: Lesser by a factor of 0.63  

 Time taken by the Earth to complete one revolution: e 1 year T   

 Orbital radius of the Earth: e 1AUR   

 Time taken by the planet to complete one revolution: 
1 1

 year 
2 2

P eT T   

 Orbital radius of the planet pR  

From Kepler’s third law: 

3 2

r r

e e

R T

R T

   
   

   
 

 

2

3
p p

e e

R T

R T

 
  
 

 

 

2

3

2

3

1

2 (0.5) 0.63
1

p

e

R

R

 
 

   
 
 

 

As a result, the planet’s orbital radius will be 0.63  times less than that of the Earth. 

 

8.4:  0I , one of the satellites of Jupiter, has an orbital period of .1 769 days and the radius of the 

orbit is .   8
4 22 10 m . Show that the mass of Jupiter is about one-thousandth that of the sun. 

Solution: Orbital period: 
u0 , 1.769 days  1.769 24 60 60sbI T       

Orbital radius: 
8

0 , 4.22 10 mleI R    

Satellite 0I  is revolving around the Jupiter 

Mass of the latter is given by: 

2 3

t

2

4

G
j

lo

R
M

T


 …(1)   

Where, jM = Mass of Jupiter 

G = Universal gravitational Constant 

Orbital period of the Earth: 365.25 days  365.25 24 60 60seT       



   

 

Orbital radius of the Earth: 
111AU 1.496 10 meR     

Mass of the sun: 

2 3

s 2

4

G

c

e

R
M

T


 …(2)  

2 3 2 3 2

2 2 3 3 2

4 G

G 4

s e bo e b

j e lo b e

M R T R T

M T R R T




      

32 11

8

1.769 24 60 60 1.496 10

365.25 24 60 60 4.22 10

s

j

M

M

     
   

      
1045.04  

1000s

j

M

M
   

1000s JM M   

As a result, Jupiter’s mass is estimated to be around one-thousandth that of the Sun.  

 

8.5: Let us assume that our galaxy consists of .  11
2 5 10 stars each of one solar mass. How long 

will a star at a distance of ,50 000 ly  from the galactic centre take to complete one revolution? 

Take the diameter of the Milky Way to be 105 ly . 

Solution: Mass of our galaxy: 112.5 10  solar mass M    

Solar mass= Mass of sun=
362.0 10 kg  

Mass of our galaxy: 
11 36 412.5 10 2 10 5 10 kgM        

Diameter of Milky Way: 
510 lyd   

Therefore, Radius of Milky Way: 
45 10 lyr    

Now, 
151ly 9.46 10 m   

 4 155 10 9.46 10r      

 204.73 10 mr    

Because a star spins around the Milky Way’s galactic centre, its time period is determined by the 

relationship: 

1
2 3 24

G

r
T

M

 
  
 

 

 

1 1
2 3 60 302 2

11 41

4 (3.14) (4.73) 10 39.48 105.82 10

6.67 10 5 10 33.35
T



       
    

     
 



   

 

  
1

30 162125.27 10 1.12 10 s     

Since,  lyear  365 324 60 60s     

Therefore, 
1

 1s   years 
365 24 60 60


  

 

16
16 1.12 10

1.12 10 s
365 24 60 60


  

  
 

83.55 10  years    

8.6: Choose the correct alternative: 

(a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative 

of its kinetic/potential energy. 

Solution: (a) Kinetic Energy 

A satellite’s total mechanical energy is the sum of its kinetic (always positive) and potential energy 

(may be negative). The gravitational potential energy of the satellite is zero at infinity. Because the 

Earth-satellite system is a bound system, the satellite's total energy is negative. As a result, at infinity, 

the total energy of an orbiting satellite equals the negative of its kinetic energy. 

(b) The energy required to launch an orbiting satellite out of earth’s gravitational influence is 

more/less than the energy required to project a stationary object at the same height (as the 

satellite) out of earth’s influence.  

 (b) Less 

A satellite in orbit acquires a specific quantity of energy that allows it to rotate around the Earth. It 

gets this energy from its orbit. It takes less energy to move out of the gravitational field of the Earth 

than it does to move out of the gravitational field of a stationary item on the Earth’s surface that has 

no energy at all. 

 

8.7: Does the escape speed of a body from the earth depend on the mass of the body, the location 

from where it is projected, the direction of projection, the height of the location from where the 

body is launched? 

Solution: No, No, No, Yes 

Escape Velocity of the body: ec 2gv R  

Where, g = Acceleration due to gravity 

R = Radius of earth 

The escape velocity is independent of the mass of the body and the direction of its projection, as 

shown by equation I However, the gravitational potential at the location where the body is launched is 

a factor. Because this potential is influenced by the height of the point, escape velocity is also 

influenced by these parameters. 



   

 

 

8.8: A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant (a) linear 

speed 

(b) angular speed,  

I angular momentum,  

(d) kinetic energy,  

I potential energy,  

(f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very 

close to the Sun. 

Solution: 

a) No 

b) No 

c) Yes 

d) No 

e) No 

f) Yes 

At all places along a comet’s highly elliptical orbit around the Sun, angular momentum and total 

energy are constant. Its linear, angular, kinetic, and potential energy vary depending on where it is 

in the orbit. 

8.9: Which of the following symptoms is likely to afflict an astronaut in space (a) swollen feet, 

(b) swollen face, (c) headache, (d) orientational problem? 

Solution: (b), (c), and (d) 

Due to gravitational attraction, the legs hold the full mass of a body in a standing position. Because 

there is no gravity in space, an astronaut feels weightless. As a result, an astronaut’s swollen feet have 

no bearing on his or her performance in space. 

The perceived weightlessness in space causes a bloated face in most people. The face is made up of 

sense organs such as the eyes, ears, nose, and mouth. An astronaut in orbit may have this condition. 

Headaches are brought on by mental tension. It can have an impact on an astronaut’s ability to work 

in space. Different orientations exist in space. As a result, an astronaut in space may experience an 

orientational difficulty. 

8.10: Choose the correct answer from among the given ones: 

The gravitational intensity at the centre of a hemispherical shell of uniform mass density has the 

direction indicated by the arrow: (i) a, (ii) b, (iii) c, (iv) O. 



   

 

 

Solution: (iii) 

In a spherical shell, the gravitational potential (V) is constant at all places. Hence, the gravitational 

potential gradient
dV

dr

 
 
 

 is zero everywhere inside the spherical shell. The negative of gravitational 

intensity equals the gravitational potential gradient. As a result, intensity is zero throughout the 

spherical shell. This shows that gravitational forces at a point in a spherical shell are symmetric. 

The net gravitational force exerted on a particle placed at centre O will be downward if the upper half 

of a spherical shell is cut off (as indicated in the given illustration). 

 

Because gravitational intensity is defined as the gravitational force per unit mass at a given location, it 

will also act downward. As a result, the gravitational intensity at the centre O of the chosen 

hemispheric shell follows the arrow c. 

8.11: Choose the correct answer from among the given ones: 

For the problem 8.10, the direction of the gravitational intensity at an arbitrary point P is 

indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g. 

Solution: Option  (ii) is correct.  

Gravitational potential (V) is constant at all points in a spherical shell. Hence, the 

gravitational potential gradient 
dV

dr

 
 
 

 is zero everywhere inside the spherical shell. The negative of 

gravitational intensity equals the gravitational potential gradient. As a result, intensity is zero 

throughout the spherical shell. This shows that gravitational forces at a point in a spherical shell are 

symmetric. 



   

 

 

Because gravitational intensity is defined as the gravitational force per unit mass at a given location, it 

will also act downward. As a result, the gravitational intensity at any point P of the hemispheric shell 

follows the direction indicated by arrow e. 

8.12: A rocket is fired from the earth towards the sun. At what distance from the earth’s centre 

is the gravitational force on the rocket zero? Mass of the sun      30
2 10 kg  , mass of the earth 

=   24
6 10 kg . Neglect the effect of other planets etc. (orbital radius = .   11

1 5 10 m ). 

Solution: Mass of the Sun: 
30

s 2 10 kgM    

Mass of the Earth: 
24

e 6 10 kgM    

Orbital radius: 111.5 10 mr    

Let mass of the rocket = m 

 

Let x be the distance from the Earth’s centre at which the gravitational pull on satellite P is zero. 

We may equate gravitational forces acting on satellite P under the influence of the Sun and the Earth 

using Newton’s law of gravitation: 

 
s

2 2

G
G

( )

emM M
m

r x x



 

 

2

3

e

Mr x

x M

 
 

 
 

 

1
30 2

24

2 10
577.35

60 10

r x

x

  
  

 
 

 

11

11

1.5 10 577.35

578.35 1.5 10

x x

x

  

 
 

 

11
81.5 10

2.59 10 m
578.35

x


    



   

 

8.13: How will you ‘weigh the sun’, that is estimate its mass? The mean orbital radius of the 

earth around the sun is 81.5 10 km . 

Solution: Orbital radius of the Earth: 111.5 10 mr    

The length of time it takes the Earth to complete one revolution: 1 year  365.25 days T    

 365.25 24 60 60sT      

Universal gravitational constant, 
11 2 2G 6.67 10 Nm kg    

Now, mass of the Sun: 

2 3

2

4

G

r
M

T




 
3

2 11

11 2

4 (3.14) 1.5 10

6.67 10 (365.25 24 60 60)

  


    
 

 30

4

133.24 10
2.0 10 kg

6.64 10
M


  


 

Hence, the mass of the Sun
302.0 10 kg  

 

8.14: A Saturn year is .29 5 times the earth year. How far is the Saturn from the sun if the earth 

is .    8
1 50 10 km away from the sun? 

Solution: Distance between the Earth and the Sun:
8 11

e 1.5 10 km 1.5 10 mr     .  

Time period of Earth: eT  

Time period of Saturn: 29.5s eT T  

Distance of Saturn from the Sun: sr  

Therefore, From Kepler’s third law: 

1
2 3 24

G

r
T

M

 
  
 

 

For Saturn and Sun: 

2

3
s

s e

e

T
r r

T

 
  

 
 

 

2

3
s

s e

e

T
r r

T

 
  

 
 

 

2

3
11 29.5

1.5 10 e
s

e

T
r

T

 
   

 
 

 
111.5 10 9.55sr     

 
1114.32 10 msr    



   

 

8.15: A body weighs  63 N  on the surface of the earth. What is the gravitational force on it due 

to the earth at a height equal to half the radius of the earth? 

Solution: Weight: 63NW   

Acceleration due to gravity at height h: 2

1

e

g
g

h

R

 
 
 
 

 

 For 
2

eR
h   

Where,  Radius of the Earth Re   

Now, 2 2

4

91
11

22
e

e

g g
g g

R

R

   
   

   
  

 

The weight of a body of mass m standing at height h is calculated as  

W mg  
4 4

9 9
m g mg     

4
63 28N

9
W      

 

8.16: Assuming the earth to be a sphere of uniform mass density, how much would a body weigh 

halfway down to the centre of the earth if it weighed  250 N  on the surface? 

Solution: Weight of a body of mass m: 250NW mg   

Depth at which body of mass m is located: 
1

2
ed R  

Were,  Radius of the Earth Re   

Now, Acceleration due to gravity at depth g (d): 1
e

d
g g

R


 
  
 

1
1

2 2

e

e

R
g g

R

 
   

 
 

Weight of body at depth d:W mg  
1 1 1

2 2 2
m g mg W     

1
250 125N

2
W      

8.17: A rocket is fired vertically with a speed of 
–1

kms  from the earth’s surface. How far from 

the earth does the rocket go before returning to the earth? Mass of the earth = .   24
6 0 10 kg ; 

mean radius of the earth
6 11 2 26.4 10 m;G 6.67 10 Nm kg       g cf f  



   

 

Solution: Velocity of the rocket: 35km / s 5 10 m / sv     

Mass of the Earth: 
246.0 10 kgeM    

Radius of the Earth:
66.4 10 meR    

Height reached by rocket mass: m h  

Now, Total energy of the rocket = Kinetic energy + Potential energy 

2 G1

2

e

e

M m
mv

R

 
   

 
 

At highest point h, 0v   

Therefore, 
G

 Potential energy  e

e

M m

R h
 


 

G G
 Total energy of the rocket  0

R R

e e

e e

M m M m

h h

 
     

  
 

From the law of conservation of energy:  

At the Earth's surface, the total energy of the rocket = the total energy at a height of h 

 2 G G1

2

e e

e e

M m M m
mv

R R h

 
    

 
 

 21 1 1
G

2
e

e e

v M
R R h

 
  

 
 

 
 

2 G1

2

e e

e e e

M h R
v

R R h R
 


 

 
2 g1

2

e

e

R h
v

R h
 


 

where, 
2

2

G
g 9.8m / s

M

R
  (Acceleration due to gravity) 

 

 

2

2 2

2

2

v

e y

v R h gRh

v R h gR v

  

 
 

 

2

22

e

e

R v
h

gR v




 

 

2
6 3

2
6 3

6.4 10 5 10

2 9.8 6.4 10 5 10

  


    
 

 

12
6

6

6.4 25 10
1.6 10 m

100.44 10
h

 
  


 



   

 

Height achieved by the rocket with respect to the centre of the Earth:
6 6

6

6.4 10 1.6 10

8.0 10 m

eR h 

   

 

 

 

8.18: The escape speed of a projectile on the earth’s surface is 
– . 1

km s  A body is 

projected out with thrice this speed. What is the speed of the body far away from the 

earth? Ignore the presence of the sun and other planets. 

Solution: Escape velocity of a projectile: esc 11.2km / sv   

Projection velocity: 
p esc 3vv   

Mass of the projectile: m  

Velocity of the projectile far away from the Earth: fv  

Now, Total energy on the Earth: 
2 21 1

2 2
p ecmv mv   

The projectile’s gravitational potential energy is zero when it is far away from the Earth. 

Total energy far away from the Earth: 
21

2
fmv  

Now, from the law of conservation of energy:
2 2 2

p occ f

1 1 1

2 2 2
mv mv mv   

 
2 2

f p csv v v     
2 2

esc cs3v v   

 
csc8

8 11.2 31.68km / s

f

f

v v

v



  
 

8.19: A satellite orbits the earth at a height of  400 km  above the surface. How much energy 

must be expended to rocket the satellite out of the earth’s gravitational influence? Mass of the 

satellite   200 kg  ; mass of the earth
24 66.0 10 kg;  radius of the earth  6.4 10    m; 

11 2 2G 6.67 10 Nm kg    

Solution: Mass of the Earth: 
246.0 10 kgM    

Mass of the Satellite: 200kgm   

Radius of the Earth: 
6

e 6.4 10 mR    

Height of the satellite: 
5 6400km 4 10 m 0.4 10 mh       

11 2 2G 6.67 10 Nm kg   (Universal gravitational constant)  



   

 

Total energy: 
2 G1

2

e

e

M m
mv

R h

 
   

 
 

The satellite is tethered to the Earth, as shown by the negative sign. This is referred to as the satellite’s 

bound energy. 

Now, Energy required to send the satellite out of its orbit = – (Bound energy) 

 
eG1

.
2 e

M m
T E

R h



 

 

11 24

6 6

1 6.67 10 6.0 10 200
.

2 6.4 10 0.4 10
T E

   
 

  
 

9

6

1 6.67 6 2 10
. 5.9 10 J

2 6.8 10
T E

  
   

  

 

8.20: Two stars each of one solar mass  302 10 kg   are approaching each other for a head on 

collision. When they are a distance  109 km  , their speeds are negligible. What is the speed with 

which they collide? The radius of each star is  .104 km  Assume the stars to remain undistorted 

until they collide. (Use the known value of G) 

Solution: Mass of each star:
302 10 kgM    

Radius of each star: 
4 710 km 10 mR    

Distance between the stars:
9 1210 km 10 mr    

0v   total energy of two stars separated at r distance with insignificant speeds 

2G 1

2

MM
mv

r


   

G
0

MM

r


  …(1)  

Consider the following scenario in which the stars are ready to collide: 

 Velocity of the stars   v  

 Distance between the centre of the stars   2R  

Total potential energy 
GMM

2R


  

Total energy of the two stars
2

2

GMM
Mv

R
   



   

 

Using the law of conservation of energy: 
2 G G

2

MM MM
Mv

R r


   

 
2 G G 1 1

G
2 2

M M
v M

r R r R

  
     

 
 

 
2 11 30

12 7

1 1
6.67 10 2 10

10 2 10
v   

       
 

 
2 19 12 813.34 10 10 5 10v          

 
2 126.67 10v    

12 66.67 10 2.58 10 m / sv      

8.21: Two heavy spheres each of mass  100 kg and radius .  0 10 m  are placed .  1 0 m  apart on a 

horizontal table. What is the gravitational force and potential at the mid point of the line joining 

the centres of the spheres? Is an object placed at that point in equilibrium? If so, is the 

equilibrium stable or unstable? 

Solution: The situation is represented 

 

Mass of each sphere: 100kgM   

Separation between the spheres: 1mr   

X is the location where the two spheres meet in the middle. At point X, the gravitational force will be 

zero. This is due to the fact that each sphere’s gravitational force will act in different directions. 

Gravitational potential at point X: 
G G G

4

2 2

M M M

r r r


   

   
   
   

 

114 6.67 10 100

1

  
  

82.67 10 J / kg    

Any object placed at point X will be in a state of balance, but the equilibrium will be unstable. This is 

due to the fact that any change in the object’s position will change the effective force in that direction. 

 

Additional Exercise 

8.22: As you have learnt in the text, a geostationary satellite orbits the earth at a height of 

nearly ,  36 000 km  from the surface of the earth. What is the potential due to earth’s gravity at 



   

 

the site of this satellite? (Take the potential energy at infinity to be zero). Mass of the earth; 
246.0 10 kgeM    

Solution: Mass of the Earth: 
246.0 10 kgeM    

Radius of the Earth:
66400km 6.4 10 mR     

Height of a geostationary satellite: 
736000km 3.6 10 mh     

Gravitational potential energy: 
G

( )

M

R h






11 24

7 7

6.67 10 6.0 10

3.6 10 0.64 10

  
 

  
 

69.4 10 J / kg    

 

8.23: A star .2 5  times the mass of the sun and collapsed to a size of  12 km  rotates with a speed 

of .1 2  rev. per second. (Extremely compact stars of this kind are known as neutron stars. 

Certain stellar objects called pulsars belong to this category). Will an object placed on its 

equator remain stuck to its surface due to gravity?
30 (Mass of the sun  2 10 kg ).    

Solution:   If the inward gravitational pull is stronger than the outward centrifugal force induced by 

the star’s spin, a body becomes stuck to its surface. 

Gravitational force: g 2

GMm
f

R
  

where, 
30 30 Mass of the star  2.5 2 10 5 10 kgM        

4 Radius of the star  12km 1.2 10 mR      

 

11 30
11

s 2
4

6.67 10 5 10
2.31 10 mN

1.2 10

m
f

   
   


 

Centrifugal force: 
2

cf mr  

Angular speed: 2 v  

1 frequency  1.2 rev s  

Now,
2

c (2 )f mR v  4 2 2 51.2 10 4 (3.14) (1.2) 1.7 10 Nm m         

The body will remain glued to the star’s surface because fg fc .  

8.24: A spaceship is stationed on Mars. How much energy must be expended on the spaceship to 

launch it out of the solar system?  Mass of the space ship  1000kg; 
23 mass of mars  6.4 10 kg  ;  radius of mars  3395km;   mass of the Sun = 

302 10 kg ; radius 

of the orbit of mars= 
82.28 10 kg  



   

 

Solution:  Mass of the spaceship: s 1000kgm   

Mass of the Sun:
302 10 kgM    

Mass of Mars:
236.4 10 kgmm    

Orbital radius of Mars: 
8 112.28 10 kg 2.28 10 mR      

Radius of Mars: 
63395km 3.395 10 mr     

11 2 2G 6.67 10 m kg   (Universal gravitational constant) 

Now, Potential energy of the spaceship due to the gravitational attraction of the Sun: sGMm

R


  

Because of Mars' gravitational attraction, the spaceship's potential energy is: 

m sGM m

r


  

The spaceship’s velocity, and thus its kinetic energy, will be 0   because it is stationed on Mars. 

Total energy: s mG GsMm M m

R r

 
  sG mmM

m
R r

 
   

 
 

The system is in a bound state if the sign is negative. 

The amount of energy necessary to send the spaceship out of the solar system is equal to – (Total 

energy of the spaceship) sG mmM
m

R r

 
  

 
 

30 23
11 3

11 6

2 10 6.4 10
6.67 10 10

2.28 10 3.395 10

   
     

  

8 176.67 10 89.50 10      

9596.97 10   

116 10 J   

 

8.25: A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s–1. If %20   of 

its initial energy is lost due to Martian atmospheric resistance, how far will the rocket go from 

the surface of mars before returning to it?  Mass of mars  6.4 1023kg  Radius of mars

11 2 23395km;G 6.67 10 Nm kg     

Solution: Initial velocity
32km / s 2 10 m / sv     

 Mass of Mars: 
236.4 10 kgM    

 Radius of Mars: 
63395km 3.395 10 mR     

11 2 2G 6.67 10 m kg        (Universal gravitational constant) 



   

 

 Mass of the rocket  m h  

 Initial kinetic energy 
21

2
mv  

 Initial potential energy
GMm

R


  

 Total initial energy
21 G

2

Mm
mv

R
   

Only 80%   of its kinetic energy aids in reaching a height if 20%   of its initial kinetic energy is 

wasted due to Martian air resistance. 

Total initial energy
2 280 1 GMm GMm

0.4
100 2

mv mv
R R

      

Now, Maximum height h  

The rocket’s velocity, and hence its kinetic energy, will be zero at this altitude. 

Total energy of the rocket
G

( )

Mm

R h
 


 

Applying the law of conservation of energy: 
2 G G

0.4
( )

Mm Mm
mv

R R h


 


 

 
2 GM G

0.4
M

v
R R h

 


 

 
20.4 G

( )

R h R
v M

R R h

  
  

 
 

 
2 G

0.4
( )

Mh
v

R R h



 

 
2

G

0.4

R h M

h v R


  

 
2

G
1

0.4

R M

h v R
   

 
2

G
1

0.4

R M

h v R
   

 

2

G
1

0.4

R
h

M

v R





2 2

2

0.4R

G 0.4

v

M v R




   

   

2 2
6 3

2
11 23 3 6

0.4 3.395 10 2 10

6.67 10 6.4 10 0.4 2 10 3.395 10

   


       
 

 

18
6

12 12

18.442 10 18.442
10

42.688 10 5.432 10 37.256
h


  

  
 

3495 10 m 495kmh     



   

 

 

 

 

 


