AIPMT 2014

Test Instructions

1. Total duration of this test is $\mathbf{1 8 0}$ minutes
2. This test has 4 subjects consisting of

180 questions in total.
3. There are $\mathbf{4}$ total sections in the test.
4. Sections Info :

Physics
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5} . \mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$

Chemistry
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5} . \mathbf{4}$ marks will be given for correct attempt and incorrect attempt - $\mathbf{1}$

Botany
a. Section \mathbf{A} has $\mathbf{4 9}$ questions, compulsory questions $\mathbf{4 9} .4$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$.

Zoology
a. Section \mathbf{A} has $\mathbf{4 1}$ questions, compulsory questions $\mathbf{4 1} .4$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$

5. Total marks for this test is $\mathbf{7 2 0}$ marks

6. No marks will be deducted for unattempted questions
7. This test can be submitted only once.
8. Once the test has been submitted, you cannot edit the responses.
9. Results will be anounced post test submission.

10 . The test will be auto-submitted once the timer ends.

Physics

Section A

1. If force (F), velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are
2. $\left[F V T^{-1}\right]$
3. $\left[F V T^{-2}\right]$
4. $\left[F V^{-1} T^{-1}\right]$
5. $\left[F V^{-1} T\right]$
6. A body of mass(4 m) is lying in $x-y$ plane at rest. It suddenly explodes into three pieces. Two pieces, each of mass (m) move perpendicular to each other with equal speeds (ν). The total kinetic energy generated due to explosion is
7. $m v^{2}$
8. $\frac{3}{2} m v^{2}$
9. $2 m v^{2}$
10. $4 m v^{2}$
11. Certain quantity of water cools from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in the first 5 minutes and to $54^{\circ} \mathrm{C}$ in the next 5 minutes. The temperature of the surroundings is
12. $45^{\circ} \mathrm{C}$
13. $20^{\circ} \mathrm{C}$
14. $42^{\circ} \mathrm{C}$
15. $10^{\circ} \mathrm{C}$
16. A monoatomic gas at a pressure P having a volume V expands isothermally to a volume 2 V and then adiabatically to a volume 16 V . The final pressure of the gas is (Take $\gamma=5 / 3$)
17. 64 P
18. 32 P
19. P / 64
20. 16 P
21. The oscillation of a body on a smooth horizontal surface is represented by the equation,
$X=A \cos (\omega t)$
where $\mathrm{x}=$ displacement at time t
$\omega=$ frequency of oscillation
Which one of the following graphs shows correctly the variation a with t?
22.

2.

3.

4.

6. A conducting sphere of radius R is given a charge Q . The electric potential and the electric field at the centre of the sphere respectively are

1. zero and $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
2. $\frac{Q}{4 \pi \varepsilon_{0} R}$ and zero
3. $\frac{Q}{4 \pi \varepsilon_{0} R}$ and $\frac{Q}{4 \pi \varepsilon_{0} R^{2}}$
4. Both are zero
5. Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the average resistance per km is 0.5Ω. The power loss in the wire is
6. 19.2 W
7. 19.2 kW
8. 19.2 J
9. 12.2 kW
10. A potentiometer circuit has been set up for finding the internal resistance of a given cell. The main battery, used across the potentiometer wire, has an emf of 2.0 V and a negligible internal resistance. The
potentiometer wire itself is 4 m long. When the resistance R, connected across the given cell, has values of
(i) infinity
(ii) 9.5Ω the balancing lengths
on the potentiometer wire are found to be 3 m and 2.85 m , respectively. The value of internal resistance of the cell is
11. 0.25Ω
12. 0.95Ω
13. 0.5Ω
14. 0.75Ω
15. Two identical long conducting wires AOB and COD are placed at right angle to each other, with one above other such that 0 is their common point for the two. The wires carry I_{1} and I_{2} currents, respectively. Point P is lying at distance d from 0 along a direction perpendicular to the plane containing the wires. The magnetic field at the point P will be
16. $\frac{\mu_{0}}{2 \pi d}\left(\frac{I_{1}}{I_{2}}\right)$
17. $\frac{\mu_{0}}{2 \pi d}\left(I_{1}+I_{2}\right)$
18. $\frac{\mu_{0}}{2 \pi d}\left(I_{1}^{2}-I_{2}^{2}\right)$
19. $\frac{\mu_{0}}{2 \pi d}\left(I_{1}^{2}+I_{2}^{2}\right)^{1 / 2}$
20. In an ammeter 0.2% of main current passes through the galvanometer. If resistance of galvanometer is G, the resistance of ammeter will be
21. $\frac{1}{499} G$
22. $\frac{499}{500} G$
23. $\frac{1}{500} G$
24. $\frac{500}{499} G$
25. A thin semicircular conducting ring (PQR) of radius r is falling with its plane vertical in a horizontal magnetic field B, as shown in the figure.

The potential difference developed across the ring when its speed ν, is

1. zero
2. $\frac{B v \pi r^{2}}{2}$ and P is at higher potential
3. $\pi r B \nu$ and R is a higher potential
4. 2 rBv and R is at higher potential
5. A transformer having efficiency of 90% is working on 200 V and 3 kW power supply. If the current in the secondary coil is 6 A , the voltage across the secondary coil and the current in the primary coil respectively are
6. $300 \mathrm{~V}, 15 \mathrm{~A}$
7. $450 \mathrm{~V}, 15 \mathrm{~A}$
8. $450 \mathrm{~V}, 13.5 \mathrm{~A}$
9. $600 \mathrm{~V}, 15 \mathrm{~A}$
10. In the Young's double slit experiment, the intensity of light at a point on the screen (where the path difference is λ) is K , (λ - the wavelength of light used). The intensity at a point where the path difference is $\lambda / 4$ will be
11. K
12. K/4
13. $\mathrm{K} / 2$
14. zero
15. Hydrogen atom in ground state is excited by a monochromatic radiation of $\lambda=975 \stackrel{\circ}{A}$. Number of spectral lines in the resulting spectrum emitted will be

1. 3

2. 2
3. 6
4. 10
5. The binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ and ${ }_{2}^{4} \mathrm{He}$ Nuclei are 5.60 MeV and 7.06 MeV respectively. In the nuclear reaction
${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{2}^{4} \mathrm{He}+Q$
the value of energy Q released is
6. 19.6 MeV
7. -2.4 MeV
8. 8.4 MeV
9. 17.3 MeV
10. The barrier potential of a p-n junction depends on
11. type of semiconductor material
12. amount of doping
13. temperature

Which one of the following is correct?

1. (1) and (2) only
2. (2) only
3. (2) and (3) only
4. (1), (2) and (3)
5. The given graph presents V-I characteristic for a semiconductor device.

Which of the following statement is correct?

1. It is V-I characteristic for solar cell where, point A represents open circuit voltage and point B short circuit current.
2. It is for a solar cell and points A and B represent open circuit voltage and current, respectively.
3. It is for a photodiode and points A and B represent open circuit voltage and current, respectively.
4. It is for a LED and points A and B represent open circuit voltage and short circuit current, respectively.
5. Copper of fixed volume V is drawn into wire of length l. When this wire is subjected to a constant force F , the extension produced in the wire is Δl. Which of the following graphs is a straight line?
6. Δl versus $1 / l$
7. Δl versus l^{2}
8. Δl versus $1 / l^{2}$
9. Δl versus l
10. Light with an energy flux of $25 \times 10^{4} \mathrm{~W} \mathrm{~m}^{-2}$ falls on a perfectly reflecting surface at normal incidence. If the surface area is $15 \mathrm{~cm}^{2}$, the average force exerted on the
surface is
11. $1.25 \times 10^{-6} \mathrm{~N}$
12. $2.50 \times 10^{-6} \mathrm{~N}$
13. $1.20 \times 10^{-6} \mathrm{~N}$
14. $3.0 \times 10^{-6} \mathrm{~N}$
15. A particle is moving such that its position coordinates (x, y) are $(2 \mathrm{~m}, 3 \mathrm{~m})$ at time $\mathrm{t}=0,(6 \mathrm{~m}, 7$ $\mathrm{m})$ at time $\mathrm{t}=2 \mathrm{~s}$ and $(13 \mathrm{~m}, 14 \mathrm{~m})$ at time $\mathrm{t}=5 \mathrm{~s}$. Average velocity vector $\left(\vec{v}_{\text {av }}\right)$ from $t=0$ to $t=5 \mathrm{~s}$ is
16. $\frac{1}{5}(13 \hat{i}+14 \hat{j})$
17. $\frac{7}{3}(\hat{i}+\hat{j})$
18. $2(\hat{i}+\hat{j})$
19. $\frac{11}{5}(\hat{i}+\hat{j})$
20. A projectile is fired from the surface of the earth with a velocity of $5 \mathrm{~ms}^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of $3 \mathrm{~ms}^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth. The value of the acceleration due to gravity on the planet is $\left(m s^{-2}\right)$ is (Given $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$)
21. 3.5
22. 5.9
23. 16.3
24. 110.8
25. A system consists of three masses m_{1}, m_{2} and m_{3} connected by a string passing over a pulley P . The mass m_{1} hangs freely and m_{2} and m_{3} are on a rough horizontal table (the coefficient of friction= μ)

The pulley is frictionless and of negligible mass. The downward acceleration of mass m_{1} is
(Assume $m_{1}=m_{2}=m_{3}=m$)

1. $\frac{g(1-g \mu)}{9}$
2. $\frac{2 g \mu}{3}$
3. $\frac{g(1-2 \mu)}{3}$
4. $\frac{g(1-2 \mu)}{2}$
5. The force F acting on a particle of mass m is indicated by the force-time graph shown below. The change in momentum of the particle over the time interval from zero to 8s is

6. 24 N s
7. 20 N s
8. 12 N s
9. 6 N s
10. A balloon with mass m is descending down with an acceleration a (where $\mathrm{a}<\mathrm{g}$). How much mass should be removed from it so that it starts moving up with an acceleration a?
11. $\frac{2 m a}{g+a}$
12. $\frac{2 m a}{g-a}$
13. $\frac{m a}{g+a}$
14. $\frac{m a}{g-a}$
15. A solid cylinder of mass 50 kg and radius 0.5 m is free to rotate about the horizontal axis. A massless string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleration of 2 revolutions s^{-2} is
16. 25 N
17. 50 N
18. 78.5 N
19. 157 N
20. The ratio of the accelerations for a solid sphere (mass m and radius R) rolling down an incline of angle θ without slipping and slipping down the incline without rolling is
21. $5: 7$
22. $2: 3$
23. $2: 5$
24. 7 : 5
25. Dependence of intensity of gravitational field (E) of earth with distance (r) from centre of earth is correctly represented by

26.

3.

4.

28. A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass $=5.98 \mathrm{x}$ $10^{24} \mathrm{~kg}$) have to be compressed to be a black hole?

1. $10^{-9} \mathrm{~m}$
2. $10^{-6} \mathrm{~m}$
3. $10^{-2} \mathrm{~m}$
4. 100 m
5. A certain number of spherical drops of a liquid of radius r coalesce to form a single drop of radius R and volume V . If T is the surface tension of the liquid, then
6. energy $=4 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is released.
7. energy $=3 V T\left(\frac{1}{r}+\frac{1}{R}\right)$ is absorbed.
8. energy $=3 V T\left(\frac{1}{r}-\frac{1}{R}\right)$ is released.
9. energy is neither released nor absorbed
10. Steam at $100^{\circ} \mathrm{C}$ is passed into 20 g of water at $10^{\circ} \mathrm{C}$. When water acquires a temperature of $80^{\circ} \mathrm{C}$, the mass of water present will be [Take specific heat of water $=$ $1 \mathrm{cal} g^{-1 o} C$ and latent heat of steam $=540 \mathrm{cal} g^{-1}$]
11. 24 g
12. 31.5 g
13. 42.5 g
14. 22.5 g
15. The mean free path of molecules of a gas, (radius r) is inversely proportional to
16. r^{3}
17. r^{2}
18. r
19. \sqrt{r}
20. A thermodynamic system undergoes cyclic process ABCDA as shown in figure. The work done by the system in the cycle is

21. $P_{0} V_{0}$
22. $2 P_{0} V_{0}$
23. $\frac{P_{0} V_{0}}{2}$
24. Zero
25. The number of possible natural oscillations of air column in a pipe closed at one end of length 85 cm whose frequencies lie below 1250 Hz are (Velocity of sound $=340 \mathrm{~m} \mathrm{~s}^{-1}$)
26. 7
27. 6
28. If n_{1}, n_{2} and n_{3} are the fundamental frequencies of three segments into which a string is divided, then the original fundamental frequency n of the string is given by
29. $\frac{1}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$
30. $\frac{1}{\sqrt{n}}=\frac{1}{\sqrt{n_{1}}}+\frac{1}{\sqrt{n_{2}}}+\frac{1}{\sqrt{n_{3}}}$
31. $\sqrt{n}=\sqrt{n_{1}}+\sqrt{n_{2}}+\sqrt{n_{3}}$
32. $n=n_{1}+n_{2}+n_{3}$
33. A speeding motorcyclist sees traffic jam ahead him.

He slows down to $36 \mathrm{~km}_{\mathrm{km}} \mathrm{hour}^{-1}$. He finds that traffic has eased and a car moving ahead of him at 18 km hour $^{-1}$ is honking at a frequency of 1392 Hz . If the speed of sound is $343 \mathrm{~ms}^{-1}$, the frequency of the honk as heard by him will be

1. 1332 Hz
2. 1372 Hz
3. 1412 Hz
4. 1454 Hz
5. In a region, the potential is represented by $V(x, y, z)=$ $6 x-8 x y-8 y+6 y z$, where V is in volts and x, y, z are in metres. The electric force experienced by a charge of 2 coulomb situated at point $(1,1,1)$ is
6. $6 \sqrt{5} \mathrm{~N}$
7. 30 N
8. 24 N
9. $4 \sqrt{35} \mathrm{~N}$
10. Two thin dielectric slabs of dielectric constants K_{1} and $K_{2}\left(K_{2}<K_{2}\right)$ are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field E between the plates with distance d as measured from plate P is correctly shown by

11.

38. The resistances in the two arms of the meter bridge are 5Ω and $\mathrm{R} \Omega$ respectively. When the resistance R is shunted with an equal resistance, the new balance point is at $1.6{ }_{1}$.The resistance R is

1. 10Ω
2. 15Ω
3. 20Ω
4. 25Ω
5. Following figures show the arrangement of bar magnets in different configurations. Each magnet has magnetic dipole moment \vec{m}. Which configuration

6.

3.

4.

40. The angle of a prism is A. One of its refracting surfaces is silvered. Light rays falling at an angle of incidence 2A on the first surface returns back through the same path after suffering reflection at the silvered surface. The refractive index μ, of the prism is

1. $2 \sin \mathrm{~A}$
2. $2 \cos \mathrm{~A}$
3. $\frac{1}{2} \cos A$
4. $\tan \mathrm{A}$
5. If the focal length of objective lens is increased then magnifying power of
6. microscope will increase but that of telescope decrease.
7. microscope and telescope both will increase.
8. microscope and telescope both will decrease.
9. microscope will decrease but that of telescope will increase.
10. A beam of light of $\lambda=600 \mathrm{~nm}$ from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away.

The distance between first dark fringes on either side of the central bright fringe is

1. 1.2 cm
2. 1.2 mm
3. 2.4 cm
4. 2.4 mm
5. When the energy of the incident radiation is increased by 20%, the kinetic energy of the photoelectrons emitted from a metal surface increased from 0.5 eV to 0.8 eV . The work function of the metal is
6. 0.65 eV
7. 1.0 eV
8. 1.3 eV
9. 1.5 eV
10. If the kinetic energy of the particle is increased to16 times its previous value, the percentage change in the de Broglie wavelength of the particle is
11. 25
12. 75
13. 60
14. 50
15. A radioisotope X with a half life 1.4×10^{9} years decays to Y which is stable. A sample of the rock from a cave was found to contain X and Y in the ratio 1: 7. The age of the rock is
16. 1.96×10^{9} years
17. 3.92×10^{9} years
18. 4.2×10^{9} years .
19. 8.40×10^{9} years

Chemistry

Section A

46. Which of the following molecules has the maximum dipole moment?
47. CO_{2}
48. CH_{4}
49. NH_{3}
50. NF_{3}

Which of the following organic compounds has same hybridization as its combustion product $\left(\mathrm{CO}_{2}\right)$?

1. Ethane
2. Ethyne
3. Ethene
4. Ethanol
5. For the reversible reaction
$\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)}+$ heat
The equilibrium shifts in forward direction
6. By increasing the concentration of $\mathrm{NH}_{3(\mathrm{~g})}$
7. by decreasing the pressure
8. By decreasing the concentrations of $\mathrm{N}_{2(g)}$ and $\mathrm{H}_{2(g)}$
9. by increasing pressure and decreasing temperature.
10. The reaction of aqueous KMnO_{4} with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acidic conditions gives
11. Mn^{4+} and O_{2}
12. Mn^{2+} and O_{2}
13. Mn^{2+} and O_{3}
14. Mn^{4+} and MnO_{2}
15. (I) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
(II) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Ag}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Role of hydrogen peroxide in the above reactions is respectively

1. Oxidizing in (I) and reducing in (II)
2. reducing in (I) and Oxidizing in (II)
3. reducing in (I) and (II)
4. Oxidizing in (I) and (II)
5. Acidity of diprotic acids in aqueous solutions increases in the order
6. $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
7. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}$
8. $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
9. $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}$
10. Identify Z in the sequence of reactions:

11. $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
12. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
13. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{O}-\mathrm{CH}_{3}$
14. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
15. The weight of silver (at. wt. = 108) displaced by a quantity of electricity which displaces 5600 mL of O_{2} at STP will be
1.5 .4 g
16. 10.8 g
3.54 .0 g
17. 108.0 g
18. Which of the following statements is correct for the spontaneous adsorption of a gas?
19. ΔS is negative and, therefore ΔH should be highly positive.
20. ΔS is negative and therefore, ΔH should be highly negative.
21. ΔS is positive and therefore, ΔH should be negative.
22. ΔS is positive and therefore, ΔH should also be highly positive.
23. Which one is most reactive towards nucleophilic addition reaction?
24.

2.

3.

4.

56. In the following reaction, the product (A)

1.

2.

3.

4.

57. For the reaction, $\mathrm{X}_{2} \mathrm{O}_{4(\mathrm{l})} \longrightarrow 2 \mathrm{XO}_{2(\mathrm{~g})}$
$\Delta \mathrm{U}=2.1 \mathrm{kcal}, \Delta \mathrm{S}=20 \mathrm{cal} \mathrm{K}^{-1}$ at 300 K Hence, $\Delta \mathrm{G}$ is
1.2 .7 kcal
2. -2.7 kcal
3.9 .3 kcal
4. -9.3 kcal
58. For a given exothermic reaction, K_{p} and K_{p}^{\prime} are the equilibrium constants at temperatures T_{1} and T_{2}, respectively. Assuming that heat of reaction is constant in temperature range between T_{1} and T_{2}, correct relation is $\left(\mathrm{T}_{1}<\mathrm{T}_{2}\right)$

1. $K_{p}>K_{p}^{\prime}$
2. $K_{p}<K_{p}^{\prime}$
3. $K_{p}=K_{p}^{\prime}$
4. $K_{p}=\frac{1}{K_{p}^{\prime}}$
5. In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to CrO_{5} which has two (-O - O-) bonds. Oxidation state of
Cr in CrO_{5} is:
6. +5
7. +3
8. NO_{3}^{-}
9. NO_{2}^{-}
10. CO_{2}
11. +6
12. -10
13. When $0.1 \mathrm{~mol}_{\mathrm{MnO}}^{4}-2-\quad$ is oxidized, the quantity of electricity required to completely oxidize MnO_{4}^{2-} to MnO_{4}^{-}is
14. 96500 C
15. $2 \times 96500 \mathrm{C}$
16. 9650 C
17. 96.50 C
18. Which of the following compounds will not undergo racemisation when solution of KOH hydrolyses?

19. (i) and (ii)
20. (iv)
21. (iii) and (iv)
22. (i) and (iv)
23. Using the Gibb's energy change,
$\Delta \mathrm{G}^{\circ}=+63.3 \mathrm{~kJ}$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3(s)} \rightleftharpoons 2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{CO}_{3(a q)}^{2-}$
the $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3(s)}$ in water at $25^{\circ} \mathrm{C}$ is
($R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
24. 3.2×10^{-26}
25. 8.0×10^{-12}
26. 2.9×10^{-3}
27. 7.9×10^{-2}
28. Which of the following orders of ionic radii is correctly represented?
29. $\mathrm{H}^{-}>\mathrm{H}^{+}>\mathrm{H}$
30. $\mathrm{Na}^{+}>\mathrm{F}^{-}>\mathrm{O}^{2-}$
31. $\mathrm{F}^{-}>\mathrm{O}^{2-}>\mathrm{Na}^{+}$
32. $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{N}^{3-}$
33. Which one of the following species has plane triangular shape?
34. N_{3}
35. The pair of compounds that can exist together is
36. $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$
37. $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
38. $\mathrm{FeCl}_{2}, \mathrm{SnCl}_{2}$
39. $\mathrm{FeCl}_{3}, \mathrm{KI}$
40. Which one of the following is not a common
component of Photochemical smog?
41. Ozone
42. Acrolein
43. Peroxyacetyl nitrate
44. Chlorofluorocarbons
45. Of the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression?
46. KCl
47. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
48. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
49. $\mathrm{K}_{2} \mathrm{SO}_{4}$
50. Which property of colloids is not dependent on the charge on colloidal particles?
51. Coagulation
52. Electrophoresis
53. Electro-osmosis
54. Tyndall effect
55. Magnetic moment 2.83 BM is given by which of the following ions?
(At.nos. $\mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Ni}=28$)
56. Ti^{3+}
57. Ni^{2+}
58. Cr^{3+}
59. Mn^{2+}
60. Reason of lanthanide contraction is
61. negligible screening effect of ' f ' - orbitals
62. increasing nuclear charge
63. decreasing nuclear charge
64. decreasing screening effect
65. Among the following complexes the one which shows zero crystal field stabilization energy (CFSE) is
66. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
67. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
68. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
69. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
70. Which of the following complexes is used to be as an anticancer agent?
71. mer $-\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
72. cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
73. cis $-\mathrm{K}_{2}\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\right]$
74. $\mathrm{Na}_{2} \mathrm{CoCl}_{4}$
75. Among the following sets of reactants which one produces anisole?
76. $\mathrm{CH}_{3} \mathrm{CHO} ; \mathrm{RMgX}$
77. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} ; \mathrm{NaOH} ; \mathrm{CH}_{3} \mathrm{I}$
78. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$; neutral FeCl_{3}
79. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3} ; \mathrm{CH}_{3} \mathrm{COCl} ; \mathrm{AlCl}_{3}$
80. Which of the following will be most stable diazonium salt $R \mathrm{~N}_{2}^{+} X^{-}$?
81. $\mathrm{CH}_{3} \mathrm{~N}_{2}^{+} X^{-}$
82. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} X^{-}$
83. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
84. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
85. Which one of the following is an example of thermosetting polymer?
86.

2.

4.

76. Which of the following organic compounds polymerizes to form the polyester Dacron?

1. Propylene and para $\mathrm{HO}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-\mathrm{OH}$
2. Benzoic acid and ethanol
3. Terephthalic acid and ethylene glycol
4. Benzoic acid and para $\mathrm{HO}-\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)-\mathrm{OH}$
5. Which of the following salts will give highest pH in water?
6. KCl
7. NaCl
8. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
9. CuSO_{4}
10. In the Kjeldahl's method for estimation of nitrogen present in a soil sample, ammonia evolved from 0.75 g of sample neutralized 10 mL of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The percentage of nitrogen in the soil is
11. 37.33
12. 45.33
13. 35.33
14. 43.33
15. What products are formed when the following compound is treated with $B r_{2}$ in the presence of FeBr_{3} ?

16. Which of the following will not be soluble in sodium hydrogen carbonate?
17. 2,4,6 - Trinitrophenol
18. Benzoic acid
19. O-Nitrophenol
20. Benzenesulphonic acid
21. Equal masses of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and methane have been taken in a container of volume V at temperature $27^{\circ} \mathrm{C}$ in identical conditions. The ratio of the volumes of gases $\mathrm{H}_{2}: \mathrm{O}_{2}$: methane would be
22. $8: 16: 1$
23. $16: 8: 1$
24. $16: 1: 2$
25. $8: 1: 2$
26. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} \mathrm{O}_{2}$ in a closed vessel. Which reactant is left in excess and how much?
(At. wt. $\mathrm{Mg}=24, \mathrm{O}=16$)
27. Mg, 0.16 g
28. $\mathrm{O}_{2}, 0.16 \mathrm{~g}$
29. $\mathrm{Mg}, 0.44 \mathrm{~g}$
30. $\mathrm{O}_{2}, 0.28 \mathrm{~g}$
31. When 22.4 litres of $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with 11.2 litres of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at S.T.P, the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to
1.1 mol of $\mathrm{HCl}_{(\mathrm{g})}$
32. 2 mol of $\mathrm{HCl}_{(\mathrm{g})}$
33. 0.5 mol of $\mathrm{HCl}_{(\mathrm{g})}$
34. 1.5 mol of $\mathrm{HCl}_{(\mathrm{g})}$
35. Calculate the energy in joule corresponding to light of wavelength 45 nm . (Planck's constant, $\mathrm{h}=6.63 \times$ $10^{-34} \mathrm{Js}$, speed of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
36. 6.67×10^{15}
37. 6.67×10^{11}
38. 4.42×10^{-15}
39. 4.42×10^{-18}
40. Which of the following hormones is produced under the conditions of stress which stimulate glycogenolysis in the liver of human beings?
41. Thyroxin
42. Insulin
43. Adrenaline
44. Estradiol
45. $\quad \mathrm{Be}^{2+}$ is isoelectronic with which of the following ions?
46. H^{+}
47. Li^{+}
48. Na^{+}
49. Mg^{2+}
50. What is the maximum number of orbitals that can be identified with the following quantum numbers?
$\mathrm{n}=3, \mathrm{l}=1, \mathrm{~m}_{1}=0$
51. 1
52. 2
53. 3
54. 4
55. If a is the length of the side of a cube, the distance between the body centered atom and one corner atom in the cube will be
56. $\frac{2}{\sqrt{3}} a$
57. $\frac{4}{\sqrt{3}} a$
58. $\frac{\sqrt{3}}{4} a$
59. $\frac{\sqrt{3}}{2} a$
60. $\quad \mathrm{D}(+)$-glucose reacts with hydroxyl amine and yields an oxime. The structure of the oxime would be
61.

2.

90. Artificial sweetner which is stable under cold conditions only is

1. Saccharine
2. Sucralose
3. aspartame
4. alitame

Botany

Section A

91. An analysis of chromosomal DNA using the Southern hybridization technique does not use
92. electrophoresis
93. blotting
94. autoradiography
95. PCR

A few normal seedlings of tomato were kept in a dark room. After a few days they were found to have become white-coloured like albinos. Which of the following terms will you use to describe them?

1. Mutated
2. Embolised
3. Etiolated
4. Defoliated
5. In vitro clonal propagation in plants is characterised by
6. PCR and RAPD
7. Northern blotting
8. electrophoresis and HPLC
9. microscopy
10. Anoxygenic photosynthesis is characteristic of
11. Rhodospirillum
12. Spirogyra
13. Chlamydomonas
14. Ulva
15. Tracheids differ from other tracheary elements in
16. having casparian strips
17. being imperforate
18. lacking nucleus
19. being lignified
20. The osmotic expansion
of a cell kept in water is chiefly regulated by
21. mitochondria
22. vacuoles
23. plastids
24. ribosomes
25. Which one of the following is a non - reducing carbohydrate?
26. Maltose
27. Sucrose
28. Lactose
29. Ribose 5 - phosphate
30. Archaebacteria differ from eubacteria in
31. cell membrane structure
32. mode of nutrition
33. cell shape
34. mode of reproduction
35. Which vector can clone only a small fragment of DNA?
36. Bacterial artificial chromosome
37. Yeast artificial chromosome
38. Plasmid
39. Cosmid
40. Dr. F. Went noted that if coleoptile tips were removed and placed on agar for one hour, the agar would produce a bending when placed on one side of freshly-
cut coleoptile stumps. Of what significance is this experiment?
41. It made possible the isolation and exact identification of auxin
42. It is the basis for quantitative determination of sm all amounts of growth-promoting substances
43. It supports the hypothesis that IAA is auxin
44. It demonstrated polar movement of auxins
45. An aggregate fruit is one which develops from
46. multicarpellary syncarpous gynoecium
47. multicarpellary apocarpus gynoecium
48. complete inflorescence
49. multicarpellary superior ovary
50. The solid linear cytoskeletal elements having a diameter of 6 nm and made up of a single type of monomer are known as
51. microtubules
52. microfilaments
53. intermediate filaments
54. lamins
55. Select the option which is not correct with respect to enzyme action.
56. Substrate binds with enzyme at its active site.
57. Addition of lot of succinate does not reverse the inhibition of succinic dehydrogenase by malonate.
58. A non-competitive inhibitor binds the enzyme at a site distinct from that which binds the substrat
e.
59. Malonate is a competitive inhibitor of succinic dehydrogenase.
60. Which one of the following is wrongly matched?
61. Transcription - Writing information from DNA to t-RNA
62. Translation - Using information in mRNA to make protein
63. Repressor protein - Binds to operator to stop enzyme synthesis
64. Operon - Structural genes, operator and promoter
65. Male gametophyte with least number of cells is present in
66. Pteris
67. Funaria
68. Lilium
69. Pinus
70. Fruit colour in squash is an example of
71. Recessive epistasis
72. Dominant epistasis
73. Complementary genes
74. Inhibitory genes
75. Which one of the following
fungi contains hallucinogens?
76. Morchella esculenta
77. Amanita muscaria
78. Neurospora sp.
79. Ustilago sp.
80. When the margins of sepals or petals overlap one another without any particular direction, the condition is termed as
81. Vexillary
82. Imbricate
83. Twisted
84. Valvate
85. Which one of the following living organisms completely lacks a cell wall?
86. Cyanobacteria
87. Sea - fan (Gorgonia)
88. Saccharomyces
89. Blue - green algae
90. Match the following and select the correct answer.
(A)Centriole (i) lnfoldings in mitochondria
(B) Chlorophyll(ii) Thylakoids
(C) Cristae (iii) Nucleic acids
(D) Ribozymes (iv) Basal body of cilia or flagella

	A	B	C	D
$\mathbf{1 .}$	iv	ii	i	iii
2.	i	ii	iv	iii
3.	i	iii	ii	iv
4.	iv	iii	i	ii

1. 1
2. 2
3. 3
4. 4
5. In which one of the following processes CO_{2} is not released?
6. Aerobic respiration in plants
7. Aerobic respiration in animals
8. Alcoholic fermentation
9. Lactate fermentation
10. Five kingdom system of classification suggested by R.H. Whittaker is not based on
11. presence or absence of a well-defined nucleus
12. mode of reproduction
13. mode of nutrition
14. complexity of body organisation
15. During which phase(s) of cell cycle, amount of DNA in a cell remains at 4C level if the initial amount is denoted as 2C?
16. G_{0} and G_{1}
17. G_{1} and S
18. Only G_{2}
19. G_{2} and M
20. In 'S' phase of the cell cycle
21. amount of DNA doubles in each cell
22. amount of DNA remains same in each cell
23. chromosome number is increased
24. amount of DNA is reduced to half in each cell
25. Transformation was discovered by
26. Meselson and Stahl
27. Hershey and Chase
28. Griffith
29. Watson and Crick
30. Which one of the following shows isogamy with nonflagellated gametes?
31. Sargassum
32. Ectocarpus
33. Ulothrix
34. Spirogyra
35. An alga which can be employed as food for human beings is
36. Ulothrix
37. Chlorella
38. Spirogyra
39. Polysiphonia
40. An example of edible underground stem is
41. carrot
42. groundnut
43. sweet potato
44. potato
45. Which structure performs the function of mitochondria in bacte
46. Nucleoid
47. Ribosomes
48. Cell wall
49. Mesosomes
50. The motile bacteria are able to move by
51. fimbriae
52. flagella
53. cilia
54. pili
55. Which of the following is responsible for peat formation?
56. Marchantia
57. Riccia
58. Funaria
59. Sphagnum
60. You are given a fairly old piece of dicot stem and a dicot root. Which of the following anatomical structures will you use to distinguish between the two?
61. Secondary xylem
62. Secondary phloem
63. Protoxylem
64. Cortical cells
65. Deficiency symptoms of nitrogen and potassium are visible first in
66. senescent leaves
67. young leaves
68. roots
69. buds
70. Select the correct option with respect to transcription.

Direction of RNA synthesis Direction of reading of the template A

15' $\rightarrow 3^{\prime}$	3' \rightarrow 5'	$1_{\text {minerals }}$	Detritus	Litter fall	Producers
$\underline{23 ' \rightarrow 5 '}$	$5^{\prime} \rightarrow 3^{\prime}$	2.Litter fall Producers		Rock	Detritus
$35^{\prime} \rightarrow 3^{\prime}$	$5^{\prime} \rightarrow 3^{\prime}$			minerals	
$43^{\prime} \rightarrow 5^{\prime}$	$3^{\prime} \rightarrow 5^{\prime}$	3.Detritus	Rock minerals	Producers	Litter fall
1. 1		4. Producers	Litter fall	Rock minerals	Detritus

3. 3
4. 4
5. What gases are produced in anaerobic sludge digesters?
6. Methane and CO_{2} only
7. Methane, hydrogen sulphide and CO_{2}
8. Methane, hydrogen sulphide and O_{2}
9. Hydrogen sulphide and CO_{2} only
10. Which one of the following growth regulators is known as 'stress hormone'?
11. Abscisic acid
12. Ethylene
13. GA_{3}
14. Indole acetic acid
15. Which one of the following is wrong about Chara?
16. Upper oogonium and lower round antheridium
17. Globule and nucule present on the same plant
18. Upper antheridium and lower oogonium
19. Globule is male reproductive structure
20. Placenta and pericarp are both edible portions in
21. apple
22. banana
23. tomato
24. potato
25. Given below is a simplified model of phosphorus cycling in a terrestrial ecosystem with four blanks (AD). Identify the blanks.

A B C D NAstrand

1. 1
2. 2
3. 3
4. 4
5. Which of the following shows coiled RNA strand and capsomer
6. Polio virus
7. Tobacco mosaic virus
8. Measles virus
9. Retrovirus
10. To obtain virus- free healthy plants from a diseased one by tissue culture technique, which part/parts of the diseased plant will be taken?
11. Apical meristem only
12. Palisade parenchyma
13. Both apical and axillary meristems
14. Epidermis only
15. Which one of the following statements is correct?
16. The seed in grasses is not endospermic.
17. Mango is a parthenocarpic fruit.
18. A proteinaceous aleurone layer is present in maize grain.
19. A sterile pistil is called as staminode
20. Viruses have
21. DNA enclosed in a protein coat
22. prokaryotic nucleus
23. single chromosome
24. both DNA and RNA
25. A location with luxuriant growth of lichens on the trees indicates that the
26. trees are very healthy
27. trees are heavily infested
28. location is highly polluted
29. location is not polluted
30. The enzyme recombinase is required at which stage of meiosis?
31. Pachytene
32. Zygotene
33. Diplotene
34. Diakinesis
35. Function of filiform apparatus is to
36. recognize the suitable pollen at stigma
37. stimulate division of generative cell
38. produce nectar
39. guide the entry of pollen tube
40. Geitonogamy involves
41. fertilisation of a flower by the pollen from another flower of the same plant
42. fertilisation of a flower by the pollen from the same flower
43. fertilisation of a flower by the pollen from a flowe r of another plant in the same population
44. fertilisation of a flower by the pollen from a flowe r of another plant belonging to a distant population
45. Pollen tablets are available in the market for
46. in vitro fertilization
47. breeding programmes
48. supplementing food
49. ex situ conservation
50. Non-albuminous seed is produced in
51. maize
52. castor
53. wheat
54. pea

Section A

140. A scrubber in the exhaust of a chemical industrial plant removes
141. gases like sulphur dioxide
142. particulate matter of the size 5 micrometer or abov e
143. gases like ozone and methane
144. particulate
matterof the size 2.5 micrometer or less.
145. Person with blood group AB is considered as universal recipient because he has
146. both A and B antigens on RBC but no antibodies in the plasma
147. both A and B antibodies in the plasma
148. no antigen on RBC and no antibody in the plasma
149. both A and B antigens in the plasma but no antibodies
150. Which of the following causes an increase in sodium reabsorption in the distal convoluted tubu
151. Increase in aldosterone levels.
152. Increase in antidiuretic hormone levels.
153. Decrease in aldosterone levels.

4. Decrease in antidiuretic hormone levels.

143. Forelimbs of cat, lizard used in walking; forelimbs of whale used in swimming and forelimbs of bats used in flying are an example of
144. analogous organs
145. adaptive radiation
146. homologous organs
147. convergent evolution
148. Choose the correctly matched pair.
149. Tendon - Specialised connective tissue
150. Adipose tissue - Dense connective tissue
151. Areolar tissue - Loose connective tissue
152. Cartilage - Loose connective tissue
153. Choose the correctly matched pair.
154. Inner lining of salivary ducts - Ciliated epithelium
155. Moist surface of buccal cavity - Glandular epitheli um
156. Tubular parts of nephrons - Cuboidal epithelium
157. Inner surface of bronchioles - Squamous epitheliu m
158. Tubectomy is a method of sterilisation in which
159. small part of the fallopian tube is removed or tied up
160. ovaries are removed surgically
161. small part of vas deferens is removed or tied up
162. uterus is removed surgically
163. Which of the following is a hormone releasing Intra Uterine Device (IUD)?
164. Multiload 375
165. Cervical cap
166. LNG - 20
167. Vault
168. A man whose father was colour blind marries a woman who had a colour blind mother and normal father. What percentage of male children of this couple will be colour blind?
169. 25%
170. 0\%
171. 50%
172. 75\%
173. If 20 J of energy is trapped at producer level, then how much energy will be available to peacock as food in the following chain?
plant \rightarrow mice \rightarrow snake \rightarrow peacock
174. 0.02 J
175. 0.002 J
176. 0.2 J
177. 0.0002 J
178. Which of the following is a
marine cartilaginous fish that can
produce electric current?
179. Pristis
180. Torpedo
181. Trygon
182. Scoliodon
183. The zone of atmosphere in which the ozone layer is present is called
184. ionosphere
185. mesosphere
186. stratosphere
187. troposphere
188. Which one of the following statements is not correct?
189. Retinal is the light absorbing portion of visual photo pigments.
190. In retina the rods have the photopigment rhodopsi n while cones have three different photopigments.
191. Retinal is a derivative of vitamin C.
192. Rhodopsin is the purplish red protein present in ro ds only.
193. Which is the particular type of drug that is obtained from the plant whose one flowering branch is shown here?

194. Hallucinogen
195. Depressant
196. Stimulant
197. Pain - killer
198. Match the following and select the correct option.
(A) Earthworm
(i) Pioneer species
(B) Succession
(ii) Detritivore
(C) Ecosystem service (iii) Natality
(D) Population growth (iv) Pollination

	A	B	C	D
$\mathbf{1}$	i	ii	iii	iv
2	iv	i	iii	ii
3	iii	ii	iv	i
4	ii	i	iv	iii

1. 1
2. 2
3. 3
4. 4
5. The shared terminal duct of the reproductive and urinary system in the human male is
6. urethra
7. ureter
8. vas deferens
9. vasa efferentia
10. Stimulation of a muscle fiber by a motor neuron occurs at
11. the neuromuscular junction
12. the transverse tubules
13. the myofibril
14. the sacroplasmic reticulum
15. Identify the hormone
with its correct matching of source and function.
16. Oxytocin - posterior pituitary, growth and maintenance of mammary glands
17. Melatonin - pineal gland, regulates the normal rhythm of sleep-wake cycle
18. Progesterone - corpus luteum, stimulation of growth and activities of female secondary sex organs.
19. Atrial natriuretic factor - ventricular wall, increase s the blood pressure.
20. Just as a person moving from Delhi to Shimla to escape the heat for the duration of hot summer, thousands of migratory birds from Siberia and other extremely cold northern regions move to
21. Western Ghat
22. Meghalaya
23. Corbett National Park
24. Keolado National Park
25. Injury localised to the hypothalamus would most likely disrupt
26. short - term memory
27. co-ordination during locomotion
28. executive functions, such as decision making
29. regulation of body temperature
30. A species facing extremely high risk of extinction in the immediate future is called
31. vulnerable
32. endemic
33. critically endangered
34. extinct
35. The organization which publishes the Red list of species is
36. ICFRE
37. IUCN
38. UNEP
39. WWF
40. Which one of the following are analogous structures?
41. Wings of bat and wings of pigeon
42. Gills of prawn and lungs of man
43. Thorns of Bougainvillea and tendrils of Cucurbita
44. Flippers of dolphin and legs of horse
45. Given here is a pie chart representation of the extent of global diversity of invertebrates. What groups the four portions (A-D)represent respectively?

A	B	C	D
1 Insects	Crustaceans animal		
groups			

1. 1
2. 2
3. 3
4. 4
5. Approximately seventy percent of carbon dioxide absorbed by the blood will be transported to the lungs
6. as bicarbonate ions
7. in the form of dissolved gas molecules
8. by binding to RBC
9. as carbamino-haemoglobin
10. Fight-or-flight reactions cause activation of
11. the parathyroid glands, leading to increased metabolic rate
12. the kidney, leading to suppression of reninangiotensin aldosterone pathway
13. the adrenal medulla,
leading to increased secretion of epinephrine and n orepinephrine
14. the pancreas leading to a reduction in the blood sugar levels
15. The initial step in the digestion of milk in humans is carried out by
16. lipase
17. trypsin
18. rennin
19. pepsin
20. Select the correct matching of the type of the joint with the example in human skeletal system.

Type of
joint

1. Cartilaginous Between frontal and parietal

2. Pivot joint	Between third and fourth cervical vertebrae

3. Hinge joint Between humerus and pectoral girdle
4. Gliding joint Between carpals
5. 1
6. 2
7. 3
8. 4
9. Select the taxon mentioned that represents both marine and fresh water species.
10. Echinoderms
11. Ctenophora
12. Cephalochordata
13. Cnidaria
14. Planaria possesses high capacity of
15. metamorphosis
16. regeneration
17. metagenesis
18. bioluminescence
19. The main function
of mammalian corpus luteum is to produce
20. oestrogen only
21. progesterone
22. human chorionic gonadotropin
23. relaxin only
24. In a population of 1000 individuals 360 belong to genotype AA, 480 to Aa and the remaining 160 to aa. Based on this data, the frequency of allele A in the population is
25. 0.4
26. 0.5
27. 0.6

4. 0.7

172. Fructose is absorbed into the blood through mucosa cells of intestine by the process called
173. active transport
174. facilitated transport
175. simple diffusion
176. co-transport mechanism
177. An example of ex situ conservation is
178. national park
179. seed bank
180. wildlife sanctuary
181. sacred grove
182. The first human hormone produced by recombinant DNA technology is
183. Select the correct option describing gonadotropin activity in a normal preginantlfamale.
184. High level of FSH and LH stimulates the thickeni ng of endometrium.
185. High level of FSH and LH facilitates implantation of the embryo.
186. High level of hCG stimulates the synthesis of estrogen and progesterone.
187. High level of hCG stimulates the thickening of en dometrium.
188. At which stage of HIV infection does one usually show symptoms of AIDS?
189. Within 15 days of sexual contact with an infected person
190. When the infected retrovirus enters host cells
191. When HIV damages large number of helper T-Lymphocytes
192. When the viral DNA is produced by reverse transcriptase
193. Commonly used vectors for human genome sequencing are
194. T-DNA
195. BAC and YAC
196. expression vectors
197. T/A cloning vectors
198. oestrogen
199. thyroxin
200. progesterone
201. Assisted reproductive technology, IVF involves transfer of
202. ovum into the fallopian tube
203. zygote into the fallopian tube
204. zygote into the uterus
205. embryo with 16 blastomeres into the fallopian tube
206. How do parasympathetic neural signals affect the working of the heart?
207. They Reduce both heart rate and cardiac output.
208. Heart rate is increased without affecting the cardia c output.
209. Both heart rate and cardiac output increase.
210. Heart rate decreases but cardiac output increases.
211. A human female with Turner's syndrome
212. has 45 chromosomes with XO
213. has one additional X chromosome
214. exhibits male characters
215. is able to produce children with normal husband
