QUADRILATERALS

EXERCISE 8.1

1. The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Sol.

Let the angles be $(3 x)^{\circ},(5 x)^{\circ},(9 x)^{\circ}$ and $(13 x)^{\circ}$
Then,

$$
3 x+5 x+9 x+13 x=360
$$

or
$30 x=360$
or

$$
x=\frac{360}{30}=12
$$

\therefore The angles are $(3 \times 12)^{\circ},(5 \times 12)^{\circ},(9 \times 12)^{\circ}$ and $(13 \times 12)^{\circ}$, i.e., $36^{\circ}, 60^{\circ}, 108^{\circ}$ and 156°.
2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Sol.

Consider the triangles DAB and CBA,
$\mathrm{AD}=\mathrm{BC}$
$A B$ is common

$$
\mathrm{AC}=\mathrm{BD}
$$

So,
$\Delta \mathrm{DAB} \cong \triangle \mathrm{CBA}$
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$
[Opposite side of a parallelogram]
[Given]
[SSS]
...(1) [CPCT]

As $A B C D$ is a parallelogram. $A D \| B C$ and $A B$ is transversal.
So, $\angle \mathrm{DAB}+\angle \mathrm{CBA}=180^{\circ}$ [Sum of interior angles on the same side of transversal is 180° .]
$\Rightarrow \quad 2 \angle \mathrm{DAB}=180^{\circ}$
[using (1)]
$\Rightarrow \quad \angle \mathrm{DAB}=90^{\circ}$
As in parallelogram, $\angle \mathrm{ADB}=90^{\circ}$. Hence, the parallelogram is a rectangle.
3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Sol.

Consider the triangle AOB and COD,

$$
\begin{aligned}
\mathrm{AO}=\mathrm{OC} & {[\text { Given }] } \\
\mathrm{OB}=\mathrm{OD} & {[\text { Given }] } \\
\angle \mathrm{AOB}=\angle \mathrm{COD} & {\left[90^{\circ} \text { each }\right] }
\end{aligned}
$$

$$
\begin{equation*}
\Delta \mathrm{AOB} \cong \Delta \mathrm{COD} \tag{1}
\end{equation*}
$$

$$
\Rightarrow
$$

So,
$\mathrm{AB}=\mathrm{CD}$
Similarly, we can show that $\mathrm{BC}=\mathrm{DA}$
Consider triangles AOB and BOC.

$$
\begin{equation*}
\mathrm{AO}=\mathrm{OC} \tag{2}
\end{equation*}
$$

[Given]
BO is common.
and

$$
\angle \mathrm{AOB}=\angle \mathrm{BOC}
$$

[90° each]
so,

$$
\begin{align*}
\Delta \mathrm{AOB} & \cong \triangle \mathrm{COB} \\
\mathrm{AB} & =\mathrm{BC} \tag{3}
\end{align*}
$$

Hence from eqn No. (1), (2) \& (3) we get

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}
$$

Hence, $A B C D$ is a rhombus.
4. Show that the diagonals of a square are equal and bisect each other at right angles.

Sol.

Consider triangles $D A B$ and $C B A$,
$\mathrm{AD}=\mathrm{BC}$
$\quad \mathrm{AB}$ is common.

$$
\begin{array}{lr}
& \angle \mathrm{DAB}=\angle \mathrm{CBA} \\
\Rightarrow & \mathrm{BD}=\mathrm{AC} \\
\text { and } & \angle 1=\angle 2
\end{array}
$$

[Sides of a square]
[SAS]
[CPCT]
[CPCT]
Proving as above we can show $\angle 3=\angle 4$.
$\angle 2=\angle 3$
...(3)
$[\therefore \mathrm{AB}=\mathrm{BC}$, angles opposite to equal sides are equal.]

$$
\Rightarrow \quad \angle 1=\angle 4 \quad[\text { using }(1),(2) \&(3)]
$$

Consider triangles AOD and COD,
OD is commo
$\therefore \quad \triangle \mathrm{AOD} \cong \triangle C O D$
$\therefore \quad \mathrm{OA}=\mathrm{OC}$
[Sides of a square]
[Prove above]
[SAS]
...(4) [CPCT]
Similarly, we can show that

$$
\mathrm{OB}=\mathrm{OD}
$$

and $\quad \angle \mathrm{AOD}=\angle \mathrm{COD} \quad \ldots(5) \quad[\mathrm{CPCT}]$
Also, $\quad \angle \mathrm{AOD}+\angle \mathrm{COD}=180^{\circ}$
[Linear pair]

$$
2 \angle \mathrm{AOD}=180^{\circ}
$$

[Using (5)]

$$
\begin{equation*}
\Rightarrow \quad \angle \mathrm{AOD}=90^{\circ} \tag{6}
\end{equation*}
$$

Hence, diagonals are equal and bisect each other at right angles.
5. Show that if the diagonals of quadrilateral are equal and bisect each other at right angles, then it is a square.

Sol.

Consider triangles $A O B$ and COD,

$$
\begin{array}{ccc}
& \mathrm{AO}=\mathrm{OC} & \text { [Given] } \\
& \mathrm{OB}=\mathrm{OD} & \text { [Given] } \\
& \angle \mathrm{AOB}=\angle \mathrm{COD} & {\left[90^{\circ}\right. \text { each] }} \\
\Rightarrow & \Delta \mathrm{AOB} \cong \triangle \mathrm{COD} & \text { [SAS] }
\end{array}
$$

Similarly, we can show that $\mathrm{BC}=\mathrm{DA}$

Consider triangles $A O B$ and $B O C$,
$\mathrm{AO}=\mathrm{OC}$
$O B$ is common.

and	$\angle \mathrm{AOB}=\angle \mathrm{BOC}$	$\left[90^{\circ}\right.$ each $]$
\Rightarrow	$\triangle \mathrm{AOB} \cong \triangle \mathrm{COB}$	
\Rightarrow	$\mathrm{AB}=\mathrm{BC}$	

Hence from equation No. (1), (2) \& (3) we get

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}
$$

Hence, ABCD is a rhombus.
Further, consider $\triangle \mathrm{DAB}$ and $\triangle \mathrm{CBA}$

	$\mathrm{AD}=\mathrm{BC}$	[Prove rhombus]
	AB is common	
	$\mathrm{BD}=\mathrm{AC}$	
So,	$\Delta \mathrm{DAB} \cong \triangle \mathrm{CBA}$	
\Rightarrow	$\angle \mathrm{DAB}=\angle \mathrm{CBA}$	
	$\ldots(4)$	

Also, as $\mathrm{AD} \| \mathrm{BC}$ (opposite sides of a rhombus) and AB is transversal.
$\therefore \quad \angle \mathrm{DAB}+\angle \mathrm{CBA}=180^{\circ}$
(Sum of interior angles on the same side of transversal is 180°)
$\Rightarrow \quad 2 \angle \mathrm{DAB}=180^{\circ}$. [Using eqn no.4]
$\Rightarrow \quad \angle \mathrm{DAB}=90^{\circ}$.

As in a rhombus one angle is 90°. Hence, rhombus is a square.
6. Diagonal AC of a parallelogram $A B C D$ bisects $\angle \mathrm{A}$ (see Fig.). Show that
(i) it bisects $\angle \mathrm{C}$ also,
(ii) $A B C D$ is as rhombus.

Sol.

Given. A parallelogram $A B C D$ in which diagonal $A C$ bisects $\angle \mathrm{A}$.
To prove. $A C$ bisects $\angle C$. Proof. Since $A B C D$ is a parallelogram, $\therefore A B \| D C$
$A B \| D C$ and transversal $A C$ intersects $A B$ and $D C$.
$\therefore \quad \angle 1=\angle 3 \quad \ldots$ (1) \quad [Alternate interior angles]
Again, $A D \| B C$ and $A C$ intersects them.
$\therefore \quad \angle 2=\angle 4$
[Alternate interior angels]
But it is given that $A C$ is the bisector of $\angle A$.
$\therefore \quad \angle 1=\angle 2$

From (1), (2) and (3), we get

$$
\angle 3=\angle 4
$$

Hence, AC bisects $\angle \mathrm{C}$.

$$
\frac{1}{2} \angle \mathrm{~A}=\frac{1}{2} \angle \mathrm{C} \text { i.e., } \angle 2=\angle 3 \text { so } \mathrm{AD}=\mathrm{CD}
$$

Similarly,

$$
\mathrm{AB}=\mathrm{BC}
$$

Hence, $A B C D$ is rhombus.
7. $A B C D$ is a rhombus. Show that diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ and as well as $\angle \mathrm{D}$.

Sol.

Consider triangles ADC and ABC,
$A D=A B$
[Sides of a rhomb
$A C$ is common.
$C D=C B$
[Sides of a rhombus]
So,

$$
\triangle \mathrm{ADC}=\triangle \mathrm{ABC}
$$

$\Rightarrow \quad \angle \mathrm{DAC}=\angle \mathrm{BAC}$
[СРСТ...(1)]
and
$\angle \mathrm{DCA}=\angle \mathrm{BCA}$
[СРСТ...(2)]
hence AC bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$.
Similarly, by taking BAD and BCD , we can show that BD bisects $\angle \mathrm{B}$ and $\angle \mathrm{D}$.
8. $A B C D$ is a rectangle in with diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that:
(i) $A B C D$ is a square
(ii) diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Sol.

(i) Consider triangles ADC and ABC ,

$\angle \mathrm{DAC}=\angle \mathrm{BAC}$	$[\mathrm{AC}$ is bisector is $\angle \mathrm{A}]$
$\angle \mathrm{DCA}=\angle \mathrm{BCA}$	$[\mathrm{AC}$ is bisector is $\angle \mathrm{C}]$

$A C$ is common.So,

$$
\begin{aligned}
& \angle \mathrm{ADC}=\angle \mathrm{ABC} \\
& \angle \mathrm{AD}=\angle \mathrm{AB}
\end{aligned}
$$

[ASA]
[CPCT]

As in rectangle $A B C D$, adjacent sides are equal. Hence $A B C D$ is square.
(ii) Consider triangles $D A B$ and $B C D$,

$$
\angle \mathrm{DAC}=\angle \mathrm{BAC}
$$

[sides of a square]BD is common.
So $\angle \mathrm{DAB} \cong \angle \mathrm{DCB}$ [SSS]

$$
\angle \mathrm{ADB} \cong \angle \mathrm{CDB}
$$

[CPCT]
and
$\angle \mathrm{ABD} \cong \angle \mathrm{CBD}$

> [CPCT]
$\Rightarrow \quad \mathrm{BD}$ bisects $\angle \mathrm{B}$ and $\angle \mathrm{D}$.
[Using above result]
9.

In parallelogram $A B C D$, two-point P and Q are taken on diagonal $B D$ such that $D P=B Q$ (see Fig. 8.20). Show that:
(i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle \mathrm{AQB} \cong \triangle C P D$
(iv) $A Q=C P$
(v) APCQ is a parallelogram

Sol.

$A B C D$ is a parallelogram. P and Q are points on the diagonal
$B D$ such that $D P=B Q$.
Show that:
(i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ is a parallelogram

Construction: Join AC to meet BD in O.
(i) $\mathrm{AD} \| \mathrm{BC}$ and BD is a transversal
[$A B C D$ is a $\| m$]

$$
\therefore \quad \angle \mathrm{ADP}=\angle \mathrm{CBQ}
$$

...(1) [Alternate angles]
In $\Delta \mathrm{S}$ APD and CQB, we have:
$\mathrm{AD}=\mathrm{BC}$
$D P=B Q$
[Opposite sides of a || gm] [Given]

$$
\angle \mathrm{ADP}=\angle \mathrm{CBQ}
$$

[From (1)]
$\therefore \quad \triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
[SAS]
[CPCT in (1)]
[ABCD is a $\| \mathrm{gm}$]
[Alternate angles]

In $\Delta \mathrm{S} A Q B$ and $C P D$, we have:

$$
\mathrm{AB}=\mathrm{DC}
$$

$$
\mathrm{BQ}=\mathrm{DP}
$$

and

$$
\angle \mathrm{AB}=\angle \mathrm{CDP}
$$

So,

$$
\Delta \mathrm{AQB}=\triangle \mathrm{CPD}
$$

(iv)

$$
\mathrm{AQ}=\mathrm{CP}
$$

(v)
$\mathrm{OA}=\mathrm{OC}$
[AC and BD bisect each other]
and

$$
\begin{equation*}
\mathrm{OB}=\mathrm{OD} \tag{1}
\end{equation*}
$$

$$
\text { so, } \mathrm{OB}-\mathrm{BQ}=\mathrm{OD}-\mathrm{DP}
$$

or

$$
\begin{equation*}
\mathrm{OQ}=\mathrm{OP} \tag{2}
\end{equation*}
$$

Thus, AC and PQ bisect each other
[From (1) and (2)]
So, APCQ is a \|gm.
Proved.
Alter:
We know that the diagonals of a parallelogram bisect each other. Therefore, $A C$ and $B D$ bisect each other at O .
\therefore
But

$$
\mathrm{OB}=\mathrm{OD}
$$

$$
\mathrm{BQ}=\mathrm{DP}
$$

[Given]
$\therefore \quad \mathrm{OB}-\mathrm{BQ}=\mathrm{OD}-\mathrm{DP}$ or $\mathrm{OQ}=\mathrm{OP}$
Thus, in quadrilateral $A P C Q$ diagonals $A C$ and $P Q$ are such that $O Q=O P$ and $O A=O C$.
i.e., the diagonals AC and PQ bisect each other.

Hence, APCQ is a parallelogram, which prove the (v) part
(i) $\triangle \mathrm{s}$ APD and CQB, we have:

$$
\begin{array}{lll}
\mathrm{AD}=\mathrm{CB} & \text { [Opp. sides of a \|gm ABCD] } \\
\mathrm{AP}=\mathrm{CQ} & \text { [Opp. Sides of a } & \| \text { gm APCQ] } \\
\mathrm{DP}=\mathrm{BQ} & {[\text { Given }]}
\end{array}
$$

\therefore By SSS criterion of congruence, we have:

$$
\Delta \mathrm{APD} \cong \Delta \mathrm{CQB}
$$

(ii)

$$
\mathrm{AP}=\mathrm{CQ}
$$

[Corresponding part of congruent triangles]
(iii) In $\Delta \mathrm{s} A Q B$ and CPD, we have:
$A B=C D$
[Opp. sides of a \|gm ABCD]
$A Q=C P$
[Opp. sides of a || gm APCQ]
$B Q=D P$
[Given]
\therefore By SSS criterion of congruence, we have:

$$
\triangle \mathrm{AQB}=\triangle \mathrm{CPD}
$$

(iv)

$$
\mathrm{AQ}=\mathrm{CP}
$$

[Corresponding parts of congruent triangles]
(v) In $\triangle \mathrm{s} A Q C$ and PCA, we have

$$
\mathrm{AQ}=\mathrm{CP}, \mathrm{CQ}=\mathrm{AP} \text { and } \mathrm{AC}=\mathrm{AC}
$$

$\therefore \quad \triangle \mathrm{AQC} \cong \triangle \mathrm{PCA} \quad$ [By SSS Rule]
So,

$$
\angle \mathrm{ACQ}=\angle \mathrm{CAD} \quad[\mathrm{CPCT}]
$$

i.e.,

QA ||CP

Since $\mathrm{QA}=\mathrm{CP}$ and $\mathrm{QA} \| \mathrm{CP}$ i.e., one pair of opposite sides are equal and parallel.
10.

$A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD (see Fig.). Show that
(i) $\triangle \mathrm{APB}=\triangle \mathrm{CQD}$
(ii) $\mathrm{AP}=\mathrm{CQ}$

Sol. (i) Since $A B C D$ is a parallelogram, therefore $D C \| A B$.
Now, $\mathrm{DC} \| \mathrm{AB}$ and transversal BD intersects them at B and D .

$$
\therefore \quad \angle \mathrm{ABD}=\angle \mathrm{BDC} \quad \text { [Alternate interior angles] }
$$

Now, in $\Delta \mathrm{s}$ APB and CQD, we have:

$$
\begin{array}{ll}
\angle \mathrm{ABP}=\angle \mathrm{QDC} & {[\therefore \angle \mathrm{ABD}=\angle \mathrm{BDC}]} \\
\angle \mathrm{APB}=\angle \mathrm{CQD} & {\left[\text { Each }=90^{\circ}\right] \text { and }} \\
\mathrm{AB}=\mathrm{CD} \quad \text { Opp. sides of a } \| \mathrm{gm}]
\end{array}
$$

\therefore By AAS criterion of congruence, we have:

$$
\Delta \mathrm{APB} \cong \mathrm{CQD}
$$

(ii) Since $\triangle A P B \cong C Q D$, therefore,
$\therefore \quad \mathrm{AP}=\mathrm{CQ}$
[\therefore Corresponding parts of congruent triangles are equal]
11.

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC} \| \mathrm{EF}$. Vertices A and are joined to vertices D, E and F respectively (see Fig.). Show that
(i) quadrilateral $A B E D$ is a parallelogram (ii) quadrilateral BEFC is a parallelogram
(iii) $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$
(v) $\mathrm{AC}=\mathrm{DF}$
(iv) quadrilateral ACFD is a parallelogram
(vi) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Sol. Given: Two $\Delta s A B C$ and DEF such that $A B=D E$ and $A B \| D E$. Also, $B C=E F$ and $B C \| E F$. To show that:
(i) quadrilateral $A B E D$ is a parallelogram (ii) quadrilateral BEFC is a parallelogram
(iii) $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$
(v) $\mathrm{AC}=\mathrm{DF}$
(iv) quadrilateral ACFD is a parallelogram
(vi) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.
(i) Consider the quadrilateral ABED .

We have: $\mathrm{AB}=\mathrm{DE}$ and $\mathrm{AB} \| \mathrm{DE}$
That is, one pair of opposite sides are equal and parallel.
So, ABED is a parallelogram.
(ii) Now, consider quadrilateral BEFC. We have:
$\mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC} \| \mathrm{EF}$

That is, one pair of opposite sides are equal and parallel.
So, BEFC is a parallelogram.
(iii) Now, $\mathrm{AD}=\mathrm{BE}$ and $\mathrm{AD} \| \mathrm{BE}$
[\therefore ABED is a $\| g m$]
and
$\mathrm{CF}=\mathrm{BE}$ and $\mathrm{CF} \| \mathrm{BE}$
[\therefore BEFE is a || gm]
From (1) and (2), we have:

$$
\mathrm{AD}=\mathrm{CF} \text { and } \mathrm{AD} \| \mathrm{CF} .
$$

(iv) Since $\mathrm{AD}=\mathrm{CF}$ and $\mathrm{AD} \| \mathrm{CF}$, therefore one pair of opposite sides are equal and Parallel So, ACFD is a parallelogram.
(v) Since ACFD is a parallelogram.

$$
\therefore \quad \mathrm{AC}=\mathrm{DF} \quad \text { [Opp. sides of a } \| \text { gm ACFE] }
$$

(vi) In $\triangle \mathrm{s} A B C$ and DEF, we have:
and,

$$
\mathrm{AB}=\mathrm{DE}
$$

$$
\mathrm{BC}=\mathrm{EF}
$$

$C A=F D$
[Given]
[Given]
[Prove in (v)]
\therefore By SSS criterion of congruence, we have:

$$
\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF} \quad \text { Proved }
$$

12.

$A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$ (see Fig.). Show that
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
(iv) diagonal $\mathrm{AC}=$ diagonal BD
[Hint: Extend $A B$ and draw a line through C parallel to DA intersecting $A B$ produced at E.]

Sol.

Given: $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$.

To show that: (i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$ (iv) diagonal $\mathrm{AC}=$ diagonal BD .

Construction: Produce AB and draw a line $\mathrm{CE} \| \mathrm{DA}$. Also, join AC and BD .
(i) Since $\mathrm{AD} \| \mathrm{CE}$ and transversal AE cuts them at A and E respectively, therefore

$$
\begin{equation*}
\angle \mathrm{A}+\angle \mathrm{E}=180^{\circ} \tag{1}
\end{equation*}
$$

Since $A B \| C D$ and $A D \| C E$, therefore $A E C D$ is a parallelogram.
So,
$\mathrm{AD}=\mathrm{CE}$
$\therefore \quad \mathrm{BC}=\mathrm{CE}$

$$
[\therefore \mathrm{AD}=\mathrm{BC}(\text { Given })]
$$

Thus, in $\triangle \mathrm{BCE}$, we have:

	$\mathrm{BC}=\mathrm{CE}$
\therefore	$\angle \mathrm{CBE}=\angle \mathrm{CEB}$
So,	$180^{\circ}-\angle \mathrm{B}=\angle \mathrm{E}$
\therefore	$180^{\circ}-\angle \mathrm{E}=\angle \mathrm{B}$

From (1) and (2), we get

$$
\angle \mathrm{A}=\angle \mathrm{B}
$$

(ii) Since

$$
\angle \mathrm{A}=\angle \mathrm{B}, \text { therefore } \angle \mathrm{BAD}=\angle \mathrm{ABC}
$$

$\therefore \quad 180^{\circ}-\angle \mathrm{BAD}=180^{\circ}-\angle \mathrm{ABC}$
So,

$$
\begin{aligned}
\angle \mathrm{ADC} & =\angle \mathrm{BCD} \\
\angle \mathrm{D} & =\angle \mathrm{C}, \text { i.e., } \angle \mathrm{C}=\angle \mathrm{D}
\end{aligned}
$$

or
(iii) In $\triangle \mathrm{s} A B C$ and $B A D$, we have:

$$
\left.\begin{array}{ll}
\mathrm{BC}=\mathrm{AD} \\
\mathrm{AB}=\mathrm{BA}
\end{array} \quad \text { [Given }\right]
$$

$$
\angle \mathrm{B}=\angle \mathrm{A}
$$

[Common]
[Shown above]
\therefore By SAS criterion of congruence, we have:

$$
\Delta \mathrm{ABC} \cong \Delta \mathrm{BAD}
$$

(iv) Since
$\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$, therefore
$\mathrm{AC}=\mathrm{BD}$ [Corresponding parts of congruent triangles are equal] Learn

EXERCISE 8.2

1.

$A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ (see Fig.). AC is a diagonal. So that:
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SE}=\frac{1}{2} \mathrm{AC}$
(ii) $\mathrm{PQ}=\mathrm{SR}$
(iii) PQRS is a parallelogram.

Sol.

Given: A quadrilateral $A B C D$ in which P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$.

Also, $A C$ is its diagonal.
To show:
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SE}=\frac{1}{2} \mathrm{AC}$
(ii) $\mathrm{PQ}=\mathrm{SR}$
(iii) PQRS is a parallelogram.
(i) $\ln \triangle \mathrm{ACD}$, we have
S is the mid-point of $A D$ and R is the mid-point of $C D$.
Therefore, $\quad \mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
[Mid-point theorem]
(ii) In $\triangle \mathrm{ABC}$, we have:
P is the mid-point of $A D$ and R is the mid-point of $C D$.
Therefore, $\quad \mathrm{PQ} \| \mathrm{AC}$
and $\quad \mathrm{PQ}=\frac{1}{2} \mathrm{AC} \quad$ [Mid-point theorem]
Thus, we have shown that:

$$
\begin{array}{r}
\left.\begin{array}{r}
\mathrm{PQ} \| \mathrm{AC} \\
\mathrm{SR} \| \mathrm{AC}
\end{array}\right\} \Rightarrow \mathrm{PQ} \| \mathrm{SR} \\
\text { Also, } \left.\begin{array}{r}
\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \\
\mathrm{SR}=\frac{1}{2} \mathrm{AC}
\end{array}\right\} \Rightarrow \mathrm{PQ}=\mathrm{SR}
\end{array}
$$

(iii) Since $\mathrm{PQ}=\mathrm{SR}$ and $\mathrm{PQ} \| \mathrm{SR}$, therefore one pair of opposite sides are equal and parallel.
\therefore PQRS is a parallelogram.
2.

$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rectangle.

Sol.

Given. $\square A B C D$ is a rhombus, P, Q, R and S are the mid-points of $A B, B C, C D, D A$ respectively. $P Q, Q R, R S$ and $S P$ are joined.

To Prove. PQRS is a rectangle.
Construction. Join $A C$ and $B D$.
Proof. From ${ }^{\Delta s}$ SRD and PQB,

$$
\begin{aligned}
& \mathrm{DS}=\mathrm{QB} \quad\left(\frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC}\right) \\
& \mathrm{DR}=\mathrm{PB} \quad\left(\frac{1}{2} \mathrm{DC}=\frac{1}{2} \mathrm{AB}\right)
\end{aligned}
$$

$$
\angle \mathrm{SDR}=\angle \mathrm{PBQ}
$$

(Opp. sides $\angle \mathrm{s}$ of parallelogram are equal)
$\therefore \quad \Delta \mathrm{SRD} \cong \Delta \mathrm{QPB}$
(By SAS)
then

$$
\mathrm{SR}=\mathrm{PQ}
$$

(Corresponding parts of congruent triangles are equal)
In $\triangle \mathrm{S} R \mathrm{RCQ}$ and ASP,

$$
\begin{aligned}
\mathrm{RC} & =\mathrm{AP} \quad\left(\frac{1}{2} \mathrm{CD}=\frac{1}{2} \mathrm{AB}\right) \\
\mathrm{CQ} & =\mathrm{AS} \quad\left(\frac{1}{2} \mathrm{BC}=\frac{1}{2} \mathrm{AD}\right) \\
\angle \mathrm{SAP} & =\angle \mathrm{RCQ}
\end{aligned}
$$

(Opp. $\angle \mathrm{s}$ of parallelogram are equal)
$\therefore \quad \triangle \mathrm{RCQ} \cong \triangle \mathrm{PAS}$
(By SAS)
then $\quad \mathrm{RQ}=\mathrm{SP}$
(Corresponding parts of congruent triangles are equal)
Since both the pairs of opposite sides of quadrilateral PQRS are equal, hence quadrilateral PQRS is a parallelogram.

In $\triangle \mathrm{CDB}, \therefore \mathrm{R}$ and Q are the mid-points of Dc and CB respectively,
$\therefore \quad \quad \mathrm{RQ} \| \mathrm{DB}$
Similarly,
RE\|AC
\therefore OFRE is a parallelogram.
Then

$$
\angle \mathrm{E}=\angle \mathrm{EOR}=90^{\circ}
$$

(\therefore Opp. $\angle \mathrm{s}$ of rhombus are equal and diagonals of a rhombus intersect at 90°)
Thus, quadrilateral PQRS is a rectangle.
3.

$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that quadrilateral PQRS in a rhombus.

Given. A rectangle $A B C D$ in which P, Q, R and S are the mid-points of sides $A B, B C, C D$ and $D A$ Respectively.

To Prove. PQRS is a rhombus.
Construction. Join AC.
Proof. In $\triangle A B C, P$ and Q are the mid-points $A B$ and $B C$ respectively.

$$
\begin{equation*}
\therefore \quad \mathrm{PQ} \| \mathrm{AC} \text { and } \mathrm{PQ}=\frac{1}{2} \mathrm{AC} \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{ADC}, \mathrm{R}$ and S are the mid-points of CD and AD respectively.

$$
\begin{equation*}
\therefore \quad \mathrm{SR} \| \mathrm{AC} \text { and } \mathrm{SR}=\frac{1}{2} \mathrm{AC} \tag{2}
\end{equation*}
$$

From (1) and (2), we get

$$
\begin{equation*}
\mathrm{PQ} \| \mathrm{SR} \text { and } \mathrm{PQ}=\mathrm{SR} \tag{3}
\end{equation*}
$$

$\Rightarrow \quad P Q R S$ is a parallelogram
$\therefore A B C D$ is a rectangle.

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AD}=\mathrm{BC} \Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC} \\
\Rightarrow & \mathrm{AS}=\mathrm{BQ} \tag{4}
\end{array}
$$

In $\triangle \mathrm{s}$ APS and $B P Q$,

$\mathrm{AP}=\mathrm{BP}$	$[\therefore \mathrm{P}$ is the mid-point of AB$]$
$\mathrm{AS}=\mathrm{BQ}$	$\angle \mathrm{PAS}=\angle \mathrm{PBQ}$
	$[\mathrm{From}(4)]$
$\Delta \mathrm{APS} \cong \triangle \mathrm{BPQ}$	
$\Rightarrow \quad \mathrm{PS}=\mathrm{PQ} \quad \ldots(5)$	(By SAS)

[\therefore Corresponding parts of congruent triangle are equal]
From (3) and (5), we obtain that PQRS is a parallelogram such that $P S=P Q$ i.e. two Learn
adjacent. Hence, PQRS is a rhombus.
4.

$A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D . A$ line is draw through E parallel to $A B$ intersecting $B C$ at F (see Fig.) Show that F is the mid-point of $B C$.

Sol.

Given. In trapezium $A B C D, A B \| D C$.
E is the mid-point of $A D$ and $E F \| A B$.
To show. F is the mid-point of $B C$.
Construction. Join DB. Let it intersect EF and G.
In $\triangle \mathrm{DAB}, \mathrm{E}$ is the mid-point of AD
[Given]
and
EG || AB
$[\therefore \mathrm{EG} \| \mathrm{AB}]$
\therefore By converse of mid-point theorem, G is the mid-point of DB .
In $\triangle B C D, G$ is the mid-point of $B D$ and [Show]
$\mathrm{GF} \| \mathrm{DC} \quad[\therefore \mathrm{AB}\|\mathrm{DC}, \mathrm{EF}\| \mathrm{AB} \Rightarrow \mathrm{DC} \| \mathrm{EF}]$
\therefore By converse of mid-point theorem, F is the mid-point of $B C$.
5. In a parallelogram $A B C D, E$ and F are the mid=-points of sides $A B$ and $C D$ respectively (see Fig.).

Show that the line segments AF and EC trisect the diagonal BD .

Sol.

Given. $A B C D$ is a parallelogram. E and F are the mid-point of the sides $A B$ and $C D$ respectively.

To prove. $\mathrm{BP}=\mathrm{PQ}=\mathrm{QD}$
Proof. $\mathrm{AE} \| \mathrm{CF}$ (Given)
and $\mathrm{AE}=\mathrm{CF}\left(\therefore \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD}\right)$
\therefore AECF is a parallelogram
$\Rightarrow \mathrm{EC} \| \mathrm{AF}$
In \triangle DPC,
F is the mid-point of $C D$
and
$\therefore \mathrm{Q}$ is the mid-point of PD.
or $\mathrm{PQ}=\mathrm{QD}$
$\mathrm{BP}=\mathrm{PQ}$
From (2) and (3), $\quad \mathrm{BP}=\mathrm{PQ}=\mathrm{QD}$. Proved.
6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Sol.

Given. In a quad. $A B C D, P, Q, R$ and S are respectively the mid-points of $A B, B C, C D$ and $D A$. $P R$ and QS intersect each other at O.

To show. $\mathrm{OP}=\mathrm{OR}, \mathrm{OQ}=\mathrm{OS}$
Construction. Join PQ, QR, RS. SP, AC and BD.
In $\triangle A B C, P$ and Q are mid-points of $A B$ and $B C$ respectively.

$$
\begin{equation*}
\therefore \quad \mathrm{PQ} \| \mathrm{AC} \text { and } \mathrm{PQ}=\frac{1}{2} \mathrm{AC} \tag{1}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\mathrm{RS} \| \mathrm{AC} \text { and } \mathrm{RS}=\frac{1}{2} \mathrm{AC} \tag{2}
\end{equation*}
$$

\therefore From (1) and (2) $\mathrm{PQ} \| \mathrm{SR}$ and $\mathrm{PQ}=\mathrm{SR}$
Thus, a pair of opposite sides of a quadrilateral PQRS are parallel and equal.
\therefore Quadrilateral PQRS is a parallelogram.
Since the diagonals of a parallelogram bisects each other, therefore diagonals PR and QS of $\| \mathrm{gm}$ PQRS, i.e., the line segments joining the mid-points of opposite sides of quadrilateral ABCD bisect each other.
7. $A B C$ is triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects $A C$ at D. Show that
(i) D is the mid-point of $A C$
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{MA}=\frac{1}{2} \mathrm{AB}$

Sol.

Given. In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{M}$ is midpoint of hypotenuse AB .

To prove. (i) D is midpoint of AC (ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathrm{CM}=\mathrm{AM}=\frac{1}{2} \mathrm{AB}$

Proof. (i) In $\triangle A B C, M$ is the midpoint of side $A B$ and $M D$ is parallel to $B C$, so by converse of mid-point theorem D is midpoint of $A C$.
(ii) $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$
(Given)
MD is parallel to BC and AC is transversal so $\angle 1=\angle \mathrm{ACB}$ [Corresponding angles]
But $\angle \mathrm{ACB}=90^{\circ} \quad$ (Given)
so $\Rightarrow \angle 1=\angle 2=90^{\circ}$
as $\angle 1=\angle 2=90^{\circ}$, so MD is perpendicular to AC .
(iii) In $\triangle \mathrm{AMD} \& \Delta \mathrm{CMD}, \mathrm{AD}=\mathrm{DC}$
(Proved in (i) part as D is midpoint of AC by converse of mid-point theorem)

$$
\begin{array}{ll}
\angle 1=\angle 2 & \left(90^{\circ}\right. \text { each) } \\
\mathrm{DM}=\mathrm{DM} & \text { (Common) }
\end{array}
$$

So, by SAS and $\Delta \mathrm{AMD} \cong \Delta \mathrm{CMD}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{AM}=\mathrm{CM} \quad \text { (by CPCT) } \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { But } A M=B M=\frac{1}{2} A B \text { (as } M \text { is given midpoint of } A B \text {) } \tag{2}\\
& \Rightarrow \text { From equation (1) \& (2) }
\end{align*}
$$

$$
\mathrm{AM}=\mathrm{BM}=\mathrm{CM}=\frac{1}{2} \mathrm{AB}
$$

