Educational Institutions

D

QUADRILATERALS

D

EXERCISE 8.1

1. The angles of quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Sol.

2.

3.

Let the angles be $(3x)^\circ, (5x)^\circ, (9x)^\circ$ and $(13x)^\circ$ 3x + 5x + 9x + 13x = 360Then, 30x = 360or $x = \frac{360}{30} = 12$ or \therefore The angles are $(3 \times 12)^{\circ}, (5 \times 12)^{\circ}, (9 \times 12)^{\circ}$ and $(13 \times 12)^{\circ}$, i.e., $36^{\circ}, 60^{\circ}, 108^{\circ}$ and 156°. If the diagonals of a parallelogram are equal, then show that it is a rectangle. D Sol. B Consider the triangles DAB and CBA, AD = BC[Opposite side of a parallelogram] AB is common AC = BD[Given] $\Delta DAB \cong \Delta CBA$ [SSS] So, $\angle DAB = \angle CBA$...(1) [CPCT] \Rightarrow As ABCD is a parallelogram. AD || BC and AB is transversal. So, $\angle DAB + \angle CBA = 180^{\circ}$ [Sum of interior angles on the same side of transversal is 180° .] \Rightarrow $2\angle DAB = 180^{\circ}$ [using (1)] $\angle DAB = 90^{\circ}$ \Rightarrow As in parallelogram, $\angle ADB = 90^{\circ}$. Hence, the parallelogram is a rectangle. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus. D Sol. Consider the triangle AOB and COD,

AO = OC[Given] OB = OD[Given] $[90^{\circ} \text{ each}]$ $\angle AOB = \angle COD$

Infinit Educational Institutions Learn $\triangle AOB \cong \triangle COD$ [SAS] So, ...(1) AB = CD \Rightarrow ...(2) Similarly, we can show that BC = DAConsider triangles AOB and BOC. AO = OC[Given] BO is common. $\angle AOB = \angle BOC$ and $[90^{\circ} \text{ each}]$ $\triangle AOB \cong \triangle COB$ [SAS] so, \Rightarrow AB = BC...(3) Hence from eqn No. (1), (2)&(3) we get AB = BC = CD = DAHence, ABCD is a rhombus. Show that the diagonals of a square are equal and bisect each other at right angles. 4. D Sol. B Consider triangles DAB and CBA, AD = BC[Sides of a square] AB is common. $\angle DAB = \angle CBA$ [SAS] BD = AC[CPCT] \Rightarrow $\angle 1 = \angle 2$...(1) and [CPCT] Proving as above we can show $\angle 3 = \angle 4$(2) $\angle 2 = \angle 3$ Also, ...(3) [$\therefore AB = BC$, angles opposite to equal sides are equal.] $\angle 1 = \angle 4$ [using (1), (2)&(3)]Consider triangles AOD and COD, [Sides of a square] [Prove above] OD is commo *.*.. $\Delta AOD \cong \Delta COD$ [SAS] OA = OC...(4) *.*.. [CPCT] Similarly, we can show that OB = OD $\angle AOD = \angle COD$...(5) and [CPCT] $\angle AOD + \angle COD = 180^{\circ}$ Also, [Linear pair]

[Using (5)]

 $\angle AOD = 90^{\circ}$

...(6)

 \Rightarrow

5.

Hence, diagonals are equal and bisect each other at right angles.

Show that if the diagonals of quadrilateral are equal and bisect each other at right angles, then it is a square.

Sol.	A B C		
	Consider triangles AOB and COD,		
	AO = OC		[Given]
	OB = C	D	[Given]
	$\angle AOB = \angle CC$	D	[90° each]
	$\Rightarrow \qquad \Delta AOB \cong \Delta CO$	DD	[SAS]
	\Rightarrow AB = 0	CD	
	(1)		
	Similarly, we can show that $BC = I$	DA	
	(2)		
	Consider triangles AOB and BOC,		
	AO =	OC	[Given]
	OB is	common.	
	and $\angle AOB = \angle B$	OC	$[90^{\circ} \text{ each}]$
	\Rightarrow $\triangle AOB \cong$	ΔСОΒ	[SAS]
	\Rightarrow AB =	= BC	
(3) Hence from equation No. $(1),(2)\&(3)$ we get			
AB = BC = CD = DA			
	Hence, ABCD is a rhombus.		
	Further, consider ΔDAB and ΔCH	BA	
	AD =	BC	[Prove rhombus]
		AB is common	
	BD =	AC	[Given]
	So, $\Delta DAB \cong$	ΔCBA	[SSS]
	\Rightarrow $\angle DAB =$	=∠CBA	
(4)			
	Also, as $AD \parallel BC$ (opposite sides of a rhombus) and AB is transversal. $\therefore \qquad \angle DAB + \angle CBA = 180^{\circ}$		
	(Sum of interior angles on the same side of transversal is 180°		
	\Rightarrow 2∠DAB	=180°.	[Using eqn no.4]
	\Rightarrow $\angle DAB$	= 90°.	

As in a rhombus one angle is 90° . Hence, rhombus is a square.

6. Diagonal AC of a parallelogram ABCD bisects $\angle A$ (see Fig.). Show that

(i) it bisects $\angle C$ also,

(ii) ABCD is as rhombus.

rhombus

Sol.

Given. A parallelogram ABCD in which diagonal AC bisects $\angle A$.

To prove. AC bisects $\angle C$. Proof. Since ABCD is a parallelogram, $\therefore AB \parallel DC$

 $AB\,\|\,DC\,$ and transversal AC intersects AB and DC.

 \therefore $\angle 1 = \angle 3 \dots (1)$ [Alternate interior angles]

Again, $AD \parallel BC$ and AC intersects them.

$$\therefore \qquad \angle 2 = \angle 4$$

...(2)

[Alternate interior angels]

But it is given that AC is the bisector of $\angle A$.

$$\therefore \qquad \angle 1 = \angle 2 \\ \dots (3)$$

From (1), (2) and (3), we get

 $\angle 3 = \angle 4$

Hence, AC bisects $\angle C$.

$$\frac{1}{2} \angle A = \frac{1}{2} \angle C$$
 i.e., $\angle 2 = \angle 3$ so $AD = CD$

Similarly, AB = BC

Hence, ABCD is rhombus.

7. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ and as well as $\angle D$.

 $\mathsf{So}\,\angle DAB\cong \angle DCB \ [\mathsf{SSS}]$

 $\angle ADB \cong \angle CDB$ So [CPCT] $\angle ABD \cong \angle CBD$ and [CPCT] BD bisects $\angle B$ and $\angle D$. [Using above result] \Rightarrow 9. In parallelogram ABCD, two-point P and Q are taken on diagonal BD such that DP = BQ(see Fig. 8.20). Show that: (ii) AP = CQ (iii) $\triangle AQB \cong \triangle CPD$ (iv) AQ = CP(i) $\triangle APD \cong \triangle CQB$ (v) APCQ is a parallelogram Sol. ABCD is a parallelogram. P and Q are points on the diagonal BD such that DP = BQ. Show that: (ii) AP = CQ (iii) $\triangle AQB \cong \triangle CPD$ (iv) AQ = CP(i) $\triangle APD \cong \triangle CQB$ (v) APCQ is a parallelogram Construction: Join AC to meet BD in O. (i) $AD \parallel BC$ and BD is a transversal [ABCD is a || m] ...(1) [Alternate angles] $\angle ADP = \angle CBQ$ *.*.. In Δs APD and CQB, we have: AD = BC[Opposite sides of a || gm] DP = BQ[Given] $\angle ADP = \angle CBQ$ [From (1)]

	and the second sec		
Infin Lea		ri Chaitanya ducational Institutions	
	·	$\Delta APD \cong \Delta CQB$	[SAS]
	(ii)	AP = CQ	[CPCT in $ig(1ig)$]
	(iii) AB C	D and BD is a transversal.	[ABCD is a gm]
	<i>:</i>	$\angle ABQ = \angle CDP$	[Alternate angles]
	In ∆s AQB a	and CPD, we have:	
		AB = DC	
		BQ = DP	
	and	$\angle AB = \angle CDP$	
	So,	$\Delta AQB = \Delta CPD$	[SAS]
	(iv)	AQ=CP	CPCT in (iii)]
	(v)	OA = OC	[AC and BD bisect each other] (1)
	and	OB = OD	
		So, $OB - BQ = OD - DP$	[BQ = DP, given]
	or	OQ = OP	(2)
	Thus, AC and PQ bisect each other		[From (1) and (2)]
	So, APCQ is a gm. Proved. Alter: We know that the diagonals of a parallelogram bisect each other. Therefore, AC and BD		
	bisect each	other at O.	
	÷	OB = OD	
	But	BQ = DP	
			[Given]
		OB - BQ = OD - DP or $OQ =$	
	Thus, in qua	drilateral APCQ diagonals AC and	PQ are such that $OQ = OP$ and $OA = OC$.

i.e., the diagonals AC and PQ bisect each other.

Hence, APCQ is a parallelogram, which prove the $\left(v\right)$ part

(i) Δs APD and CQB, we have:

AD = CB	[Opp. sides of a gm ABCD]	
AP = CQ	[Opp. Sides of a	gm APCQ]
DP = BO	[Given]	

∴ By SSS criterion of congruence, we have:

$$\Delta APD \cong \Delta CQB$$

(ii)
$$AP = CQ$$

[Corresponding part of congruent triangles]

(iii) In Δs AQB and CPD, we have:

AB = CD	[Opp. sides of a gm ABCD]
AQ=CP	[Opp. sides of a gm APCQ]
BQ = DP	[Given]

... By SSS criterion of congruence, we have:

 $\Delta AQB = \Delta CPD$

$$AQ = CP$$

[Corresponding parts of congruent triangles]

(v) In Δs AQC and PCA, we have

$$AQ = CP, CQ = AP \text{ and } AC = AC$$

∴ $\Delta AQC \cong \Delta PCA$ [By SSS Rule]
So, $\angle ACQ = \angle CAD$ [CPCT]
i.e., $QA \parallel CP$

Since QA = CP and $QA \parallel CP$ i.e., one pair of opposite sides are equal and parallel.

10.

(iv)

ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig.). Show that

(i) $\triangle APB = \triangle CQD$ (ii) AP = CQ

Sol. (i) Since ABCD is a parallelogram, therefore $DC \parallel AB$.

Now, $DC \parallel AB$ and transversal BD intersects them at B and D.

$$\therefore \qquad \angle ABD = \angle BDC \qquad [Alternate interior angles]$$

Now, in $\Delta s\,$ APB and CQD, we have:

$$\angle ABP = \angle QDC$$

$$[:: \angle ABD = \angle BDC]$$

 $\angle APB = \angle CQD$ [Each = AB = CD Opp. sides of a || gm]

[Each = 90°] and

... By AAS criterion of congruence, we have:

$$\Delta APB \cong CQD$$

(ii) Since $\triangle APB \cong CQD$, therefore,

 \therefore AP=CQ

[.:. Corresponding parts of congruent triangles are equal]

In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \parallel DE$, BC = EF and $BC \parallel EF$. Vertices A and are joined to vertices D, E and F respectively (see Fig.). Show that

(i) quadrilateral ABED is a parallelogram (ii) quadrilateral BEFC is a parallelogram

(iii) $AD \parallel CF$ and AD = CF (iv) quadrilateral ACFD is a parallelogram

(v)
$$AC = DF$$

(vi) $\triangle ABC \cong \triangle DEF$.

Sol.

11.

BC || EF. To show that:

(i) quadrilateral ABED is a parallelogram (ii) quadrilateral BEFC is a parallelogram

(iii) $AD \parallel CF$ and AD = CF (iv) quadrilateral ACFD is a parallelogram

Given: Two Δs ABC and DEF such that AB = DE and $AB \parallel DE$. Also, BC = EF and

(v) AC = DF (vi) $\triangle ABC \cong \triangle DEF$.

(i) Consider the quadrilateral ABED.

We have: AB = DE and $AB \parallel DE$

That is, one pair of opposite sides are equal and parallel.

So, ABED is a parallelogram.

(ii) Now, consider quadrilateral BEFC. We have:

BC = EF and $BC \parallel EF$

That is, one pair of opposite sides are equal and parallel.

So, BEFC is a parallelogram.

- (iii) Now, AD = BE and $AD \parallel BE$
- ...(2) [∴ ABED is a || gm] and CF = BE and $CF \parallel BE$

...(1)

[∴ BEFE is a || gm]

From (1) and (2), we have:

AD = CF and $AD \parallel CF$.

(iv) Since AD = CF and $AD \parallel CF$, therefore one pair of opposite sides are equal and

Parallel So, ACFD is a parallelogram.

(v) Since ACFD is a parallelogram.

<i>.</i>	AC = DF	[Opp. sides of a gm ACFE]
----------	---------	------------------------------

(vi) In Δs ABC and DEF, we have:

AB = DE[Given] BC = EF[Given]

[Prove in (v)]

and,

D

... By SSS criterion of congruence, we have:

 $\triangle ABC \cong \triangle DEF$

CA = FD

Proved.

12.

ABCD is a trapezium in which $AB \parallel CD$ and AD = BC (see Fig.). Show that

(i) $\angle A = \angle B$ (ii) $\angle C = \angle D$ (iii) $\triangle ABC \cong \triangle BAD$

(iv) diagonal AC = diagonal BD

R

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Sol.

Given: ABCD is a trapezium in which $AB \parallel CD$ and AD = BC.

To show that: (i) $\angle A = \angle B$

(ii)
$$\angle C = \angle D$$

(iii) $\Delta ABC \cong \Delta BAD$ (iv) diagonal AC = diagonal BD.

Construction: Produce AB and draw a line $CE \parallel DA$. Also, join AC and BD.

(i) Since $AD \parallel CE$ and transversal AE cuts them at A and E respectively, therefore

$$\angle A + \angle E = 180^{\circ} \qquad \dots (1)$$

Since $AB \parallel CD$ and $AD \parallel CE$, therefore AECD is a parallelogram.

So, AD = CE

 \therefore BC = CE

[\therefore AD = BC (Given)]

Thus, in $\triangle BCE$, we have:

	BC = CE
.:.	$\angle CBE = \angle CEB$

So, $180^{\circ} - \angle B = \angle E$

 $\therefore \qquad 180^\circ - \angle \mathbf{E} = \angle \mathbf{B}$

From (1) and (2), we get

 $\angle A = \angle B$

(ii) Since

 $\angle A = \angle B$, therefore $\angle BAD = \angle ABC$

...

 $180^\circ - \angle BAD = 180^\circ - \angle ABC$

So, $\angle ADC = \angle BCD$

or

 $\angle D = \angle C$, i.e., $\angle C = \angle D$

(iii) In Δs ABC and BAD, we have:

BC = AD	[Given]
AB = BA	
	[Common]
$\angle B = \angle A$	[Shown above]

... By SAS criterion of congruence, we have:

$$\Delta ABC\cong \Delta BAD$$

 $\Delta ABC\cong \Delta BAD$, therefore

(iv) Since

AC = BD [Corresponding parts of congruent triangles are equal]

EXERCISE 8.2

1.

Sol.

ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig.). AC is a diagonal. So that:

(i) SR || AC and SE =
$$\frac{1}{2}$$
 AC (ii) PQ = SR

(iii) PQRS is a parallelogram.

Given: A quadrilateral ABCD in which P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA.

Also, AC is its diagonal.

To show:

(i) SR || AC and SE =
$$\frac{1}{2}$$
 A

(iii) PQRS is a parallelogram.

(i) In $\triangle ACD$, we have

(ii) PQ = SR

S is the mid-point of AD and R is the mid-point of CD.

Therefore, SR || AC and SR =
$$\frac{1}{2}$$
 AC

[Mid-point theorem]

(ii) In ΔABC , we have:

P is the mid-point of AD and R is the mid-point of CD.

Therefore, $PQ \parallel AC$

and $PQ = \frac{1}{2}AC$

[Mid-point theorem]

Thus, we have shown that:

$$\left. \begin{array}{c} PQ \parallel AC \\ SR \parallel AC \end{array} \right\} \Rightarrow PQ \parallel SR$$

Also,
$$\frac{PQ = \frac{1}{2}AC}{SR = \frac{1}{2}AC} \Rightarrow PQ = SR$$

(iii) Since PQ = SR and PQ || SR, therefore one pair of opposite sides are equal and parallel.

... PQRS is a parallelogram.

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.

Sol.

2.

Given. \Box ABCD is a rhombus, P, Q, R and S are the mid-points of AB, BC, CD, DA respectively. PQ, QR, RS and SP are joined.

To Prove.
PQRS is a rectangle.

Construction. Join AC and BD.

Proof. From Δs SRD and PQB,

$$DS = QB \quad \left(\frac{1}{2}AD = \frac{1}{2}BC\right)$$
$$DR = PB \quad \left(\frac{1}{2}DC = \frac{1}{2}AB\right)$$

 \angle SDR = \angle PBQ

(Opp. sides \angle s of parallelogram are equal)

$$\Delta SRD \cong \Delta QPB$$

(By SAS)

then

$$SR = PQ$$

(Corresponding parts of congruent triangles are equal)

In Δs RCQ and ASP,

RC = AP
$$\left(\frac{1}{2}CD = \frac{1}{2}AB\right)$$

CQ = AS $\left(\frac{1}{2}BC = \frac{1}{2}AD\right)$

 $\angle SAP = \angle RCQ$

(Opp. \angle s of parallelogram are equal)

 $\therefore \qquad \Delta RCQ \cong \Delta PAS$

(By SAS)

then RQ = SP

(Corresponding parts of congruent triangles are equal)

RE || AC

Since both the pairs of opposite sides of quadrilateral PQRS are equal, hence quadrilateral PQRS is a parallelogram.

In $\triangle CDB$, \therefore R and Q are the mid-points of Dc and CB respectively,

Similarly,

: OFRE is a parallelogram.

Then

...

 $\angle E = \angle EOR = 90^{\circ}$

(\therefore Opp. \angle s of rhombus are equal and diagonals of a rhombus intersect at 90°)

Thus, quadrilateral PQRS is a rectangle.

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that quadrilateral PQRS in a rhombus.

3.

Sol.

Given. A rectangle ABCD in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA Respectively.

To Prove. PQRS is a rhombus.

Construction. Join AC.

Proof. In $\triangle ABC$, P and Q are the mid-points AB and BC respectively.

$$PQ \parallel AC$$
 and $PQ = \frac{1}{2}AC$

In ΔADC , R and S are the mid-points of CD and AD respectively

SR || AC and SR =
$$\frac{1}{2}$$
 AC ...(2)

From (1) and (2), we get

$$PQ || SR$$
 and $PQ = SR$

PQRS is a parallelogram \Rightarrow

: ABCD is a rectangle.

$$AD = BC \Longrightarrow \frac{1}{2}AD = \frac{1}{2}B$$

 \Rightarrow

 \Rightarrow

...

÷.

$$BC \Rightarrow \frac{1}{2}AD = \frac{1}{2}BC$$

In Δs APS and BPQ,

$$AP = BP$$

 $\angle PAS = \angle PBQ$

[From (4)]

AS = BQ

[∴ P is the mid-point of AB]

[Each equal to 90°] and,

...(4)

AS = BQ

$$\Delta APS \cong \Delta BPQ \tag{By SAS}$$

 $PS = PQ \dots (5)$ \Rightarrow

[.:. Corresponding parts of congruent triangle are equal]

From (3) and (5), we obtain that PQRS is a parallelogram such that PS = PQ i.e. two

...(1)

adjacent. Hence, PQRS is a rhombus.

ABCD is a trapezium in which $AB \parallel DC$, BD is a diagonal and E is the mid-point of AD. A line is draw through E parallel to AB intersecting BC at F (see Fig.) Show that F is the mid-point of BC.

Sol.

5.

Sol.

4.

Given. In trapezium ABCD, $AB \parallel DC$.

E is the mid-point of AD and $\, EF \| \, AB$.

To show. F is the mid-point of BC.

Construction. Join DB. Let it intersect EF and G.

In ΔDAB , E is the mid-point of AD [Given]

and $EG \parallel AB$

[::EG || AB]

: By converse of mid-point theorem, G is the mid-point of DB.

In ΔBCD , G is the mid-point of BD and

[Show]

 $GF \| DC \qquad [:: AB \| DC, EF \| AB \Rightarrow DC \| EF]$

: By converse of mid-point theorem, F is the mid-point of BC.

In a parallelogram ABCD, E and F are the mid=-points of sides AB and CD respectively (see Fig.).

Show that the line segments AF and EC trisect the diagonal BD.

D R

Given. ABCD is a parallelogram. E and F are the mid-point of the sides AB and CD respectively.

To prove. BP = PQ = QD

Proof. $AE \parallel CF$ (Given)

and
$$AE = CF \left(\therefore \frac{1}{2}AB = \frac{1}{2}CD \right)$$

: AECF is a parallelogram

 \Rightarrow EC || AF ...(1)

In ΔDPC ,

F is the mid-point of CD

and

[Given]

FQ || CP. [From (1)]

 \therefore Q is the mid-point of PD.

or PQ = QD

...(2) Similarly, in ABQ,

BP = PQ

From (2) and (3), BP = PQ = QD.Proved.

...(3)

6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Sol.

Given. In a quad. ABCD, P, Q, R and S are respectively the mid-points of AB, BC, CD and DA. PR and QS intersect each other at O.

To show. OP = OR, OQ = OS

Construction. Join PQ, QR, RS. SP, AC and BD.

In $\triangle ABC$, P and Q are mid-points of AB and BC respectively.

$$PQ \parallel AC$$
 and $PQ = \frac{1}{2}AC$...(1)

Similarly, we can show that

...

RS || AC and RS =
$$\frac{1}{2}$$
 AC ...(2)

\therefore From (1) and (2) PQ ||SR and PQ = SR

Thus, a pair of opposite sides of a quadrilateral PQRS are parallel and equal.

: Quadrilateral PQRS is a parallelogram.

Since the diagonals of a parallelogram bisects each other, therefore diagonals PR and QS of || gm PQRS, i.e., the line segments joining the mid-points of opposite sides of quadrilateral ABCD bisect each other.

7. ABC is triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that

(i) D is the mid-point of AC

(ii) $MD \perp AC$

(iii) $CM = MA = \frac{1}{2}AB$

Sol.

Given. In $\triangle ABC$, $\angle C = 90^{\circ}$, M is midpoint of hypotenuse AB.

To prove. (i) D is midpoint of AC (ii) $MD \perp AC$

(iii)
$$CM = AM = \frac{1}{2}AB$$

(Common)

Proof. (i) In $\triangle ABC$, M is the midpoint of side AB and MD is parallel to BC, so by converse of mid-point theorem D is midpoint of AC.

(ii) $\triangle ABC$, $\angle C = 90^{\circ}$

(Given)

MD is parallel to BC and AC is transversal so $\angle 1 = \angle ACB$ [Corresponding angles]

But $\angle ACB = 90^{\circ}$ (Given)

so $\Rightarrow \angle 1 = \angle 2 = 90^{\circ}$

as $\angle 1 = \angle 2 = 90^\circ$, so MD is perpendicular to AC.

(iii) In $\triangle AMD \& \triangle CMD$, AD = DC

(Proved in (i) part as D is midpoint of AC by converse of mid-point theorem)

$\angle 1 = \angle 2$	$(90^{\circ} \text{ each})$
-----------------------	-----------------------------

DM = DM

So, by SAS and $\triangle AMD \cong \triangle CMD$

$$\Rightarrow$$
 AM = CM (by CPCT) ...(1)

But
$$AM = BM = \frac{1}{2}AB$$
 (as M is given midpoint of AB) ...(2)

 \Rightarrow From equation (1)&(2)

$$AM = BM = CM = \frac{1}{2}AB$$