
   

 

Chapter 12: ATOMS 

 

EXAMPLES 

12.1   In the Rutherford’s nuclear model of the atom, the nucleus (radius about 
1510 m

) is 

analogous to the sun about which the electron move in orbit (radius =
1010 m

) like the earth 

orbits around the sun. If the dimension of the solar system had the same proportion as those of 

the atom, would the earth be closer to or farther away from the sun than actually it is? The 

radius of earth’s orbit is about 
111.5 10 m . The radius of the sun is taken as 

87 10 m . 

Solution: 

The ratio of radius of the electron’s orbit to the radius of nucleus is    10 15 510 / 10 10m m   , that 

is, the electron’s orbit radius is 
510 times larger than the nucleus. If the radius of the earth’s orbit 

would be 
5 8 1310 7 10 7 10m m    . It will be  more than 100  times greater than the actual orbital 

radius of the earth. Thus, we can say that the earth would be much farther away from the sun. 

So it tells that an atom contains much greater fraction of empty space than that of our solar system. 

12.2  In a Gieger - Marsden experiment, what is the distance of the closest approach to the 

nucleus of a 7.7MeV   particles before it comes momentarily to rest and reverse its direction? 

Solution:  

The idea over here is that while throughout the scattering process, conservation of the total 

mechanical energy of the system consisting of an  particle and gold nucleus took place. The initial 

mechanical energy of the system is iE , before the particle and the nucleus interact, and it equals to its 

mechanical energy 
fE  when the  particles momentarily stop. The initial energy iE is the kinetic 

energy K of the incoming   particle whereas the final energy
fE is the electric potential energy U of 

the system. We can calculate the potential energy U as 

Let us consider d as the centre – to - centre distance between the  particle and the gold nucleus when 

the  particle is a t its stopping point. Then we can write the conversation of energy for iE =
fE as 
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Thus, the distance for closest approach d is given by 
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The maximum kinetic energy found in  particles of natural origin is 7.7MeV or 
121.2 10 J . 

Since 
9 2 2

01 4 9.0 10 /Nm C    . Therefore with 
191.6 10e C  , we have, 
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The atomic number of the foil material gold is 79Z  , so that 

     14 153.0 10 30 . 1 . ., 10 .d Au m fm fm i e fermi m      

The radius of the gold nucleus her is less than 
143.0 10 m . This is not a good arrangement while 

comparing with the observed result as the actual radius of gold nucleus is 6 fm . This cause for 

discrepancy is that for the distance of closest approach is considerably much larger than that of the 

sum of the radii of the gold nucleus and the  particle. Thus, the  particle reverses its motion 

without even exactly touching the gold nucleus. 

12.3  It is found experimentally that 13.6eV energy is required to separate a hydrogen atom 

into a proton and an electron. Compute the orbital radius and the velocity of the electron in the 

hydrogen atom. 

Solution: 

Total energy of the electron in hydrogen atom is
19 1813.6 13.6 1.6 10 2.2 10 .eV J J          

Thus from Eq. (12.4), we have 
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This gives the orbital radius 
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115.3 10 m  . 

The velocity for the revolving electron can be calculated with 
319.1 10m kg   
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12.4   According to the classical electromagnetic theory, calculate the initial frequency of the 

light emitted by the electron revolving around a proton in hydrogen atom. 

Solution: 

From example 12.3 it is already known that velocity of electron moving around a proton in hydrogen 

atom in a orbit of radius 
115.3 10 m is 

62.2 10 /m s . Thus, we know the frequency of the electron 

moving around the proton is 
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156.6 10 Hz  . 

According to the electromagnetic theory, the frequency of the electromagnetic waves emitted by the 

revolving electrons is same as that of the frequency of its revolution around the nucleus. Therefor the 

initial frequency of the light emitted is  
156.6 10 Hz . 

12.5 A 10kg satellite circles earth once every 2h  in a orbit having a radius of 8000km . 

Assuming that Bohr’s angular momentum postulate applies to satellite just as it does o an 

electron in the hydrogen atom, find the quantum number of the satellite.   

Solution: 

from Eq. (12.13), we have 

/ 2n nmv r nh   

Here 10m kg and 
68 10nr m  . We have the time period T of the circling satellite as 2h . that is 

7200T s 7200T s . 

Thus the velocity 2 /n nv r T . 

The quantum number of the orbit of satellite 

 
2

2 / ( )nn r m T h    

Substituting the values, 

 
2

6 342 8 10 10 / (7200 6.64 10 )n m s Js        

    
455.3 10   

We should note that the quantum number for the satellite motion is much larger. For large quantum 

numbers the results of quantisation conditions will be similar to those of general physics. 

12.6 Using the Rydberg formula, calculate the wavelengths of the first four spectral lines in the 

Lyman series of the hydrogen spectrum. 

Solution: 

The Rydberg’s formula is  
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The wavelength of the first four lines in the Lyman series correspond to the transition from 

2,3,4,5in   to 1fn  . We know that  

4
19

2 2

0

13.6 21.76 10
8

me
eV J

h

  


 

Therefore, 
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Substituting 2,3,4,5in   we get 
21 31 41 511218 , 1028 , 974.3 , 951.4A A A A         

 

EXERCISES 

12.1 Choose the correct alternative from the clues given at the end of each                             statement: 

(a) The size of the atom in Thomson’s model is ………… the atomic size in                    Rutherford’s 

model. ( much greater than/no different from/ much less than.) 

(b) In the ground state of ……….. the electrons are in stable equilibrium, while in ………. 

electrons always experience a net force. (Thomson’s model/ Rutherford’s model.) 

(c) An atom based on ………... is doomed to collapse. (Thomson’s model/ Rutherford’s model.) 

(d) An atom has a nearly continuous mass distribution in a ………... but has a highly non-uniform 

mass distribution in ……….. (Thomson’s model/ Rutherford’s model.) 

(e) The positively charged part of the atom possesses most of the mass in ………… (Rutherford’s 

model/ both the models.) 

Solution: 

(a) The size of the atom taken in Thomson’s model and Rutherford’s model have the same order of 

magnitude. 

(b) In the ground state of Thomson’s model, the electrons are in stable equilibrium, while in 

Rutherford’s model the electrons always experience a net force. 

(c) An atom based on Rutherford’s model is doomed to collapse. 

(d) An atom has a continuous mass distribution in Thomson’s model, but has a highly non uniform mass 

distribution in Rutherford’s model. 

(e) The positively charged part of the atom possesses most of the mass in both the models. 

12.2    Suppose you are given a chance to repeat the alpha-particle scattering experiment using a 

thin sheet of solid hydrogen in place of the gold foil. (Hydrogen is a solid at temperatures below 

14K .) What results do you expect? 

Solution:  

In the experiment of alpha-particle scattering, if a thin sheet of solid hydrogen is replaced for a gold 

foil, then the angle of scattering will not be large. It is because the mass of hydrogen (
271.67 10 kg ) 

is less than that of mass of incident  particles (
276.64 10 kg ). Thus, the mass of the scattering 



   

 

particle will be more than the target nucleus (hydrogen). As a result, the  particles cannot bounce back 

if solid hydrogen is used in the experiment of  particle scattering. 

12.3      What is the shortest wavelength present in the Paschen series of spectral lines? 

Solution: 

Rydberg’s formula is given as: 

 

 

Were, 

h   Planck’s constant  346.6 10 Js  

c Speed of light  83 10 /m s  

( 1n  and 2n are integers) 

The shortest wavelength as in the Paschen series of the spectral lines is given for values  1 3n  and 2n  
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 12.4     A difference of 2.3E eV separates two energy levels in an atom. What is the frequency 

of radiation emitted when the atom makes a transition from the upper level to the lower level? 

Solution:  

In an atom the separation of two energy level is given by, 

2.3E eV  
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Let v be the frequency of radiation emitted by the atom when get transited from the upper level to the 

lower level. 

We have the relation for the energy as: 

E hv  

Were, 
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h   Planck’s constant = 
326.62 10 Js   

E
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h
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Hence, the frequency of the radiation is 
145.6 10 Hz . 

12.5     The ground state energy of hydrogen atom is 13.6eV . What are the kinetic and potential 

energies of the electron in this state? 

Solution: 

Ground state energy of hydrogen atom, 13.6E eV   

This is the total energy of a hydrogen atom. Kinetic energy is equal to the negative of the total energy.  

Kinetic energy  ( 13.6) 13.6E eV       

Potential energy equals to the twice of negative of kinetic energy. 

Potential energy  2 (13.6) 27.2eV     

12.6   A hydrogen atom initially in the ground level absorbs a photon, which excites it to the n = 

4 level. Determine the wavelength and frequency of the photon. 

Solution: 

For ground level, 1 1n   

Let 1E be the energy of this level. So 1E  is related with 1n as: 
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The atom gets excited and jumps to higher level, 2 4n   

Let 2E  be the energy of this level. 
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For a photon of wavelength  , the expression of energy is written as: 

hc
E


   

Were, 

h   Planck’s constant  346.6 10 Js  

c   Speed of light  83 10 /m s   
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And, frequency of a photon is given by the relation, 
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Hence, the wavelength of the photon is 97nm while the frequency is 
153.1 10 Hz . 

12.7 (a) Using the Bohr’s model calculate the speed of the electron in a hydrogen atom in the 

1,2n  and 3 levels.  (b) Calculate the orbital period in each of these levels. 

Solution: 

(a) Let 1v be the orbital speed of the electron in the hydrogen atom which is in the ground state level, 

1 1n  . For charge (e) of an electron, v1 is given by, 
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 Where, 
191.6 10e C   



   

 

0    Permittivity of free space = 
12 1 2 28.85 10 N C m    

 h     Planck’s constant = 
346.62 10 Js  

 

       
8 60.0218 10 2.18 10 /m s     

For level 2 2n  , the relatable orbital speed is: 
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For 3 3n  , we can write the relation for the corresponding orbital speed as: 
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Hence, the speed of the electron in a hydrogen atom in n 1 , n 2  and n 3  is 
6 6 52.18 10 / ,1.09 10 / ,7.27 10 /m s m s m s    respectively. 

(b) Let 1T  be the orbital period of the electron when it is in level 1 1n  . 

Orbital period is related to orbital speed as: 
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 h    = Planck’s constant = 
346.62 10 Js  

 e    = Charge of an electron = 
191.6 10 C  

0  = Permittivity of free space = 
12 1 2 28.85 10 N C m    

 m = Mass of an electron = 
319.1 10 kg  
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For level 2 2n  , the time period as: 
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For level 3 3n  , the time period will be: 
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Hence, the orbital period in each of these levels is 
16 15 151.52 10 ,1.22 10 4.12 10s and s    

respectively. 



   

 

12.8   The radius of the innermost electron orbit of a hydrogen atom is 
115.3 10 m . What are 

the radii of the n 2  and n 3  orbits? 

Solution: 

The radius of the innermost orbit of a hydrogen atom, 1r   
115.3 10 m . 

Let 2r  be the radius of the orbit at n 2 . The radius of the innermost orbit is: 

 
2

2 1r n r  

    
11 104 5.3 10 2.12 10 m       

For n 3 , we can write the corresponding electron radius as: 

 
2

3 1r n r   

     
11 109 5.3 10 4.77 10 m       

Hence, the radii of an electron for n 2  and n 3  orbits are 
10 102.12 10 4.77 10mand m    

respectively. 

12.9   A 12.5eV electron beam is used to bombard gaseous hydrogen at room temperature. What 

series of wavelength will be emitted? 

Solution: 

It is given that the energy of the electron beam used to bombard gaseous hydrogen in room temperature 

is 12.5eV . Also, the energy of the gaseous hydrogen in ground state at room temperature is 13.6eV
. 

When gaseous hydrogen is bombarded with an electron beam, the energy of the gaseous hydrogen 

becomes 13.6 12.5eV  i.e., 1.1eV . 

Orbital energy is related to orbit level (n) as: 
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This energy is approximately equals the energy of the gaseous hydrogen. So we can conclude that the 

electron has jumped from n 1 to  n 3  level. 

During its de-excitation, the electrons can jump from n 3  to n 1  directly, by which it forms a line 

of the Lyman series of the hydrogen spectrum. 

The relation for wave number in Lyman series as:  
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Were, 

YR   Rydberg constant  7 11.097 10 m  Wavelength of radiation emitted by the transition of the 

electron for n 3 , can be obtained as: 

7

2 2

1 1 1
1.097 10

1 3

 
   

 
 

     
7 71 8

1.097 10 1 1.097 10
9 9

 
      

 
 

7

9
102.55

8 1.097 10
nm  

 
 

If the electron jumps from n 2  to n 1 , then the wavelength for the radiation given as: 
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If the transition takes place from n 3  to n 2 , then the wavelength for the radiation is given as: 
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Thus, the radiation is similar to the Balmer series for the hydrogen spectrum. 

Hence, in Lyman series, two wavelengths i.e., 102.5  and 121.5nm  are emitted. 

12.10 In accordance with the Bohr’s model, find the quantum number that characterises the 

earth’s revolution around the sun in an orbit of radius 
111.5 10 m with the orbital speed 

43 10 /m s . (Mass of earth 
246.0 10 kg .) 

Solution: 

Radius of the Earth’s orbit around the Sun, 
111.5 10r m    

Orbital speed of the earth, v  43 10 /m s  

Mass of the Earth, m 
246.0 10 kg  



   

 

According to Bohr’s model, quantised angular momentum is given by: 
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h   Planck’s constant  346.62 10 Js  
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Hence, the quantum number which characterizes for the Earth’s revolution is 
742.6 10  

 

ADDITIONAL EXERCISE  

12.11   Answer the following questions, which will help you understand the difference between 

Thomson’s model and Rutherford’s model better. 

(a)  Is the average angle of deflection of  particles by a thin gold foil predicted by Thomson’s 

model much less, about the same, or much greater than that predicted by Rutherford’s model? 

(b)  Is the probability of backward scattering (i.e., scattering of  particles at angles greater than 

90o
) predicted by Thomson’s model much less, about the same, or much greater than that 

predicted b Rutherford’s model? 

(c)   Keeping other factors fixed, it is found experimentally that for small thickness t, the number 

of  particles scattered at moderate angle is proportional to t. What clue does this linear 

dependence on t provide? 

(d)   In which model is it completely wrong to ignore multiple scattering for the calculation of 

average angle od scattering of  particles by a thin foil? 

Solution: 

(a)   About the same. 

The average angle of deflection of  particles by a thin gold foil predicted by Thomson’s model is 

about the same size as predicted by Rutherford’s model. It is the reason for which average angle is 

considered for both the models.  

(b)   Much less 

The probability of scattering  particles at angles greater than 90o
predicted by Thomson’s model is 

much less than that predicted by Rutherford’s model. 



   

 

(c)   Scattering is mainly due to single collision. The chances for a single collision to take place increases 

with the number of target atoms. Since the number of target atoms increasers with an increase in 

thickness of the target. 

(d)   Thomson’s model 

It is wrong to ignore multiple scattering in Thomson’s model for the calculation of average angle of 

scattering of  particles by a thin foil. It is because in models a very little deflection take place for a 

single collision. Hence, the multiple scattering is used to explain the observed average scattering angle. 

12.12   The gravitational attraction between electron and proton in an hydrogen atom is weaker 

than the coulomb attraction by a factor of about 
4010

.  An alternative way of looking at this fact 

is to estimate the radius of the first Bohr orbit of a hydrogen atom if the electron and proton were 

bound by gravitational attraction. You will find the answer interesting.  

Solution: 

Radius of the first Bohr orbit is, 
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Were, 

0     Permittivity of free space 

 H     Planck’s constant = 
346.63 10 Js   

em     Mass of an electron = 
319.1 10 kg   

  e     Charge of an electron = 
191.9 10 C  

 
pm    Mass of proton = 

271.67 10 kg  

  r      Distance between an electron and a proton  

Coulomb’s attraction between an electron and a proton is: 
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
                                                                 …( 2 )   

Attractional force of gravitation between an electron and a proton is as: 

2

p e

G

Gm m
F

r
                                                                    …(3 ) 

Were, 

G   Gravitational constant 
11 2 26.67 10 /Nm kg   

If the Coulomb’s electrostatic force and the force of gravity between an electron and a proton are equal, 

then: 
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Putting the values of equation ( 4 )in equation (1), we get: 
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We know that the universe is 156  billion light years wide or 
271.5 10 m wide. Hence, we can conclude 

that the radius of the first Bohr orbit is much greater than that of the estimated size of the whole universe.                 

12.13 Obtain an expression for the frequency of radiation emitted when a hydrogen atom 

deexcites from level n to level (n 1 ). For large n, show that this frequency equals the classical 

frequency of revolution of the electron in the orbit. 

Solution: 

It is given that a hydrogen atom de excites from upper level (n) to a lower level (n 1  ). The equation 

of energy ( 1E ) for radiation at level n is: 

 

4

1 1 3 2
3 2

0

1

4
2

hme
E hv

nh




 
   

  
  

 

                                      …(i) 

Were, 

v1       Frequency of radiation at level  

h       Planck’s constant 

m      Mass of hydrogen atom 

e       Charge on an electron 

0      Permittivity of free space  

The equation of energy ( 2E ) for radiation at level (n 1  ) is as: 
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                                         …(ii) 

Were, 

2v   Frequency of radiation at level (n 1  ) 

Energy (E) released as a result of de-excitation: 

2 1 2 1,E E E hv E E                                                                  …(iii) 

Were, 

v   Frequency of radiation emitted 

Putting values from equation (i) and (ii) in equation (iii), we get: 
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For large n, we can write  2 1 2n n  and  1n n  
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                                                              …(iv) 

Equation for frequency of revolution of an electron is given as: 
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Were, 

Velocity of the electron in the 
thn  orbit is given as: 
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                                                                     …(vi) 

Radius of the 
thn orbit is: 
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Substituting the above two equations in equation (v), then: 
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Hence, the frequency of the radiation emitted by the hydrogen atom is equal to its classical orbital 

frequency.  

12.14    Classically an electron can be in any orbit around the nucleus of the atom. Then what 

determines the typical atomic size? Why is an atom not, say, thousand times bigger than its typical 

size? The question had greatly puzzled Bohr before he arrived at his famous model of the atom 

at you might have learnt in the text. To stimulate what he might will have done before his 

discovery, let us play as follows with the basic constants of nature and see if we can get a quantity 

with the dimension of length that is roughly equal to the know size of an atom  1010 m
. 

(a) Construct a quantity with the dimension of length from the fundamental constants e, em  and 

c. Determine its numerical value 

(b) You will find that the length obtained in (a) is many orders of magnitude smaller than the 

atomic dimensions. Further it involves c. But energies of atoms are mostly in non-relativistic 

domain where c is not expected to play any role. This is what may have suggested Bohr to discard 

c and look for `something else’ to get the right atomic size. Now, the Planck’s constant h had 

already made it appearance elsewhere. Bohr’s insight lay in recognising that h, em  and e and 

confirm that its numerical value has indeed the correct order of magnitude. 

Solution: 

(a) Charge on an electron, 
191.6 10e C   

Mass of an electron,
319.1 10em kg    

Speed of light, 
83 10 /c m s   

Considering a quantity involving in the given quantities is 
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Were, 

0    Permittivity of free space 

And,  
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The numerical value of the taken quantity will be: 
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Hence, when compared to the normal size of an atom this numerical value of the quantity considered is 

smaller. 

(b) Charge on an electron, 
191.6 10e C     

Mass of an electron, 
319.1 10em kg     

Planck’s constant, 
346.63 10h Js    

Let us take a quantity involving the given quantities as 

2

0

2

4
2

e

h

m e




 
  

 
  

Were, 

0   Permittivity of free space 

And,  
9 2 2

0

1
9 10

4
Nm C



 


 

The numerical value of the taken quantity will be: 

2

0

2

4
2

e

h

m e




 
  

 
 

 

34

29 31 19

10

6.63 10

2 3.141

9 10 9.1 10 1.6 10

0.53 10 m



 



 
 

  
   

 

  

Hence, the value of the quantity taken is of the order of the atomic size. 

12.15   The total energy of an electron in the first excited state of the hydrogen atom is about 

3.4eV . 

(a) What is the kinetic energy of the electron in this state? 

(b) what is the potential energy of the electron in this state? 

(c) Which of the answers above would change if the choice of the zero of the potential energy is 

changed? 



   

 

Solution: 

(a)   Total energy of the electron, 3.4E eV    

The electron’s kinetic energy equals to negative of the total energy. 

 3.4 3.4

K E

eV

  

    
  

Hence, the kinetic energy of the electron in the given state is 3.4eV . 

(b) The electron’s potential energy (U) equals to the negative of two times its kinetic energy. 
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2 3.4 6.8

U K
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    
  

Hence, the potential energy of the electron in the given state is 6.8eV . 

(c)  A system’s potential energy depends on the reference point considered. Here, the potential energy 

considered is zero. If the reference point is changed, then the value of the potential energy of the system 

also gets changed. Since, total energy is the sum of kinetic and potential energies, total energy of the 

system will also get changed. 

12.16   If Bohr’s quantisation postulate (angular momentum = 
2

nh

n
) is a basic law of nature, it 

should be equally valid for the case of planetary motion also. Why then do we never speak of 

quantisation of orbits of planets around the sun? 

Solution: 

Quantization of orbits of planets around the Sun is a topic which is not much discussed because the 

angular momentum associated with the planetary motion is very much related to the value of Planck’s 

constant (h). The angular momentum of the Earth in its orbit is of order 
7010 . For large values of n, the 

value of successive energies and angular momentum will be relatively small. Hence, the quantum levels 

for planetary motion are considered as continuous. 

12.17   Obtain the first Bohr’s radius and the ground state energy of a muonic hydrogen atom 

[I.e., an atom in which a negatively charged muon   
 of mass about 207 em orbits around a 

proton]. 

Solution: 

Mass of a negatively charged muon, 207 em m   

According to Bohr’s model,  

Bohr’s radius, 
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Energy of an electronic hydrogen atom in its ground state, e eE m  

Energy of a muonic hydrogen atom in the ground state, E m   



   

 

The value of the first Bohr orbit, 
100.53 0.53 10er A m    

Let r be the radius of muonic hydrogen atom. 

At equilibrium, we can write the relation as: 

 

 

 

Thus, in a muonic hydrogen atom the value of the first Bohr 

radius is  

132.56 10 m  

We have, 

13.6eE eV   

Take the ratio of these energies as: 

207

207

e e e

e

e

E m m

E m m

E E

 



 



 

        207 13.6 2.81keV      

Hence, the ground state energy of a muonic hydrogen atom is 2.81keV . 
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