

2024 JEE 29th Shift-2 Questions

HISTORY CREATED

39 YEARS OF ACADEMIC EXCELLENCE ASIS'S GREATEST EDUCATION BRAND IN IIT-JEE, NEET & OLYMPIADS

THE PERFECT HAT-TRICK WITH ALL-INDIA RANK

29-Jan-2024 Shift-2

Maths

- 1. The value of $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2x} dx$ is
 - (a) $\sqrt{2} \sqrt{3} + 1$
 - (b) $2\sqrt{2} \sqrt{3} 1$
 - (C) $2\sqrt{2} + \sqrt{3} 1$
 - (d) $\sqrt{2} + \sqrt{3} 1$

Ans: (b)

- 2. Given set = $\{1,2,3,\cdots,50\}$ one number is selected randomly from set. Find probability that number is multiple of 4 or 6 or 7.
 - (a) $\frac{21}{50}$
 - (b) $\frac{18}{50}$
 - (C) $\frac{8}{25}$
 - $(d)^{\frac{21}{25}}$

Ans: (a)

- 3. If P(3,2,3) Q(4,6,2) R(7,3,2) are the vertices of \triangle PQR, then find \angle QPR =
 - 1) $\cos^{-1}\frac{1}{18}$
 - 2) $\frac{\pi}{6}$
 - 3) $\frac{\pi}{3}$
 - 4) $\cos^{-1}\frac{7}{18}$

Ans: (3)

- 4. The remainder when $64^{32^{32}}$ is divided by 9 is Ans: (1)
- 5. Area bounded by $0 \le y \le \min\{x^2 + 2, 2x + 2\}, x \in [0,3]$, then 12A is Ans: (164)
- 6. $A = \{1,2,3,4\}$ Minimum number of elements added to make it equivalence relation on set A containing (1,3)&(1,2) in it. a) 8

- b) 9
- C) 12
- d) 16

Ans: (a)

- 7. In which interval the function $f(x) = \frac{x}{x^2 6x 16}$ is increasing:
 - (a) φ
 - (b) $\left[1,\frac{3}{7}\right] \cup \left(\frac{5}{4},\infty\right)$
 - (C) $\left(\frac{5}{4}, \infty\right)$
 - (d) $\left[\frac{3}{4}, \frac{5}{4}\right]$

Ans: (a)

- 8. $y = f(x) = \log\left(\frac{1-x^2}{1+x^2}\right)$, at $x = \frac{1}{2}$ find 225(y' y'').
 - A. 736
 - B. 746
 - C. 732
 - D. 716

Ans: (a)

- 9. If $\ln a$, $\ln b$, $\ln c$ are in A.P. and $\ln a \ln 2b$, $\ln 2b \ln 3c$, $\ln 3c \ln a$ are in A.P. then a: b: c is
 - (a) 1:2:3
 - (b) 7:7:4
 - (C) 9:6:4
 - (d) 4:6:9

Ans: (c)

- 10. If $r = |z|, \theta = \arg(z)$ and $z = 2 2i\tan(\frac{5\pi}{8})$, then find (r, θ) .
 - (a) $\left(2\sec\frac{5\pi}{8},\frac{3\pi}{8}\right)$
 - (b) $\left(2\sec\frac{3\pi}{8},\frac{3\pi}{8}\right)$
 - (C) $\left(2\tan\frac{3\pi}{8},\frac{5\pi}{8}\right)$
 - (d) $\left(2\tan\frac{3\pi}{8},\frac{3\pi}{8}\right)$

Ans: (b)

11. (α, β) lies on the $y^2 = 4x$ and (α, β) also lie on chord with mid-point $\left(1,\frac{5}{4}\right)$ of another parabola $x^2=8y$, then value $\left|(8-\beta)(\alpha-28)\right|$ is

2

- (a) 192
- (b) 92
- (C) 64
- (d) 128

Ans: (a)

- 12. Unit vector $\hat{\mathbf{u}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ makes angles $\frac{\pi}{2}, \frac{\pi}{3}, \frac{2\pi}{3}$ with $\left(\frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{k}}\right)$, $\left(\frac{1}{\sqrt{2}}\hat{\mathbf{j}} + \frac{1}{\sqrt{2}}\hat{\mathbf{k}}\right), \left(\frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{j}}\right)$ respectively and $\vec{\mathbf{v}} = \frac{1}{\sqrt{2}}\hat{\mathbf{i}} + \frac{1}{\sqrt{2}}\hat{\mathbf{j}} + \frac{1}{\sqrt{2}}\hat{\mathbf{k}}$. Find $|\vec{\mathbf{u}} \vec{\mathbf{v}}|$
 - (a) $\sqrt{\frac{5}{2}}$
 - (b) $\sqrt{\frac{7}{2}}$
 - (C) $\sqrt{\frac{2}{5}}$
 - (d) $\sqrt{\frac{2}{7}}$

Ans: (a)

- 13. If first term of non-constant G.P. be $\frac{1}{8}$ and every term is A.M. of next two, then $\sum_{r=1}^{20} T_r \sum_{r=1}^{18} T_r$ is:
 - (a) 2^{15}
 - (b) -2^{15}
 - (C) -2^{18}
 - (d) 2^{18}

Ans: (b)

- 14. The mean of 5 observations is $\frac{24}{5}$ and variance is $\frac{194}{25}$. If the mean of first four observations is $\frac{7}{2}$, then the variance of first four observations is
 - (a) $\frac{3}{2}$
 - (b) $\frac{5}{2}$
 - (c) $\frac{5}{4}$
 - (d) $\frac{2}{3}$

Ans: (c)

15. The number of ways to distribute 8 identical books into 4 distinct bookshelf is (where any bookshelf can be empty

3

16.
$$x\left(\cos\left(\frac{y}{x}\right)\right)\frac{dy}{dx} = y\cos\left(\frac{y}{x}\right) + x$$
, where $\sin\left(\frac{y}{x}\right) = \ln|x| + \frac{\alpha}{2}$ and $f(1) = \frac{\pi}{3}$, then $\alpha^2 = ?$

Ans: (3)

17. If $\overrightarrow{OA} = \vec{a}, \overrightarrow{OC} = \vec{b}$ and area of \triangle OAC is S and a parallelogram with sides parallel to $\overrightarrow{OA} \& \overrightarrow{OC}$ and diagonal $\overrightarrow{OB} = 12\vec{a} + 4\vec{b}$, has are equal to B, then $\frac{B}{2}$ is equal to

Ans: (96)

29-Jan-2024 Shift-2

Physics

1. A rod of length 2 m moving with velocity 2 mm/sec along positive x-axis and B=2T along negative side x-axis . Find the emf induce in the rod

Ans: 8mV

2.
$$Q = \frac{a3 \times b4}{r5}$$

% error in a is 0.3%

% error in b is 0.4%

% error in r is 0.2%

Find the % error in Q

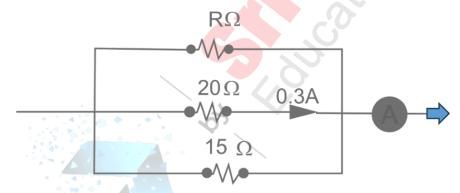
Ans: 3.5 %

3. In a simple pendulum of length 10 m, string is initially kept horizontal and the bob is released. 10% of energy is lost till the bob reaches lowermost position. Then find speed of bob at lowermost position.

Ans: $6\sqrt{5 \text{ m/s}}$

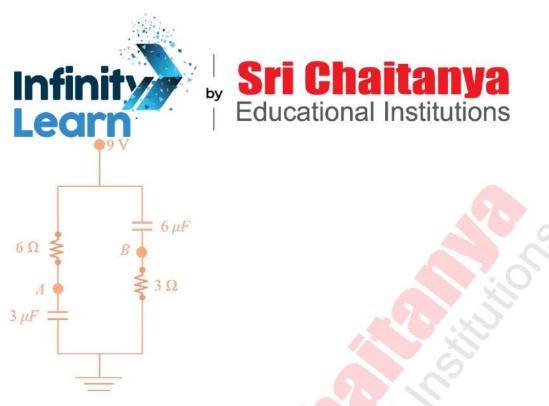
4. The intensity at each slit are equal for a YDSE and it is maximum $I_{max} \text{ at central maxima. If I is intensity for phase difference } \frac{7\pi}{2}$ between two waves at screen. Then $\frac{I}{I_{max}}$ is ?

Ans: $\frac{1}{2}$


5. An electromagnetic wave has electric field given by $\vec{E}=(9.6\hat{\jmath})\sin\left[2\pi\left\{30\times10^6t-\frac{1}{10}x\right\}\right]$ where, x and t are in S.I units. The max magnetic field is :

Ans: 3.2×10^{-8} T

6. A planet at distance r from sun takes 200 days to complete one revolution around the sun. what will be time period for a planet at distance $\frac{r}{4}$ from the sun?


Ans: 25 days

7. In the circuit, the ammeter reads 0.9 A. The value of R is

Ans: 30 ohm

8. In the circuit below, the charge on $6\mu F$ when A and B are shorted is μC .

Ans: 36 μC

9. Find the ratio of kinetic energy of the bob at point A to point B If the bob just complete the circle

Ans: 5:1

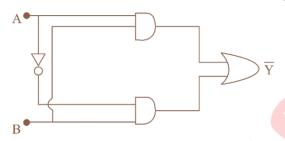
10. Two identical charges of different masses are accelerated through same potential different and set normally to uniform magnetic field the ratio of the radii is R₁/R₂ then find ratio of there masses

Ans: (R1/R2)2

11. P, Q are two metallic wires with same volume

And areas in the ratio 4:1

If F1 force is applied on P wire then elongation produced is equal


Then for what value of f2

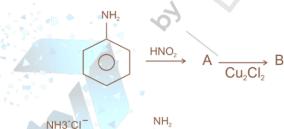
Q wire gets same elongation

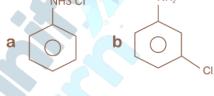
Then find ratio of F1: f2

Ans: 16:1

12. Find the truth table of the given logic gate

Ans:

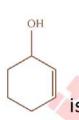

Α	В	$ar{Y}$
1	0	1
0	1.	0
1	1	0
0	0	1



29-Jan-2024 Shift-2

Chemistry

- 1. Which of the following has highest lonisation Enthalpy
 - a) *N*
 - b) *C*
 - c) Si
 - d) Al
 - Ans: (a)
- 2. Nessler's reagent gives brown colour with
 - a) CO_2
 - b) NH₃
 - c) SO_2
 - d) CO
 - Ans: b
- 3.



Ans: c

4. Dipole moment of CH₄, BF₃, H₂O, HF, NH₃,

Ans: $\mu = 0$

- 5. IUPAC Name of the compound
 - a) Hex-2-en-1-ol
 - b) Cyclohex-2-en-1-ol
 - c) 3-Hydroxycyclohexene
 - d) Cyclohex-1-en-3-ol

Ans: b

- +CHCl₃ + NaOH → A
 - (a) Benzene -1,2 diol
 - (b) Benzene -1,3 diol
 - (c) Salicylic acid
 - (d) Salicyaldehyde

Ans: d

- 7. Matching
 - A) Sucrose
- I) Nucleotide
- B) Protein
- I) Amino acid
- C) Starch
- III) α -Glucose
- D) Nucleic Acid
- IV) β -Fructose
- E) Cellulose
- V) β-Glucose

2

Ans: c

- 8. What type of Chromatography depends upon differential adsorption?
 - (a) Thin layer Chromatography
 - (b) Paper Chromatography
 - (c) Column Chromatography
 - (d) Chromatography

Ans: a

9. Acidic strength in increasing order

(a)
$$CH_3 - CH_3 - H$$

- (b) $CH_2 = CH_2$
- (c) $CH \equiv C H$
- (d) $CH_3 CH_3$

Ans: a

- 10. Good reducing agent
 - (a) Eu⁺²
 - (b) Ce^{+4}
 - (c) Gd⁺²
 - (d) Lu⁺³

Ans: a

- 11. Oxidation state of Fe in brown ring formula
 - a) +1
 - b) + 2
 - c) +3
 - d) + 4

Ans: a

12. Why does oxygen show anomalous behavior?

- a) Small size, high electronegativity, absence of vacant dorbital
- b) Small size, small electronegativity
- c) Large size high electronegativity presence of vacant d orbital
- d) Large size, high electronegativity

Ans: a

- 13. Which reagent gives bright red ppt With Ni²⁺ in basic medium?
 - (a) KCNS
 - (b) $K_4[Fe(CN)_6]$
 - (c) DMG
 - d) Nessler's Reagent

Ans: c

- 14. IUPAC name of K_2MnO_4 is
 - a) Potassium tetraoxomanganate(VI)
 - b) Potassium tetraoxomanganate(III)
 - c) Potassium tetraoxomangnese(VI)
 - d) Tetraoxomanganese(VI) Potassium

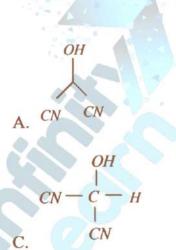
Ans: a

15.50 mL of 0.5 oxalic acid is completely neutralized by 25 mL of NaOH solution. Find out the amount of NaOH (in gm) present in 25 mL of given NaOH solution

Ans: $M = \frac{n}{v}$

16. Calculate equilibrium constant for the given following reaction at 500 K.

$$N_2(g) + 3H_2(g) \leftrightharpoons 2NH_3(g)$$


Given Molarity of NH₃(g), N₂(g) and H₂(g) at equilibrium is 1.5×10^{-2} M, 2×10^{-2} M and 3×10^{-2} M respectively.

Ans:
$$K = \frac{[NH_3]^2}{[N_2]^1[H_2]^3}$$

- **A)** OH CHO
- a) NaOH, CO2, H+
- В) Он соон
- b) Na₂Cr₂O₇/H₂O
- c) 🖒
- c) NaOH/CH₃ Cl
- **D)** OCH,
- d) NaOH/CHCl₃

Ans: A - d, B - a, C - b, D - d

17. Which represents the line formula of (OH)CH (CN)₂

 $\begin{array}{c|c}
OH \\
 & | \\
N \equiv C - C - H \\
 & | \\
C \equiv N
\end{array}$

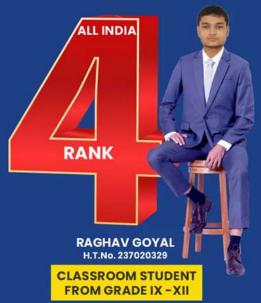
Ans: a

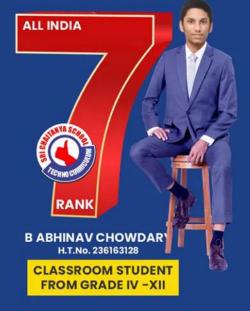
CLASSROOM STUDENT FROM GRADE VI-XII

FROM GRADE I-XII

5

HISTORY CREATED


SRI CHAITANYA STUDENTS SECURE TOP RANKS in JEE ADVANCED 2023


ALL-INDIA OPEN CATEGORY RANKS

