Sri Chaitanya
 Educational Institutions

Infinity
Learn

AIPMT 2015 Re-Exam

Test Instructions

1. Total duration of this test is $\mathbf{1 8 0}$ minutes.
2. This test has 4 subjects consisting of

180 questions in total
3. There are 4 total sections in the test.
4. Sections Info :

Physics
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5} . \mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$

Chemistry
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$

Botany
a. Section A has $\mathbf{4 9}$ questions, compulsory questions $\mathbf{4 9}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$

Zoology
a. Section \mathbf{A} has $\mathbf{4 1}$ questions, compulsory questions $\mathbf{4 1 . 4} \mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$
5. Total marks for this test is $\mathbf{7 2 0}$ marks
6. No marks will be deducted for unattempted questions
. This test can be submitted only once
8. Once the test has been submitted, you cannot edit the responses
9. Results will be anounced post test submission.
10. The test will be auto-submitted once the timer ends

Physics

Section A

1. If dimensions of critical velocity ν_{c} of a liquid flowing through a tube are expressed as $\left[\eta^{x} \rho^{y} r^{z}\right]$ where η, ρ and r are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of x, y and z are given by
2. $-1,-1,-1$
3. 1, 1, 1
4. $1,-1,-1$
5. $-1,-1,1$
6. A ball is thrown vertically downwards from a height of 20 m with an initial velocity ν_{0}. It collides with the ground, loses 50 percent of its energy in collision and rebounds to the same height. The initial velocity v_{0} is (Take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
7. $28 \mathrm{~ms}^{-1}$
8. $10 \mathrm{~ms}^{-1}$
9. $14 \mathrm{~ms}^{-1}$
10. $20 \mathrm{~ms}^{-1}$
11. On a frictionless surface, a block of mass M moving at speed ν collides elastically with another block of same mass M which is initially at rest. After collision the first block moves at an angle θ to its initial direction and has a speed $\frac{\nu}{3}$. The second block's speed after the collision is
12. $\frac{3}{\sqrt{2}} v$
13. $\frac{\sqrt{3}}{2} v$
14. $\frac{2 \sqrt{2}}{3} v$
15. $\frac{3}{4} v$
16. An automobile moves on a road with a speed of $54 \mathrm{~km} h^{-1}$. The radius of its wheels is 0.45 m and the moment of inertia of the wheel about its axis of rotation is $3 \mathrm{kgm}^{2}$. If the vehicle is brought to rest in 15 s , the magnitude of average torque transmitted by its brakes to the wheel is
17. $10.86 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
18. $2.86 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
19. $6.66 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
20. $8.58 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
21. The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is V , the speed of the ejection of the liquid through the holes is
22. $\frac{V R^{2}}{n^{3} r^{2}}$
23. $\frac{V^{2} R}{n r}$
24. $\frac{V R^{2}}{n^{2} r^{2}}$
25. $\frac{V R^{2}}{n r^{2}}$
26. Water rises to a height h in capillary tube. If the length of capillary tube above the surface of water is made less than h, then
27. water rises upto a point a little below the top and stays there.
28. water does not rise at all.
29. water rises upto the tip of capillary tube and then starts overflowing like a fountain.
30. water rises upto the top of capillary tube and stays there without overflowing.
31. Two metal wires of identical dimensions are connected in series. If σ_{1} and σ_{2} are the conductivities of the metal wires respectively, the effective conductivity of the combination is
32. $\frac{\sigma_{1}+\sigma_{2}}{\sigma_{1} \sigma_{2}}$
33. $\frac{\sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
34. $\frac{2 \sigma_{1} \sigma_{2}}{\sigma_{1}+\sigma_{2}}$
35. $\frac{\sigma_{1}+\sigma_{2}}{2 \sigma_{1} \sigma_{2}}$
36. A potentiometer wire of length L and a resistance r are connected in series with a battery of e.m.f. E_{0} and a resistance r_{1}. An unknown e.m.f. E is balanced at a length of the potentiometer wire. The e.m.f. E will be given by
37. $\frac{E_{0} l}{L}$
38. $\frac{L E_{0} r}{\left(r+r_{1}\right) l}$
39. $\frac{L E_{0} r}{l r_{1}}$

4. $\frac{E_{0} r}{\left(r+r_{1}\right)} \cdot \frac{l}{L}$

9. A proton and an alpha particle both enter a region of uniform magnetic field B , moving at right angles to the field B. If the radius of circular orbits for both the particles is equal and the kinetic energy acquired by proton is 1 MeV , the energy acquired by the alpha particle will be
10. 1.5 MeV
11. 1 MeV
12. 4 MeV
13. 0.5 MeV
14. A circuit contains an ammeter, a battery of 30 V and a resistance 40.8 ohm all connected in series. If the ammeter has a coil of resistance 480 ohm and a shunt of 20 ohm, the reading in the ammeter will be
15. 2 A
16. 1 A
17. 0.5 A
18. 0.25 A
19. The energy of the em waves is of the order of 15 keV . To which part of the spectrum does it belong?
20. Ultraviolet rays
21. y -rays
22. X-rays
23. Infrared rays
24. Two slits in Youngs experiment have widths in the ratio $1: 25$. The ratio of intensity at the maxima and minima in the interference pattern, $\frac{I_{\text {max }}}{I_{\text {min }}}$ is
25. $\frac{49}{121}$
26. $\frac{4}{9}$
27. $\frac{9}{4}$
28. $\frac{121}{49}$
29. At the first minimum adjacent to the central maximum of a single-slit diffraction pattern, the phase difference between the Huygen's wavelet
from the edge of the slit and the wavelet from the midpoint of the slit is
30. π radian
31. $\frac{\pi}{8}$ radian
32. $\frac{\pi}{4}$ radian
33. $\frac{\pi}{2}$ radian
34. A nucleus of uranium decays at rest into nuclei of thorium and helium. Then
35. The helium nucleus has more momentum than the thorium nucleus.
36. The helium nucleus has less kinetic energy than the thorium nucleus.
37. The helium nucleus has more kinetic energy than the thorium nucleus.
38. The helium nucleus has less momentum than the thorium nucleus.
39. In the given figure, a diode D is connected to an external resistance $\mathrm{R}=100 \Omega$ and an e.m.f. of 3.5 V . If the barrier potential developed across the diode is 0.5 V , the current in the circuit will be

40. 20 mA
41. 35 mA
42. 30 mA
43. 40 mA
44. The input signal given to a CE amplifier having a voltage gain of 150 is $V_{i}=2 \cos \left(15 t+\frac{\pi}{3}\right)$. The corresponding output signal will be
45. $2 \cos \left(15 t+\frac{5 \pi}{6}\right)$
46. $300 \cos \left(15 t+\frac{4 \pi}{3}\right)$
47. $300 \cos \left(15 t+\frac{\pi}{3}\right)$
48. $75 \cos \left(15 t+\frac{2 \pi}{3}\right)$

Two stones of masses m and 2 m are whirled in horizontal circles, the heavier one in a radius $\frac{\mathrm{r}}{2}$ and the lighter one in radius r. The tangential speed of lighter stone is n times that of the value of heavier stone when they experience same centripetal forces. The value of n is

1. 4
2. 1
3. 2
4. 3
5. Two particles A and B, move with constant velocities $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$. At the initial moment their position vectors are $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ respectively. The condition for particles A and B for their collision is
6. $\vec{r}_{1} \times \overrightarrow{\mathrm{v}}_{1}=\overrightarrow{\mathrm{r}_{2}} \times \overrightarrow{\mathrm{v}}_{2}$
7. $\overrightarrow{\mathrm{r}}_{1}-\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{v}}_{1}-\overrightarrow{\mathrm{v}}_{2}$
8. $\frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\overrightarrow{r_{2}}\right|}=\frac{\overrightarrow{v_{2}}-\overrightarrow{r_{1}}}{\left|\vec{v}_{2}-\overrightarrow{v_{1}}\right|}$
9. $\overrightarrow{\mathrm{r}}_{1} \cdot \overrightarrow{\mathrm{v}}_{1}=\overrightarrow{\mathrm{r}_{2}} \cdot \overrightarrow{\mathrm{v}_{2}}$
10. 4.0 g of a gas occupies 22.4 litres at NTP (at $0^{\circ} \mathrm{C}$). If the speed of sound in this gas at NTP is $952 \mathrm{~ms}^{-1}$, then the heat capacity at constant pressure is
(Take gas constant $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
11. $7.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
12. $8.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
13. $22.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
14. $7.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
15. A remote-sensing satellite of earth revolves in a circular orbit at a height of $0.25 \times 10^{6} \mathrm{~m}$ above the surface of earth. If earth's radius is $6.38 \times 10^{6} \mathrm{~m}$ and $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$, then the orbital speed of the satellite is
16. $9.13 \mathrm{~km} \mathrm{~s}^{-1}$
17. $6.67 \mathrm{~km} \mathrm{~s}^{-1}$
18. $7.76 \mathrm{~km} \mathrm{~s}^{-1}$
19. $8.56 \mathrm{~km} \mathrm{~s}^{-1}$
20. The position vector of a particle \vec{R} as a function of time is given by
$\vec{R}=4 \sin (2 \pi t) \hat{i}+4 \cos (2 \pi t) \hat{j}$
Where R is in meters, t is in seconds and \hat{i} and \hat{j} denote unit vectors along x -and y -directions, respectively. Which one of the following statements is wrong for the motion of particle?
21. Magnitude of the velocity of particle is $8 \pi \sqrt{2}$ meter/second.
22. Path of the particle is a circle of radius 4 meter.
23. Acceleration vector is along $-\vec{R}$.
24. Magnitude of acceleration vector is $\frac{v^{2}}{R}$, where v is the velocity of particle.
25. A plank with a box on it at one end is gradually raised about the other end. As the angle of inclination with the horizontal reaches 30°, the box starts to slip and slides 4.0 m down the plank in 4.0 s . The coefficients of static and kinetic friction between the box and the plank will be, respectively

26. 0.5 and 0.6
27. 0.4 and 0.3
28. 0.6 and 0.6
29. 0.6 and 0.5
30. If vector $\vec{A}=\cos \omega t \hat{i}+\sin \omega t \hat{j}$ and $\vec{B}=\cos \frac{\omega t}{2} \hat{i}+\sin \frac{\omega t}{2} \hat{j}$ are functions of time, then the value of t at which they are orthogonal to each other is
31. $t=\frac{\pi}{\omega}$
32. $t=0$
33. $t=\frac{\pi}{40}$
34. $\mathrm{t}=\frac{\pi}{2 \omega}$
35. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \widehat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \widehat{k}$. The value of α for which angular momentum about origin is conserved, is
36. zero
37. 1
38. -1
39. 2
40. The heart of a man pumps 5 litres of blood through the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ then the power of heart in watt is
41. 3.0
42. 1.50
43. 1.70
44. 2.35
45. Point masses m_{1} and m_{2} are placed at the opposite ends of a rigid rod of length L, and negligible mass. The rod is to be set rotating about an axis perpendicular to it. The position of point P on this rod through which the axis should pass so that the work required to set the rod rotating with angular velocity ω_{0} is minimum, is given by

46. $x=\frac{m_{2}}{m_{1}} L$
47. $x=\frac{m_{2} L}{m_{1}+m_{2}}$
48. $x=\frac{m_{1} L}{m_{1}+m_{2}}$
49. $x=\frac{m_{1}}{m_{2}} L$
50. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth. Then,
51. the linear momentum of S remains constant in magnitude.
52. the acceleration of S is always directed towards the centre of the earth.
53. the angular momentum of S about the centre of the earth changes in direction, but its magnitude remains constant.
54. the total mechanical energy of S varies periodically with time.
55. The Young's modulus of steel is twice that of brass. Two wires of same length and of same area of cross section, one of steel and another of brass are suspended from the same roof. If we want the lower ends of the wires to be at the same level, then the weights added to the steel and brass wires must be in the ratio of
56. $4: 1$
57. $1: 1$
58. $1: 2$
59. $2: 1$
60. The value of coefficient of volume expansion of glycerin is $5 \times 10^{-4} \mathrm{~K}^{-1}$. The fractional change in the density of glycerin for a rise of $40^{\circ} \mathrm{C}$ in its temperature, is
61. 0.025
62. 0.010
63. 0.015
64. 0.020
65. An ideal gas is compressed to half its initial volume by means of several processes. Which of the process results in the maximum work done on the gas?
66. Isochoric
67. Isothermal
68. Adiabatic
69. Isobaric
70. The coefficient of performance of a refrigerator is 5. If the temperature inside freezer is -20°, the temperature of the surroundings to which it rejects heat is
71. $11^{\circ} \mathrm{C}$
72. $21^{\circ} \mathrm{C}$
73. $31^{\circ} \mathrm{C}$
74. $41^{\circ} \mathrm{C}$
75. Two vessels separately contain two ideal gases A and B at the same temperature, the pressure of A being twice that of B. Under such conditions, the density of A is found to be 1.5 times the density of B. The ratio of molecular weight of A and B is
76. 2
77. $\frac{1}{2}$
78. $\frac{2}{3}$
79. $\frac{3}{4}$
80. A particle is executing a simple harmonic motion. Its maximum acceleration is α and maximum velocity is β. Then, its time period of vibration will be
81. $\frac{2 \pi \beta^{2}}{\alpha}$
82. $\frac{2 \pi \beta}{\alpha}$
83. $\frac{2 \pi \beta^{2}}{\alpha^{2}}$
84. $\frac{\alpha}{2 \pi \beta}$
85. A string is stretched between fixed points separated by 75.0 cm . It is observed to have resonant frequencies of 420 Hz and 315 Hz . There are no other resonant frequencies between these two. The lowest resonant frequency for this string is
86. 10.5 Hz
87. 105 Hz
88. 155 Hz
89. 205 Hz
90. A source of sound S emitting waves of frequency 100 Hz and an observer O are located at some distance from each other. The source is moving with a speed of $19.4 \mathrm{~ms}^{-1}$ at an angle of 60° with the source observer line as shown in the figure. The observer is at rest. The apparent frequency observed by the observer (velocity of sound in air $330 \mathrm{~ms}^{-1}$), is

91. 106 Hz
92. 97 Hz
93. 100 Hz
94. 103 Hz
95. If potential (in volts) in a region is expressed as $V(x, y, z)=6 x y-y+2 y z$, the electric field (in $N / C)$ at point $(1,1,0)$ is
96. $-(2 \hat{i}+3 \hat{j}+\hat{k})$
97. $-(6 \hat{i}+9 \hat{j}+\hat{k})$
98. $-(3 \hat{i}+5 \hat{\mathbf{j}}+3 \widehat{\mathbf{k}})$
99. $-(\widehat{6} \mathbf{i}+5 \hat{\mathbf{j}}+2 \hat{\mathbf{k}})$
100. A parallel plate air capacitor has capacity C, distance of separation between plates is d and potential difference V is applied between the plates. Force of attraction between the plates of the parallel plate air capacitor is
101. $\frac{\mathrm{CV}^{2}}{\mathrm{~d}}$
102. $\frac{\mathrm{C}^{2} \mathrm{~V}^{2}}{2 \mathrm{~d}^{2}}$
103. $\frac{\mathrm{C}^{2} \mathrm{~V}^{2}}{2 \mathrm{~d}}$
104. $\frac{\mathrm{CV}^{2}}{2 \mathrm{~d}}$
105. A rectangular coil of length 0.12 m and width 0.1 m having 50 turns of wire is suspended vertically in a uniform magnetic field of strength 0.2 Weber $/ m^{2}$. The coil carries a current of 2 A . If the plane of the coil is inclined at an angle of 30° with the direction of the field, the torque required to keep the coil in stable equilibrium will be
106. 0.24 Nm
107. 0.12 Nm
108. 0.15 Nm
109. 0.20 Nm
110. An electron moves on a straight line path X Y as shown. The a b c d is a coil adjacent to the path of electron. What will be the direction of current, if any, induced in the coil?

111. The current will reverse its direction as the electron goes past the coil
112. No current induced
113. abcd
114. adcb
115. A series R-C circuit is connected to an alternating voltage source. Consider two situations:
(a) When capacitor is air filled.
(b) When capacitor is mica filled. Current through resistor is i and voltage across capacitor is V then
116. $i_{a}>i_{b}$
117. $V_{a}=V_{b}$
118. $V_{a}<V_{b}$
119. $V_{a}>V_{b}$
120. A beam of light consisting of red, green and blue colours is incident on a right angled prism. The refractive index of the material of the prism for the above red, green and blue wavelengths are $1.39,1.44$ and 1.47 respectively.

The prism will be

1. not separate the three colours at all
2. separate the red colour part from the green and blue colours
3. separate the blue colour part from the red and green colours
4. separate all the three colours from one another
5. In an astronomical telescope in normal adjustment a straight black line of length L is
drawn on inside part of objective lens. The eyepiece forms a real image of this line. The length of this image is I. The magnification of the telescope is
6. $\frac{L+I}{L-I}$
7. $\frac{L}{I}$
8. $\frac{L}{I}+1$
9. $\frac{L}{I}-1$
10. A photoelectric surface is illuminated successively by monochromatic light of wavelength λ and $\frac{\lambda}{2}$. If the maximum kinetic energy of the emitted photoelectrons in the second case is 3 times that in the first case, the work function of the surface of the material is
$(\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ speed of light $)$
11. $\frac{2 \mathrm{hc}}{\lambda}$
12. $\frac{\mathrm{hc}}{3 \lambda}$
13. $\frac{\mathrm{hc}}{2 \lambda}$
14. $\frac{\mathrm{hc}}{\lambda}$
15. Light of wavelength 500 nm is incident on a metal with work function 2.28 eV . The de Broglie wavelength of the emitted electron is
$1 . \geq 2.8 \times 10^{-9} \mathrm{~m}$
16. $\leq 2.8 \times 10^{-12} \mathrm{~m}$
17. $<2.8 \times 10^{-10} \mathrm{~m}$
18. $<2.8 \times 10^{-9} \mathrm{~m}$
19. In the spectrum of hydrogen, the ratio of the longest wavelength in the Lyman series to the longest wavelength in the Balmer series is
20. $\frac{27}{5}$
21. $\frac{5}{27}$
22. $\frac{4}{9}$
23. $\frac{9}{4}$

Chemistry

Section A

46. The formation of the oxide ion, $O_{(g)}^{2-}$ from oxygen atom requires first an exothermic and then an endothermic step as shown below:
$\mathrm{O}_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{O}_{(\mathrm{g})}^{-} ; \Delta_{\mathrm{f}} \mathrm{H}^{\circ}=-141 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O}_{(g)}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{O}_{(\mathrm{g})}^{2-} ; \Delta_{\mathrm{f}} \mathrm{H}^{\circ}=+780 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Thus, process of formation of O^{2-} in gas phase is un favourable even though O^{2-} is isoelectronic with neon. It is due to the fact that,
47. O^{-}ion has comparatively smaller size than oxygen atom
48. oxygen is more electronegative
49. addition of electron in oxygen results in larger size of the ion
50. electron repulsion outweighs the stability gained by achieving noble gas configuration.
51. In which of the following pairs, both the species are not isostructural?
52. Diamond, silicon carbide
53. $\mathrm{NH}_{4}^{+}, \mathrm{BF}_{4}^{-}$
54. $\mathrm{XeF}_{4}, \mathrm{XeO}_{4}$
55. $\mathrm{SiCl}_{4}, \mathrm{PCl}_{4}^{+}$
56. If the equilibrium constant for
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$ is K , the equilibrium constant
for $\frac{1}{2} \mathrm{~N}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{NO}_{(\mathrm{g})}$ will be
57. $\frac{1}{2} \mathrm{~K}$
58. K
59. K^{2}
60. $\mathrm{K}^{1 / 2}$
61. On heating which of the following releases CO_{2} most easily?
62. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
63. MgCO_{3}
64. CaCO_{3}
65. $\mathrm{K}_{2} \mathrm{CO}_{3}$
66. Which of the statements given below is incorrect?
67. O_{3} molecule is bent.
68. $\mathrm{O}_{2} \mathrm{~N}^{-}$and ONF is isoelectronic
69. OF_{2} is an oxide of fluorine.
70. $\mathrm{Cl}_{2} \mathrm{O}_{7}$ is anhydride of perchloric acid
71. The correct statement regarding defects in crystalline solids is
72. Frenkel defects decrease the density of crystalline solids
73. Frenkel defect is a dislocation defect
74. Frenkel defect is found in halides of alkaline metals
75. Schottky defects have no effect on the density of crystalline solids.
76. Aqueous solution of which of the following compounds is the best conductor of electric current?
77. Hydrochloric acid, HCl
78. Ammonia, NH_{3}
79. Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
80. Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
81. The rate constant of the reaction $\mathrm{A} \rightarrow \mathrm{B}$ is $0.6 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. If the concentraction of A is 5 M then concentration of B after 20 minutes is
82. 3.60 M
83. 0.36 M
84. 0.72 M
85. 1.08 M
86. Number of possible isomers for the complex
$\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ will be (en = ethylenediamine)
87. 1
88. 3
89. 4
90. 2
91. In an SN^{1} reaction on chiral center, there is
92. Inversion more than retention leading to partial racemization
93. 100% retention
94. 100% inversion
95. 100% racemization
96. The following reaction

is known by the name
97. Perkin's reaction
98. Acetylation reaction
99. Schotten-Baumann reaction
100. Friedel-Craft's reaction.
101. What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed?
102. 2.0
103. 7.0
104. 1.04
105. 12.65
106. Assuming complete ionisation, same moles of which of the following compounds will require the least amount of acidified KMnO_{4} for complete oxidation?
107. FeSO_{3}
108. $\mathrm{FeC}_{2} \mathrm{O}_{4}$
109. $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$
110. FeSO_{4}
111. In the reaction with HCl , an alkene reacts in accordance with the Markovnikov's rule to give a product 1 -chloro-1methylcyclohexane. The possible alkene is

(A)
112.

3. (A) and (B)
4.

60. The hybridization involved in complex
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is (At. No. $\mathrm{Ni}=28$)

1. $s p^{3}$
2. $d^{2} s p^{2}$
3. $d^{2} s p^{3}$
4. $d s p^{2}$
5. Reaction of a carbonyl compound with one of the following reagents involves nucleophilic addition followed by elimination of water. The reagent is
6. hydrazine in presence of feebly acidic solution
7. hydrocyanic acid
8. sodium hydrogen sulphite
9. a Grignard reagent.
10. Which one of the following esters gets hydrolysed most easily under alkaline conditions?
11.

2.

3.

4.

63. Method by which aniline cannot be prepared is

1. degradation of benzamide with bromine in alkaline solution
2. reduction of nitrobenzene with $H_{2} / P d$ in ethanol
3. potassium salt of phthalimide treated with chlorobenzene followed by hydrolysis with aqueous NaOH solution
4. hydrolysis of phenylisocyanide with acidic solution.
5. The variation of the boiling points of the hydrogen halides is in the order
$\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$.
What explains the higher boiling point of hydrogen fluoride?
6. There is strong hydrogen bonding between HF molecules.
7. The bond energy of HF molecules is greater than in other hydrogen halides.
8. The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule.
9. The electronegativity of fluorine is much higher than for other elements in the group.
10. A gas such as carbon monoxide would be most likely to obey the ideal gas law at
11. low temperatures and high pressures
12. high temperatures and high pressures
13. low temperatures and low pressures
14. high temperatures and low pressures.
15. The heat of combustion of carbon to CO_{2} is
$-393.5 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon formation of 35.2 g of CO_{2} from carbon and oxygen gas is
16. +315 kJ
17. -630 kJ
18. -3.15 kJ
19. -315 kJ
20. Which one of the following pairs of solution is not an acidic buffer?
21. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
22. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3}
23. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
24. HClO_{4} and NaClO_{4}
25. The stability of +1 oxidation state among Al, Ga, In and Tl increases in the sequence
26. $\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
27. $\mathrm{Tl}<\mathrm{In}<\mathrm{Ga}<\mathrm{Al}$
28. $\mathrm{In}<\mathrm{Tl}<\mathrm{Ga}<\mathrm{Al}$
29. $\mathrm{Ga}<\mathrm{In}<\mathrm{Al}<\mathrm{Tl}$
30. Strong reducing behaviour of $\mathrm{H}_{3} \mathrm{PO}_{2}$ is due to
31. High electron gain enthalpy of phosphorus
32. High oxidation state of phosphorus
33. Presence of two -OH groups and one P - H bond
34. Presence of one - OH group and P - H bonds.
35. Two possible stereo-structures of
$\mathrm{CH}_{3} \mathrm{CHOHCOOH}$, which are optically active, are called
36. atropisomers
37. enantiomers
38. mesomers
39. diastereomers.
40. Which of the following statements is not correct for a nucleophile?
41. Ammonia is a nucleophile.
42. Nucleophiles attack low e^{-}density sites.
43. Nucleophiles are not electron seeking.
44. Nucleophile is a Lewis acid
45. The vacant space in bcc lattice unit cell is
46. 48%
47. 23%
48. 32%
49. 26%
50. What is the mole fraction of the solute in a 1.00 m aqueous solution?
51. 1.770
52. 0.0354
53. 0.0177
54. 0.177
55. In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with
56. carbon monoxide
57. copper (I) sulphide
58. sulphur dioxide
59. iron (II) sulphide.
60. The sum of coordination number and oxidation number of the metal M in the complex
$\left[M(e n)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{Cl}$ (where en is ethylenediamine) is
61. 6
62. 7
63. 8
64. 9
65. The name of complex ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is
66. hexacyanitroferrate (III) ion
67. tricyanoferrate (III) ion
68. hexacyanidoferrate (III) ion
69. hexacyanoiron (III) ion.
70. Reaction of phenol with chloroform in presence of dilute sodium hydroxide finally introduces which one of the following functional group?
71. -COOH
72. $-\mathrm{CHCl}_{2}$
73. -CHO
74. $-\mathrm{CH}_{2} \mathrm{Cl}$
75. The number of structural isomers possible from the molecular formula $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ is
76. 5
77. 2
78. 3
79. 4
80. Caprolactam is used for the manufacture of
81. teflon
82. terylene
83. nylon 6,6
84. nylon 6.
85. 2,3-Dimethyl-2-butene can be prepared by heating which of the following compounds with a strong acid?
86. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$
87. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
88. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

89.

81. Which of the following is not the product of dehydration of

2.

3.

4.

82. The oxidation of benzene by $V_{2} O_{5}$ in the presence of air produces

1. maleic anhydride
2. benzoic acid
3. benzaldehyde
4. benzoic anhydride.
5. If Avogadro number N_{A}, is changed from $6.022 \times$ $10^{23} \mathrm{~mol}^{-1}$ to $6.022 \times 10^{20} \mathrm{~mol}^{-1}$, this would change
6. the mass of one mole of carbon
7. the ratio of chemical species to each other in a balanced equation
8. the ratio of elements to each other in a compound
9. the definition of mass in units of grams.
10. The number of water molecules is maximum in
1.1.8 gram of water
11. 18 gram of water
12. 18 moles of water
13. 18 molecules of water.
14. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of $5.8 \% \mathrm{NaCl}$ solution?
$(\mathrm{Ag}=107.8, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{Cl}=35.5)$
1.3 .5 g
15. 7 g
16. 14 g
17. 28 g
18. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample?
(At. wt. of $\mathrm{Mg}=24$)
19. 96
20. 60
21. 84
22. 75
23. Which is the correct order of increasing energy of the listed orbitals in the atom of titanium?
(At. no . $\mathrm{Z}=22$)
24. 4 s 3 s 3 p 3 d
25. 3s 3p 3d 4s
26. 3s 3p 4s 3d
27. 3s 4s 3p 3d
28. Decreasing order of stability of
$\mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{+}$and O_{2}^{2-} is
29. $\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
30. $\mathrm{O}_{2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}$
31. $\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}$
32. $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
33. Gadolinium belongs to $4 f$ series. Its atomic number is 64 . Which of the following is the correct electronic configuration of gadolinium?
34. $[\mathrm{Xe}] 4 \mathrm{f}^{9} 5 \mathrm{~s}^{1}$
35. $[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$
36. $[\mathrm{Xe}] 4 \mathrm{f}^{4} 5 \mathrm{~d}^{4} 6 \mathrm{~s}^{2}$
37. $[\mathrm{Xe}] 4 \mathrm{f}^{8} 6 \mathrm{~d}^{2}$
38. Which of the following reaction(s) can be used for the preparation of alkyl halides?
(I)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} \xrightarrow{\text { anh. } \mathrm{ZnCl}_{2}}$
(II) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{HCl} \longrightarrow$
(III) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HCl} \longrightarrow$
$(\mathrm{IV})\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{HCl} \xrightarrow{\text { anh. } \mathrm{ZnCl}_{2}}$
39. (I) and (II) only
40. (IV) only
41. (III) and (IV) only
42. (I),(III) and (IV)
Botany

Section A

91. Among china rose, mustard, brinjal, potato, guava, cucumber, onion and tulip, how many plants have superior ovary?
92. Four
93. Five
94. Six
95. Three
96. Which one of the following fruits is parthenocarpic?
97. Jackfruit
98. Banana
99. Brinjal
100. Apple
101. Balbiani rings are sites of
102. polysaccharide synthesis
103. RNA and protein synthesis
104. lipid synthesis
105. nucleotide synthesis
106. Identify the correct order of organization of genetic material from largest to smallest.
107. Genome, chromosome, gene, nucleotide
108. Chromosome, genome, nucleotide, gene
109. Chromosome, gene, genome, nucleotide
110. Genome, chromosome, nucleotide, gene
111. Which one of the following is not applicable to RNA?
112. Heterocyclic nitrogenous bases
113. Chargaff's rule
114. Complementary base pairing
115. 5' phosphoryl and 3' hydroxyl ends
116. During ecological succession
117. the numbers and types of animals remain constant
118. the changes lead to a community that is in near equilibrium with the environment and is called pioneer community
119. the gradual and predictable change in species composition occurs in a given area
120. the establishment of a new biotic community is very fast in its primary phase
121. Root pressure develops due to
122. passive absorption
123. active absorption
124. increase in transpiration
125. low osmotic potential in soil
126. A column of water within xylem vessels of tall trees does not break under its weight because of
127. lignification of xylem vessels
128. positive root pressure
129. dissolved sugars in water
130. tensile strength of water
131. Which one is a wrong statement?
132. Haploid endosperm is typical feature of gymnosperms.
133. Brown algae have chlorophyll a and c and fucoxanthin.
134. Archegonia are found in bryophyta, pteridophyta and gymnosperms.
135. Mucor has biflagellate zoospores.

Read the different components from (i) to (iv) in the list given below and tell the correct order of the components with reference to their arrangement from outer side to inner side in a woody dicot stem.
(i) Secondary cortex
(ii) Wood
(iii) Secondary phloem
(iv) Phellem

The correct order is

1. (iv), (i), (iii), (ii)
2. (iv), (iii), (i), (ii)
3. (iii), (iv), (ii), (i)
4. (i), (ii), (iv), (iii)
5. Arrange the following events of meiosis in correct sequence
(i) Crossing over
(ii) Synapsis
(iii) Terminalisation of chiasmata
(iv) Disappearance of nucleolus
6. (i), (ii), (iii), (iv)
7. (ii), (iii), (iv), (i)
8. (ii), (i), (iv), (iii)
9. (ii), (i), (iii), (iv)
10. Pick up the wrong statement.
11. Cell wall is absent in Animalia.
12. Protista have photosynthetic and heterotrophic modes of nutrition.
13. Some fungi are edible.
14. Nuclear membrane is present in Monera.
15. Flowers are unisexual in
16. china rose
17. onion
18. pea
19. cucumber
20. Cell wall is absent in
21. Mycoplasma
22. Nostoc
23. Aspergillus
24. Funaria
25. In which group of organisms the cell walls form two thin overlapping shells which fit together?
26. Dinoflagellates
27. Slime moulds
28. Chrysophytes
29. Euglenoids
30. The imperfect fungi which are decomposers of litter and help in mineral cycling belong to
31. Phycomycetes
32. Ascomycetes
33. Deuteromycetes
34. Basidiomycetes
35. Choose the wrong statement.
36. Morels and truffles are poisonous mushrooms.
37. Yeast is unicellular and useful in fermentation.
38. Penicillium is multicellular and produces antibiotics.
39. Neurospora is extensively used as a modle organism for biochemical and genetics work.
40. Select the incorrect statement.
41. The term 'contagium vivum fluidum' was coined by M. W. Beijerinck.
42. Mosaic disease in tobacco and AIDS in human being are caused by viruses.
43. Viroids were discovered by D.J. Ivanowsky.
44. W.M. Stanley showed that viruses could be crystallised.
45. Roots play insignificant role in absorption of water in
46. pea
47. wheat
48. sunflower
49. Pistia
50. Auxin can be bioassayed by
51. potometer
52. lettuce hypocotyl elongation
53. Avena coleoptile curvature
54. hydroponics
55. A protoplast is a plant cell
56. undergoing division
57. without cell wall
58. without plasma membrane
59. without nucleus
60. Match the following list of microbes and their importance

Column I	Column II
A. $\begin{aligned} & \text { Saccharomyces } \\ & \text { cerevisiae }\end{aligned}$	Production of irnmuno (i) suppressive agent
B. Monascus purpureus	(ii) Ripening of Swiss cheese
C. Trichoderma polysporum	Commercial (iii) production of ethanol
D. $\begin{aligned} & \text { Propionibacterium } \\ & \text { sharmanii }\end{aligned}$ sharmanii	Production of blood- (iv) cholesterol lowering agents

	A	B	C	D
1.	iv	ii	i	iii
2.	iii	i	iv	ii
3.	iii	iv	i	ii
4.	iv	iii	ii	i

1. 1
2. 2
3. 3
4. 4
5. Match the columns and identify the correct option

Column-I Column II

A. Thylakoids(i)
Disc-shaped sacs in
Golgi apparatus
B. Cristae
Condensed structure
C. Cisternae (iii) ${ }_{\text {F }}^{\text {F }}$ Flat membranous sacs
D. Chromatin (iv) Infoldings in

	A	B	C	D
1.	iii	i	iv	ii
2.	iii	iv	ii	i
3.	iv	iii	i	ii
4.	iii	iv	i	ii

1. 1
2. 2
3. 3
4. 4
5. The DNA molecule to which the gene of interest is integrated for cloning is called
6. template
7. carrier
8. transformer
9. vector
10. The cutting of DNA at specific locations became possible with the discovery of
11. selectable markers
12. ligases
13. restriction enzymes
14. probes
15. In photosynthesis, the light-independent reactions take place in
16. thylakoid membrane
17. stromal matrix
18. thylakoid lumen
19. cristae membrane
20. In his classic experiments on pea plants, Mendel did not use
21. seed shape
22. flower position
23. seed colour
24. pod length

The structures that help some bacteria to attach to rocks and/ or host tissues are

1. mesosomes
2. holdfast
3. rhizoids
4. fimbriae
5. Which of the following structures is not found in a prokaryotic cell?
6. Mesosome
7. Plasma membrane
8. Nuclear envelope
9. Ribosome
10. Chromatophores take part in
11. movement
12. respiration
13. photosynthesis
14. growth
15. The chitinous exoskeleton of arthropods is formed by the polymerisation of
16. N - acetyl glucosamine
17. lipoglycans
18. keratin sulphate and chondroitin sulphate
19. D-glucosamine
20. The oxygen evolved during photosynthesis, comes from water molecules. Which one of the following pairs of elements is involved in this reaction?
21. Magnesium and Molybdenum
22. Magnesium and Chlorine
23. Manganese and Chlorine
24. Manganese and Potassium
25. Golden rice is a genetically modified crop plant where the incorporated gene is meant for biosynthesis of
26. omega 3
27. vitamin A
28. vitamin B
29. vitamin C
30. The introduction of T-DNA into plants involves
31. exposing the plants to cold for a brief period
32. allowing the plant roots to stand in water
33. infection of the plant by Agrobacterium tumefaciens
34. altering the pH of the soil, then heat-shocking the plants
35. A gene showing codominance has
36. alleles that are recessive to each other
37. both alleles independently expressed in the heterozygote
38. one allele dominant on the other
39. alleles tightly linked on the same chromosome
40. Which of the following pairs is not correctly matched?
41. Binary fission \rightarrow Sargassum
42. Conidia \rightarrow Penicillium
43. Offset \rightarrow Water hyacinth
44. Rhizome \rightarrow Banana
45. Which of the following biomolecules does have a phosphodiester bond?
46. Amino acids in a polypeptide
47. Nucleotides of a nucleic acid strand
48. Fatty acids in a diglyceride
49. Monosaccharides in a polysaccharide
50. Axile placentation is present in
51. pea
52. Argemone
53. Dianthus
54. lemon
55. Cellular organelles with membranes are
56. endoplasmic reticulum, ribosomes and nuclei
57. lysosomes, Golgi apparatus and mitochondria
58. nuclei, ribosomes and mitochondria
59. chromosomes, ribosomes and endoplasmic reticulum
60. Which of the following are not membrane bound?
61. Lysosomes
62. Mesosomes
63. Vacuoles
64. Ribosomes
65. The wheat grain has an embryo with one large, shield shaped cotyledon known as
66. scutellum
67. coleoptile
68. epiblast
69. coleorhiza
70. During biological nitrogen fixation, inactivation of nitrogenase by oxygen poisoning is prevented by
71. carotene
72. cytochrome
73. leghaemoglobin
74. xanthophyll
75. Filiform apparatus is characteristic feature of
76. aleurone cell
77. synergids
78. generative cell
79. nucellar embryo
80. In angiosperms, microsporogenesis and megasporogenesis
81. involve meiosis
82. occur in ovule
83. occur in anther
84. form gametes without further divisions
85. Male gametophyte in angiosperms produces
86. single sperm and two vegetative cells
87. three sperms
88. two sperms and a vegetative cell
89. single sperm and a vegetative cell
90. Coconut water from a tender coconut is
91. innermost layers of the seed coat
92. degenerated nucellus
93. immature embryo
94. free nuclear endosperm
95. The term "linkage" was coined by
96. G. Mendel
97. W. Sutton
98. T.H. Morgan
99. T. Boveri
100. In which of the following both pairs have correct combination?

Gaseous nutrient	
1.Cycle	Nitrogen and Sulphur
Sedimentary	Carbon and
nutrient Cycle	Phosphorus

1. 1
2. 2
3. 3
4. 4
5. A pleiotropic gene

1. controls a trait only in combination with another gene

2. controls multiple traits in an individual
3. is expressed only in primitive plants
4. is a gene evolved during Pliocene

Zoology

Section A

140. Which of the following are most suitable indicators of SO_{2} pollution in the environment?
141. Algae
142. Fungi
143. Lichens
144. Conifers
145. In human females, meiosis-II is not completed until
146. uterine implantation
147. birth
148. puberty
149. fertilisation
150. Which of the following diseases is caused by a protozoan?
151. Babesiosis
152. Blastomycosis
153. Syphilis
154. Influenza
155. Acid rain is caused by increase in the atmospheric concentration of
156. CO_{2} and CO
157. O_{3} and dust
158. SO_{2} and NO_{2}
159. SO_{3} and CO
160. Which of the following events is not associated with ovulation in human female?
161. Release of secondary oocyte
162. LH surge
163. Decrease in estradiol
164. Full development of Graafian follicle
165. Eutrophication of water bodies leading to killing of fishes is mainly due to non-availability of
166. essential minerals
167. oxygen
168. food
169. light
170. Increase in concentration of the toxicant at successive trophic levels is known as
171. biotransformation
172. biogeochemical cycling
173. biomagnification
174. biodeterioration
175. The UN conference of Parties on climate change in the year 2012 was held at
176. Lima
177. Warsaw
178. Durban
179. Doha
180. Doctors use stethoscope to hear the sounds produced during each cardiac cycle. The second sound is heard when
181. $A V$ node receives signal from SA node
182. AV valves open up
183. ventricular walls vibrate due to gushing in of blood from atria
184. semilunar valves close down after the blood flows into vessels from ventricles.
185. The body cells in cockroach discharge their nitrogenous waste in the haemolymph mainly in the form of
186. urea
187. calcium carbonate
188. ammonia
189. potassium urate
190. Name the pulmonary disease in which alveolar surface area involved in gas exchange is drastically reduced due to damage in the alveolar walls.
191. Pneumonia
192. Asthma
193. Pleurisy
194. Emphysema
195. The wings of a bird and the wings of an insect are
196. phylogenetic structures and represent divergent evolution
197. homologous structures and represent convergent evolution
198. homologous structures and represent divergent evolution
199. analogous structures and represent convergent evolution
200. Industrial melanism is an example of
201. mutation
202. neo-Lamarckism
203. neo -Darwinism
204. natural selection
205. Which one of the following hormones though synthesised elsewhere, is stored and released by the master gland?
206. Prolactin
207. Melanocyte stimulating hormone
208. Antidiuretic hormone
209. Luteinising hormone
210. An association of individuals of different species living in the same habitat and having functional interactions is
211. ecosystem
212. population
213. ecological niche
214. biotic community
215. The primary dentition in human differs from permanent dentition in not having one of the following type of teeth
216. molars
217. incisors
218. canines
219. premolars
220. If you suspect major deficiency of antibodies in a person, to which of the following would you look for confirmatory evidence?
221. Haemocytes
222. Serum globulins
223. Fibrinogen in plasma
224. Serum albumins
225. Destruction of the anterior horn cells of the spinal cord wou
226. commissural impulses
227. integrating impulses
228. sensory impulses
229. voluntary motor impulses
230. Which of the following layers in an antral follicle is acellular?
231. Stroma
232. Zona pellucida
233. Granulosa
234. Theca interna
235. Which of the following is not a function of the skeletal system?
236. Production of body heat
237. Locomotion
238. Production of erythrocytes
239. Storage of minerals
240. The function of the gap junction is to
241. separate two cells from each other
242. stop substance from leaking across a tissue
243. perform cementing to keep neighbouring cells together
244. facilitate communication between adjoining cells.
245. Body having meshwork of cells, internal cavities lined with food filtering flagellated cells and indirect development are the characteristics of Phylum
246. Mollusca
247. Protozoa
248. Coelenterata
249. Porifera
250. The enzyme that is not present in succus entericus is
251. nucleosidase
252. lipase
253. maltase
254. nuclease
255. Metagenesis refers to
256. occurrence of a drastic change in form during postembryonic development
257. presence of a segmented body and parthenogenetic mode of reproduction
258. presence of different morphic forms
259. alternation of generation between asexual and sexual phases of an organism
260. Which of the following joints would allow no movements?
261. Synovial joint
262. Ball and Socket joint
263. Fibrous joint
264. Cartilaginous joint
265. Which one of the following hormones is not involved in sugar metabolism?
266. Insulin
267. Glucagon
268. Cortisone
269. Aldosterone
270. In the following human pedigree, the filled symbols represe individuals. Identify the type of given pedigree.

271. Autosomal recessive
272. X-linked dominant
273. Autosomal dominant
274. X-linked recessive
275. A colour blind man marries a woman with normal sight who has no history of colour blindness in her family. What is the probability of their grandson being colour blind?
276. Nil
277. 0.25
278. 0.5
4.1
279. Satellite DNA is important because it
280. does not code for proteins and is same in all members of the population
281. codes for enzymes needed for DNA replication
282. codes for proteins needed in cell cycle
283. shows high degree of polymorphism in population and also the same degree of polymorphism in an individual, which is heritable from parents to children
284. Most animals that live in deep oceanic waters are
285. tertiary consumers
286. detritivores
287. primary consumers
288. secondary consumers
289. A jawless fish, which lays eggs in fresh water and whose ammocoetes larvae after metamorphosis return to the ocean is
290. Neomyxine
291. Petromyzon
292. Eptatretus
293. Myxine
294. Which one of the following animals has two separate circulatory pathways?
295. Whale
296. Shark
297. Frog
298. Lizard
299. Ectopic pregnancies are referred to as
300. implantation of defective embryo in the uterus
301. pregnancies terminated due to hormonal imbalance
302. pregnancies with genetic abnormality
303. implantation of embryo at site other than uterus
304. Which of the following immunoglobulins constitutes the largest percentage in human milk?
305. Ig A
306. IgG
307. $\lg \mathrm{D}$
308. IgM
309. Rejection of grafted kidney in a patient is mainly due to
310. passive immune response
311. innate immune response
312. humoral immune response
313. cell-mediated immune response
314. The species confined to a particular region and not found elsewhere is termed as
315. endemic
316. rare
317. keystone
318. alien
319. In mammalian eye, the 'fovea' is the center of the visual field, where
320. only rods are present
321. more rods than cones are found
322. high density of cones occur, but has no rods
323. the optic nerve leaves the eye
324. Human urine is usually acidic because
325. potassium and sodium exchange generates acidity
326. hydrogen ions are actively secreted into the filtrate
327. the sodium transporter exchanges one hydrogen ion for each sodium ion, in peritubular capillaries
328. excreted plasma proteins are acidic
329. In which of the following interactions both partners are adversely affected?
330. Parasitism
331. Mutualism
332. Competition
333. Predation
334. A childless couple can be assisted to have a child through a technique called GIFT. The full form of this technique is
335. gamete internal fertilisation and transfer
336. germ cell internal fallopian transfer
337. gamete inseminated fallopian transfer
338. gamete intra fallopian transfer
339. Outbreeding is an important strategy of animal husbandry because it
340. is useful in overcoming inbreeding depression
341. exposes harmful recessive genes that are eliminated by selection
342. helps in accumulation of superior genes
343. is useful in producing purelines of animals
