Infinit
 Learn

NCERT X CLASS MATHS QUESTIONS AND SOLUTIONS

2. POLYN OMIALS

NCERT EXERCISE : 2.1

1. The graphs of $y=p(x)$ are given in figure below, for some polynomials $p(x)$. Find the number of zeros of $\mathrm{p}(\mathrm{x})$, in each case.
i)

ii)

iii)

iv) X^{\prime}

v)

vi)

Sol. i) There is no zero as the graph does not intersect tge x-axis at any point.
ii) The number of zeros is 1 as the graph intersects the x -axis at one point only.
iii) The number of zeros is 3 as the graph intersects the x -axis at three points.

Infinity
 Learn
 Sri Chaitanya
 Educational Institutions

iv) The number of zeros is 2 as the graph intersects the x-axis at two points
v) The number of zeros is 4 as the graph intersects the x-axis at four points.
vi) The number of zeros is 3 as the graph intersects the x-axis at three points.

EXERCISE : 2.2

1. Find the zeroes of the quadratic polynomials and verify a relationship between zeroes and its coefficients.
i) $x^{2}-2 x-8$
ii) $4 s^{2}-4 s+1$
iii) $6 x^{2}-3-7 x$
iv) $4 u^{2}+8 u$
v) $t^{2}-15$
vi) $3 x^{2}-x-4$

Sol. i) $x^{2}-2 x-8=x^{2}-4 x+2 x-8=x(x-4)+2(x-4)=(x-4)(x+2)$
So, the value of $x^{2}-2 x-8$ is zero when $x-4=0$ or $x+2=0$ i.e., when $x=4$ or $x=-2$.
So, the zeroes of $x^{2}-2 x-8$ are $4,-2$.
Sum of the zeroes $=4-2=2=\frac{-(-2)}{1}=\frac{- \text { coefficient of } x}{\text { coefficient of } x^{2}}=2$
Product of the zeroes $=4(-2)=-8=\frac{-8}{1}=\frac{\text { constant term }}{\text { coefficient of } \mathrm{x}^{2}}=-8$
ii) $\quad 4 s^{2}-4 s+1=4 s^{2}-2 s-2 s+1$

$$
\begin{aligned}
& =2 s(2 s-1)-1(2 s-1) \\
& =(2 s-1)(2 s-1)=(2 s-1)^{2}
\end{aligned}
$$

So, the value of $4 s^{2}-4 s+1$ is zero when $2 s-1=0$, or $s=\frac{1}{2}$
Zeroes of the polynomial are $\frac{1}{2}, \frac{1}{2}$
Sum of the zeroes $=\frac{1}{2}+\frac{1}{2}=1=-\left(\frac{-4}{4}\right)=\frac{- \text { coefficient of } s}{\text { coefficient of } s^{2}}=1$
Product of the zeroes $=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)=\frac{\text { constant term }}{\text { coefficient of } \mathrm{s}^{2}}=\frac{1}{4}$
iii) We have: $6 x^{2}-3-7 x=6 x^{2}-9 x+2 x-3$

$$
=3 x(2 x-3)+1(2 x-3)=(3 x+1)(2 x-3)
$$

The value of $6 x^{2}-3-7 x$ is 0 , when the value of $(3 x+1)(2 x-3)$ is 0 , i.e.,
when $3 \mathrm{x}+1=0$ or $2 \mathrm{x}-3=0$, i.e., when $x=-\frac{1}{3}$ or $x=\frac{3}{2}$
\therefore The zeroes of $6 \mathrm{x}^{2}-3-7 \mathrm{x}$ are $-\frac{1}{3}$ and $\frac{3}{2}$
Therefore, sum of the zeroes $=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{- \text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{7}{6}$

Infinit
 Learn
 Sri Chaitanya
 Educational Institutions

and product of zeroes $=\left(\frac{-1}{3}\right)\left(\frac{3}{2}\right)=\frac{-3}{6}=\frac{\text { constant term }}{\text { coefficient of } \mathrm{x}^{2}}$
iv) We have: $4 u^{2}+8 u=4 u(u+2)$

The value of $4 u^{2}+8 u$ is 0 , when the value of $4 u(u+2)=0$, i.e., when $u=0$ or $u+2=0$, i.e., when $u=0$ or $u=-2$
\therefore The zeroes of $4 u^{2}+8 u$ are 0 and -2
Therefore, sum of the zeroes $=0+(-2)=-2=\frac{-8}{4}=\frac{- \text { Coefficient of } u}{\text { Coefficient of } u^{2}}=-2$
and product of zeroes $=(0)(-2)=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Coefficient of } u^{2}}=0$
v) We have $t^{2}-15=(t-\sqrt{15})(t+\sqrt{15})$

The value of $\mathrm{t}^{2}-15$ is 0 , when the value of $(t-\sqrt{15})(t+\sqrt{15})$ is 0 , i.e., when $t-\sqrt{15}=0$ or $t+\sqrt{15}=0$, i.e., when $t-\sqrt{15}$ or $t+\sqrt{15}$
\therefore The zeroes of $t^{2}-15$ are $\sqrt{15}$ and $-\sqrt{15}$
Therefore, sum of the zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{- \text { Coefficient of } t}{\text { Coefficient of } t^{2}}=0$
and product of the zeroes $=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text { Constant term }}{\text { Coefficient of } t^{2}}=-15$
vi) We have: $3 x^{2}-x-4=3 x^{2}+3 x-4 x-4=3 x(x+1)-4(x+1)=(x+1)(3 x-4)$

The value of $3 x^{2}-x-4$ is 0 , when the value of $(x+1)(3 x-4)$ is 0 , i.e., when $x+1=0$ or $3 \mathrm{x}-4=0$, i.e., when $\mathrm{x}=-1$ or $x=\frac{4}{3}$
\therefore The zeroes of $3 \mathrm{x}^{2}-\mathrm{x}-4$ are -1 and $\frac{4}{3}$
Therefore, sum of the zeroes $=-1+\frac{4}{3}=\frac{-3+4}{3}=\frac{1}{3}=\frac{-1(-1)}{3}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{1}{3}$
and product of the zeroes : $=(-1)\left(\frac{4}{3}\right)=\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}=\frac{-4}{3}$
2. Find a quadratic polynomial whose sum of zeroes and product of zeroes are respectively.
i) $\frac{1}{4},-1$
ii) $\sqrt{2}, \frac{1}{3}$
iii) $0, \sqrt{5}$
iv) 1,1
v) $-\frac{1}{4}, \frac{1}{4}$
vi) 4,1

Infinity
 Learn
 Sri Chaitanya
 Educational Institutions

Sol. Let the polynomial be $a x^{2}+b x+c$ and its zeroes be α and β.
i) Here, $\alpha+\beta=\frac{1}{4}$ and $\alpha, \beta=-1$

Thus the polynomial formed $=x^{2}-($ Sum of zeroes $) x+$ Product of zeroes $=x^{2}-\left(\frac{1}{4}\right) x-1$

$$
=x^{2}-\frac{x}{4}-1
$$

The other polynomials are $k\left(x^{2}-\frac{x}{4}-1\right)$
If $\mathrm{k}=4$, then the polynomial is $4 \mathrm{x}^{2}-\mathrm{x}-4$
ii) Here, $\alpha+\beta=\sqrt{2}$

$$
\alpha \beta=\frac{1}{3}
$$

Thus the polynomial formed
$=\mathrm{x}^{2}-($ Sum of zeroes $) \mathrm{x}+$ Product of zeroes
$=x^{2}-(\sqrt{2}) x+\frac{1}{3}$ or $x^{2}-\sqrt{2} x+\frac{1}{3}$
Other polynomials are $k\left(x^{2}-\sqrt{2} x+\frac{1}{3}\right)$
If $k=3$, then the polynomial is $3 x^{2}-3 \sqrt{2} x+1$
iii) Here, $\alpha+\beta=0$ and $\alpha \cdot \beta=\sqrt{5}$

Thus the polynomial formed $=x^{2}-$ (Sum of zeroes) $x+$ Product of zeroes

$$
=x^{2}-(0) x+\sqrt{5}=x^{2}+\sqrt{5}
$$

iv) Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ and its zeroes be α and β. Then,
$\alpha+\beta=1=\frac{-(-1)}{1}=\frac{-b}{a}$
$\alpha \beta=1=\frac{1}{1}=\frac{c}{a}$
If $\mathrm{a}=1$, then $\mathrm{b}=-1$ and $\mathrm{c}=1$
\therefore One quadratic polynomial which satisfy the given conditions is $\mathrm{x}^{2}-\mathrm{x}+1$
v) Let the polynomial be $a x^{2}+b x+c$ and its zeroes be α and β. Then

Infinit
 Learn

$\alpha+\beta=-\frac{1}{4}=\frac{-1}{4}=\frac{-b}{a}$
and $\quad \alpha \beta=\frac{1}{4}=\frac{c}{a}$
If $\mathrm{a}=4$, then $\mathrm{b}=1$ and $\mathrm{c}=1$
\therefore One quadratic polynomial which satisfy the given conditions is $4 \mathrm{x}^{2}+\mathrm{x}+1$.
vi) Let the polynomial be $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ and its zeroes be α and β. Then.
$\alpha+\beta=4=\frac{-(-4)}{1}=\frac{-b}{a}$
and $\quad \alpha \beta=1=\frac{1}{1}=\frac{c}{a}$
If $\mathrm{a}=1$, then $\mathrm{b}=-4$ and $\mathrm{c}=1$
\therefore One quadratic polynomial which satisfy the given conditions is $\mathrm{x}^{2}-4 \mathrm{x}+1$.

EXERCISE - 2.3

1. Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each given of the following:
i) $\quad p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

Sol. i) Here, dividend and divisor are both in standard forms. So, we have :

$$
\begin{aligned}
& x ^ { 2 } - 2 \longdiv { x - 3 } x ^ { 3 } - 3 x ^ { 2 } + 5 x - 3 \\
& \begin{array}{r}
x^{3}-\quad-2 x \\
-\quad+\begin{array}{l}
-2 x^{2}+7 x-3
\end{array}
\end{array} \\
& \begin{array}{r}
-3 x^{2} \quad+6 \\
+8 \mathrm{x}-9 \\
\hline
\end{array}
\end{aligned}
$$

\therefore The quotient is $\mathrm{x}-3$ and the remainder is $7 \mathrm{x}-9$

Infinit
 Learn

ii) Here, the dividend is already in the standard form and the divisor is not in the standard form. It can be written as $\mathrm{x}^{2}-\mathrm{x}+1$.
We have :

$$
\begin{aligned}
& x ^ { 2 } - x + 1 \longdiv { x ^ { 4 } + x - 3 } \frac { x ^ { 2 } - 3 x ^ { 2 } + 4 x + 5 } { x ^ { 4 } - x ^ { 3 } + x ^ { 2 } } \\
& x^{4}-x^{3}+x^{2} \\
& \frac{-\quad-}{x^{3}-4 x^{2}+4 x}
\end{aligned}
$$

\therefore The quotient is $\mathrm{x}^{2}+\mathrm{x}-3$ and the remainder is 8 .
iii) We have divisor $\left[-x^{2}+2\right]$ and dividend: $x^{4}-5 x-6$

\therefore The quotient is $-\mathrm{x}^{2}-2$ and the remainder is $-5 \mathrm{x}+10$
2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
i) $t^{2}-3 ; 2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
ii) $x^{2}+3 x+1 ; 3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
iii) $x^{3}-3 x+1 ; x^{5}-4 x^{4}+x^{2}+3 x+1$

Sol. i) Let us divide $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$ by $t^{2}-3$
We have :

Since the remainder is 0 , therefore, $t^{2}-3$ is a factor of $2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
ii) Let us divide $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$ by $x^{2}+3 x+1$

$$
\begin{array}{r}
3 x^{2}-4 x+2 \\
x^{2}+3 x+1 \begin{array}{l}
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
3 x^{4}+9 x^{3}+3 x^{2} \\
-\quad-\quad-4 x^{3}-10 x^{2}+2 x \\
\frac{-4 x^{3}-12 x^{2}-4 x}{+}+ \\
\hline \begin{array}{l}
2 x^{2}+6 x+2 \\
2 x^{2}+6 x+2 \\
-
\end{array} \\
\hline
\end{array} \\
\frac{-}{4}
\end{array}
$$

Since the remainder is 0 , therefore, $x^{2}+3 x+1$ is a facotro of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
iii) Let us divide $x^{5}-4 x^{3}+x^{2}+3 x+1$ by $x^{3}-3 x+1$. We get,

$$
\begin{array}{r}
x^{3}-3 x+1 \begin{array}{c}
x^{2}-1 \\
x^{5}-4 x^{3}+x^{2}+3 x+1 \\
x^{5}-3 x^{3}+x^{2}
\end{array} \\
\qquad \begin{array}{cc}
-\quad+x^{3} & +3 x+1 \\
-x^{3} \quad+3 x-1 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Infinity
 Learn
 Sri Chaitanya
 Educational Institutions

Here, remainder is $2(\neq 0)$. Therefore, $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$.
3. Obtain all the zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Sol. Since two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}, x=\sqrt{\frac{5}{3}}, x=-\sqrt{\frac{5}{3}}$
$\Rightarrow\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=x^{2}-\frac{5}{3}$ or $3 x^{2}-5$ is a factor of the given polynomial. Now, we apply the division algorithm to the given polynomial and $3 x^{2}-5$.

First term of quotient is $\frac{3 x^{4}}{3 x^{2}}=x^{2}$
Second term of quotient is $\frac{6 x^{3}}{3 x^{2}}=2 x$
Third term of quotient is $\frac{3 x^{2}}{3 x^{2}}=1$

So, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(3 x^{2}-5\right)\left(x^{2}+2 x+1\right)+0=\left(3 x^{2}-5\right)(x+1)^{2}$
Quotient: $x^{2}+2 x+1=(x+1)^{2}$
Zeroes of $(x+1)^{2}$ are $-1,-1$.
Hence, all its zeroes are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1,-1$
4. On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2 \\
& \mathrm{q}(\mathrm{x})=\mathrm{x}-2 \text { and } \mathrm{r}(\mathrm{x})=-2 \mathrm{x}+4
\end{aligned}
$$

Sol. By division Algorithm, we know that

$$
\mathrm{p}(\mathrm{x})=\mathrm{q}(\mathrm{x}) \times \mathrm{g}(\mathrm{x})+\mathrm{r}(\mathrm{x})
$$

Therefore, $\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2=(\mathrm{x}-2) \times \mathrm{g}(\mathrm{x})+(-2 \mathrm{x}+4)$
$\Rightarrow \mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2+2 \mathrm{x}-4=(\mathrm{x}-2) \times \mathrm{g}(\mathrm{x})$
$\Rightarrow g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}$
On dividing $\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-2$ by $\mathrm{x}-2$, we get $\mathrm{g}(\mathrm{x})$

Infinity
 Learn

First term of $q(x)=\frac{x^{3}}{x}=x^{2}$
Second term of $q(x)=\frac{-x^{3}}{x}=-x$
Third term of $q(x)=\frac{x}{x}=1$

Hence, $g(x)=x^{2}-x+1$.
5. Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
iii) $\operatorname{deg} q(x)=0$

Sol. i)

$$
\begin{aligned}
\text { Let } q(x)=3 x^{2}+2 x+6, & \text { degree of } q(x)=2 \\
p(x)=12 x^{2}+8 x+24, & \text { degree of } p(x)=2
\end{aligned}
$$

Here, $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
ii) $p(x)=x^{5}+2 x^{4}+3 x^{3}+5 x^{2}+2$
$q(x)=x^{2}+x+1$,
degree of $q(x)=2$
$g(x)=x^{3}+x^{2}+x+1$
$\mathrm{r}(\mathrm{x})=2 \mathrm{x}^{2}-2 \mathrm{x}+1$,
degree of $\mathrm{r}(\mathrm{x})=2$

Here, $\operatorname{deg} \mathrm{q}(\mathrm{x})=\operatorname{deg} \mathrm{r}(\mathrm{x})$
iii) Let $p(x)=2 x^{4}+8 x^{3}+6 x^{2}+4 x+12$

$$
\mathrm{q}(\mathrm{x})=2, \quad \text { degree of } \mathrm{q}(\mathrm{x})=0
$$

$g(x)=x^{4}+4 x^{3}+3 x^{2}+2 x+1$
$r(x)=10$,
Here, $\operatorname{deg} \mathrm{q}(\mathrm{x})=0$

EXERCISE - 2.4 (OPTION AL)

1. Verify that the number given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case :
i) $2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
ii) $x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

Sol. i) Comparing the given polynomial with $a x^{3}+b x^{2}+c x+d$, we get $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{c}=-5$ and $\mathrm{d}=2$

$$
\begin{aligned}
& p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5\left(\frac{1}{2}\right)+2=\frac{1}{4}+\frac{1}{4}-\frac{5}{2}+2=\frac{1+1-10+8}{4}=\frac{0}{4}=0 \\
& p(1)=2(1)^{3}+(1)^{2}-5(1)+2=2+1-5+2=0 \\
& p(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2=2(-8)+4+10+2=-16+16=0
\end{aligned}
$$

Infinity
 Learn
 Sri Chaitanya
 Educational Institutions

$\therefore \frac{1}{2}, 1$ and -2 are the zeroes of $2 \mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}+2$
So, $\alpha=\frac{1}{2}, \beta=1$ and $\gamma=-2$
Therefore, $\alpha+\beta+\gamma=\frac{1}{2}+1+(-2)=\frac{1+2-4}{2}=\frac{-1}{2}=\frac{-b}{a}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\left(\frac{1}{2}\right)(1)+(1)(-2)+(-2)\left(\frac{1}{2}\right)=\frac{1}{2}-2-1=\frac{1-4-2}{2}=\frac{-5}{2}=\frac{c}{a}$
and $\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2)=-1=\frac{-2}{2}=\frac{-d}{a}$
ii) Comparing the given polynomial with $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, we get $\mathrm{a}=1, \mathrm{~b}=-4, \mathrm{c}=5$ and $\mathrm{d}=-2$
$\mathrm{p}(2)=(2)^{3}-4(2)^{3}+5(2)-2=8-16+10-2=0$
$\mathrm{p}(1)=(1)^{3}-4(1)^{2}+5(1)-2=1-4+5-2=0$
$\therefore 2,1$ and 1 are the zeroes of $\mathrm{x}^{3}-4 \mathrm{x}^{2}+5 \mathrm{x}-2$
So, $\alpha=2, \beta=1$ and $\gamma=1$
Therefore,

$$
\alpha+\beta+\gamma=2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}
$$

$$
\begin{aligned}
& \alpha \beta+\beta \gamma+\gamma \alpha=(2)(1)+(1)(1)+(1)(2)=2+1+2=5=\frac{5}{1}=\frac{c}{a} \\
& \text { and } \alpha \beta \gamma=(2)(1)(1)=2=\frac{-(-2)}{1}=\frac{-d}{a} .
\end{aligned}
$$

2. Find a cubic polynomial with the sum, sum of the products of its zeroes taken two at a time and the product of its zeroes as $2,-7,-14$ respectively.
Sol. Let the cubic polynomial be $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$, and its zeroes be α, β and γ.
Then, $\alpha+\beta+\gamma=2=\frac{-(-2)}{1}=\frac{-b}{a}$

$$
\alpha \beta+\beta \gamma+\gamma \alpha=-7=\frac{-7}{1}=\frac{c}{a}
$$

and $\alpha \beta \gamma=-14=\frac{-14}{1}=\frac{-d}{a}$
If $\mathrm{a}=1$, then $\mathrm{b}=-2, \mathrm{c}=-7$ and $\mathrm{d}=14$
So, one cubic polynomial which satisfy the given conditions will be $\mathrm{x}^{3}-7 \mathrm{x}+14$

Infinit
 Learn

3. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b$, a and $a+b$, find a and b.

Sol. Since $(a-b)$, a and $(a+b)$ are the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$, therefore

$$
(a-b)+a+(a+b)=\frac{-(-3)}{1}=3
$$

So, $3 \mathrm{a}=3 \Rightarrow \mathrm{a}=1$

$$
\begin{aligned}
& (a-b) a+a(a+b)+(a+b)(a-b)=\frac{1}{1}=1 \\
& \Rightarrow a^{2}-a b+a^{2}+a b+a^{2}-b^{2}=1 \Rightarrow 3 a^{2}-b^{2}=1
\end{aligned}
$$

So, $3(1)^{2}-b^{2}=1 \Rightarrow 3-b^{2}=1$
$\Rightarrow b^{2}=2$ or $b= \pm \sqrt{2}$
Hence, $\mathrm{a}=1$ and $b= \pm \sqrt{2}$
4. If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeroes

Sol. We have : $2 \pm \sqrt{3}$ are two zeroes of the polynomial
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{4}-6 \mathrm{x}^{3}-26 \mathrm{x}^{2}+138 \mathrm{x}-35$
Let $x=2 \pm \sqrt{3}$. So, $x-2= \pm \sqrt{3}$
Squaring, we get

$$
x^{2}-4 x+4=3, i, e ., x^{2}-4 x+1=0
$$

Let us divide $p(x)$ by $x^{2}-4 x+1$ to obtain other zeroes.

$$
\begin{gathered}
x^{2}-4 x+1 \begin{array}{c}
x^{2}-2 x-35 \\
x^{4}-6 x^{3}-26 x^{2}+138 x-35 \\
x^{4}-4 x^{3}+x^{2}
\end{array} \\
\frac{+\quad-}{-2 x^{3}-27 x^{2}+138 x} \\
\frac{\begin{array}{l}
-2 x^{3}+8 x^{2}-2 x \\
+\quad+
\end{array}}{-35 x^{2}+140 x-35} \\
\frac{-35 x^{2}+140 x-35}{+}+
\end{gathered}
$$

$\therefore \mathrm{p}(\mathrm{x})=\mathrm{x}^{4}-6 \mathrm{x}^{3}-26 \mathrm{x}^{2}+138 \mathrm{x}-35$
$=\left(x^{2}-4 \mathrm{x}+1\right)\left(\mathrm{x}^{2}-2 \mathrm{x}-35\right)$
$=\left(x^{2}-4 x+1\right)\left(x^{2}-7 x+5 x-35\right.$
$=\left(x^{2}-4 x+1\right)[x(x-7)+5(x-7)$
$=\left(x^{2}-4 x+1\right)(x+5)(x-7)$
So, $(x+5)$ and $(x-7)$ are other factors of $p(x)$
$\therefore-5$ and 7 are other zeroes of the given polynomial
5. If the polynomial $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x$ +k , the remainder comes out to $\mathrm{x}+\mathrm{a}$, find k and a .
Sol. Let us divide $x^{4}-6 x^{3}+16 x^{2}-25 x+10$ by $x^{2}-2 x+k$

$$
\begin{aligned}
& x ^ { 2 } - 2 x + k \longdiv { x ^ { 2 } - 4 x + (8 - k) } \\
& x^{4}-2 x^{3}+k x^{2} \\
& \frac{-\quad-}{-4 x^{3}+(16-k) x^{2}-25 x} \\
& \begin{array}{l}
-4 \mathrm{x}^{3}+(16-\mathrm{k}) \mathrm{x}^{2}-25 \mathrm{x} \\
-4 \mathrm{x}^{3}+8 \mathrm{x}^{2}-4 \mathrm{kx}
\end{array} \\
& +\quad-\quad+ \\
& (8-k) x^{2}+(4 k-25) x+10 \\
& (8-k) x^{2}-2(8-k) x+(8-k) k \\
& \begin{array}{l}
-\quad+ \\
(2 \mathrm{k}-9) \mathrm{x} \\
\hline
\end{array}
\end{aligned}
$$

\therefore Remainder $=(2 \mathrm{k}-9) \mathrm{x}-(8-\mathrm{k}) \mathrm{k}+10$
But the remainder is given as $x+a$
On comparing their coefficients, we have

$$
2 \mathrm{k}-9=1 \Rightarrow 2 \mathrm{k}=10 \Rightarrow \mathrm{k}=5
$$

and $-(8-k) k+10=\mathrm{a}$
So, $\quad a=-(8-5) 5+10$
$=-3 \times 5+10=-15+10=-5$

