NEET 2016-I

Test Instructions

1. Total duration of this test is $\mathbf{1 8 0}$ minutes.
2. This test has 4 subjects consisting of

180 questions in total.
3. There are $\mathbf{4}$ total sections in the test.
4. Sections Info :

Physics
a. Section A has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$.

Chemistry

a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5} . \mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$ Botany a. Section A has $\mathbf{4 2}$ questions, compulsory questions $\mathbf{4 2 .} \mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$ Zoology
a. Section \mathbf{A} has $\mathbf{4 8}$ questions, compulsory questions $\mathbf{4 8}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$.
5. Total marks for this test is $\mathbf{7 2 0}$ marks.
6. No marks will be deducted for unattempted questions.
7. This test can be submitted only once.
8. Once the test has been submitted, you cannot edit the responses.
9. Results will be anounced post test submission.
10. The test will be auto-submitted once the timer ends.

Physics

Section A

1. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is
2. 45^{0}
3. 180^{0}
4. 0^{0}
5. 90^{0}
6. What is the minimum velocity with which a body of mass m must enter at the bottom of a vertical loop of radius R so that it can complete the loop?
7. $\sqrt{3 g R}$
8. $\sqrt{5 g R}$
9. $\sqrt{g R}$
10. $\sqrt{2 g R}$
11. From a disc of radius R and mass M a circular hole of diameter R whose rim passes through the centre is cut. What is the moment of inertia of the remaining part of the disc about a perpendicular axis, passing through the centre?
12. $11 M R^{2} / 32$
13. $9 M R^{2} / 32$
14. $15 M R^{2} / 32$
15. $13 M R^{2} / 32$
16. A uniform circular disc of radius 50 cm at rest is free to turn about an axis which is perpendicular to its plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of $2.0 \mathrm{rads}^{-2}$. Its net acceleration in ms^{-2} at the end of $2 s$ is approximately
17. 6.0
18. 3.0
19. 8.0
20. 7.0
21. Coefficient of linear expansion of brass and steel rods are α_{1} and α_{2} Lengths of brass and steel rods are ${ }_{1}$ and ${ }_{2}$ respectively. If $(2-1)$ is maintained same at all temperatures, which one of the following relations holds good?
22. $\alpha_{1}^{2}{ }_{2}=\alpha_{2}^{2}{ }_{1}$
23. $\alpha_{11}=\alpha_{22}$
24. $\alpha_{12}=\alpha_{21}$
25. $\alpha_{1}{ }_{2}^{2}=\alpha_{2}{ }_{1}^{2}$
26. A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absorbed by the ice and all energy of ice gets converted into heat during its fall. The value of h is [latent heat of ice is $3.4 \times 10^{5} \mathrm{~J} / \mathrm{kg}$ and $\left.\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}\right]$
27. 136 km
28. 68 km
29. 34 km
30. 544 km
31. A capacitor of $2 \mu F$ is charged as shown in the diagram. When the switch S is turned to position 2 , the percentage of its stored energy dissipated is

32. 75%
33. 80%
34. 0%
35. 20%
36. \quad The charge flowing through a resistance R varies with time t as $Q=a t-b t^{2}$ where a and b are positive constants. The total heat produced in R is
37. $\frac{a^{3} R}{2 b}$
38. $\frac{a^{3} R}{b}$
39. $\frac{a^{3} R}{6 b}$
40. $\frac{a^{3} R}{3 b}$
41. A long straight wire of radius a carries a steady current I The current is uniformly distributed over its cross-section. The ratio of the magnetic fields B and B^{\prime}, at radial distances $\frac{a}{2}$ and $2 a$ respectively, from the axis of the wire is
42. 1
43. 4
44. $\frac{1}{4}$
45. $\frac{1}{2}$
46. A small signal voltage $\mathrm{V}(\mathrm{t})=\mathrm{V}_{0} \sin \omega \mathrm{t}$ is applied across an ideal capacitor C

Current $I(t)$ is in phase with voltage V 1. (t)

Current $I(t)$ leads voltage $V(t)$ by 180 2. ${ }^{\circ}$.
3. Current $I(t)$, lags voltage $V(t)$ by 90°

Over a full cycle the capacitor C does not consume any energy from
4. the voltage source.
11. An inductor 20 mH, a capacitor $50 \mu \mathrm{~F}$ and a resistor 40Ω are connected in series across a source of emf $V=10 \sin 340 t$. The power loss in A.C. circuit is

1. 0.76 W
2. 0.89 W
3. 0.51 W
4. $0.67 W$
5. Out of the following options which one can be used to produce a propagating electromagnetic wave?
6. A chargeless particle
7. An accelerating charge
8. A charge moving at constant velocity
9. A stationary charge

The intensity at the maximum in a Young's double slit experiment is I_{0}. Distance between two slits is $d=5 \lambda$, where λ is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance $D=10 d$?

1. $\frac{3}{4} I_{0}$
2. $\frac{I_{0}}{2}$
3. I_{0}
4. $\frac{I_{0}}{4}$
5. In a diffraction pattern due to a single slit of width a, the first minimum is observed at an angle 30° when light of wavelength $5000 \AA$ is incident on the slit. The first secondary maximum is observed at an angle of:
6. $\sin ^{-1}\left(\frac{1}{2}\right)$
7. $\sin ^{-1}\left(\frac{3}{4}\right)$
8. $\sin ^{-1}\left(\frac{1}{4}\right)$
9. $\sin ^{-1}\left(\frac{2}{3}\right)$
10. Consider the junction diode as ideal. The value of current flowing through AB is

11. $10^{-1} \mathrm{~A}$
12. $10^{-3} \mathrm{~A}$
13. 0 A
14. $10^{-2} \mathrm{~A}$
15. A npn transistor is connected in common emitter configuration in a given amplifier. A load resistance of 800Ω is connected in the collector circuit and the voltage drop across it is 0.8 V . If the current amplification factor is 0.96 and the input resistance of the circuit is 192Ω,the voltage gain and the power gain of the amplifier will respectively be

1. 4, 4

2. $4,3.69$
3. $4,3.84$
4. 3.69, 3.84
5. To get output 1 for the following circuit, the correct choice for the input is

6. $A=1, B=1, C=0$
7. $A=1, B=0, C=1$
8. $A=0, B=1, C=0$
9. $A=1, B=0, C=0$
10. A particle moves so that its position vector is given by $\vec{r}=\cos \omega t \widehat{x}+\sin \omega t \hat{y}$, where ω is a constant.

Which of the following is true?

1. Velocity is perpendicular to \vec{r} and acceleration is directed towards the origin.
2. Velocity is perpendicular to \vec{r} and acceleration is directed away from the origin
3. Velocity and acceleration both are perpendicular to \vec{r}
4. Velocity and acceleration both are parallel tor
5. A refrigerator works between $4^{0} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. It is required to remove 600 calories of heat every second in order to keep the temperature of the refrigerated space constant. The power required is (Take 1 cal = 4.2 Joules)
1.236.5 W
6. 2365 W
7. 2.365 W
8. 23. 65 W
1. If the velocity of a particle is $v=A t+B t^{2}$, where A and B are constants, then the distance travelled by it between $1 s$ and $2 s$ is

$$
\text { 1. } \frac{3}{2} A+\frac{7}{3} B
$$

2. $\frac{A}{2}+\frac{B}{3}$
3. $\frac{3}{2} A+4 B$
4. $3 A+7 B$
5. A car is negotiating a curved road of radius R. The road is banked at an angle θ. The coefficient of friction between the tyres of the car and the road is μ_{s}. The maximum safe velocity on this road is
6. $\sqrt{\frac{g}{R} \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
7. $\sqrt{\frac{g}{R^{2}} \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
8. $\sqrt{g R^{2} \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
9. $\sqrt{g R \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
10. A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to $8 \times 10^{-4} \mathrm{~J}$ by the end of the second revolution after the beginning of the motion?
11. $0.18 \mathrm{~m} / \mathrm{s}^{2}$
12. $0.2 \mathrm{~m} / \mathrm{s}^{2}$
13. $0.1 \mathrm{~m} / \mathrm{s}^{2}$
14. $0.15 \mathrm{~m} / \mathrm{s}^{2}$
15. A body of mass 1 kg begins to move under the action of a time dependent force
$\overrightarrow{\mathrm{F}}=\left(2 \mathrm{t} \hat{\mathrm{i}}+3 \mathrm{t}^{2} \hat{\mathrm{j}}\right) \mathrm{N}$, where \hat{i} and \hat{j} are unit vectors along x-axis and y-axis respectively. What power will be developed by the force at the time t ?
16. $\left(2 t^{3}+3 t^{4}\right) \mathrm{W}$
17. $\left(2 t^{3}+3 t^{5}\right) \mathrm{W}$
18. $\left(2 t^{2}+3 t^{3}\right) \mathrm{W}$
19. $\left(2 t^{2}+4 t^{4}\right) \mathrm{W}$
20. A disk and a sphere of same radius but different masses roll off on two inclined planes of the same altitude and length. Which one of
the two objects gets to the bottom of the plane first?
21. Both reach at the same time
22. Depends on their masses
23. Disk
24. Sphere
25. At what height from the surface of earth the gravitation potential and the value of g are $-5.4 \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$ and $6.0 \mathrm{~m} \mathrm{~s}^{-2}$ respectively? Take the radius of earth as 6400 km
26. 1400 km
27. 2000 km
28. 2600 km
29. 1600 km
30. The ratio of escape velocity at earth $\left(v_{e}\right)$ to the escape velocity at a planet $\left(v_{p}\right)$ whose radius and mean density are twice as that of earth is:
31. $1: 4$
32. $1: \sqrt{ } 2$
33. $1: 2$
34. $1: 2 \sqrt{ } 2$
35. Two non-mixing liquids of densities ρ and $n \rho(n>1)$ are put in a container. The height of each liquid is h. A solid cylinder of length L and density d is put in this container. The cylinder floats with its axis vertical and length $p L(p<1)$ in the denser liquid. The density d is equal to
36. $\{2+(n-1) p\} \rho$
37. $\{1+(n-1) p\} \rho$
38. $\{1+(n+1) p\} \rho$
39. $\{2+(n+1) p\} \rho$
40. A black body is at a temperature of 5760 K .

The energy of radiation emitted by the body at wavelength 250 nm is U_{1}, at wavelength 500 nm is U_{2} and that at 1000 nm is U_{3}. Wien's constant, $\mathrm{b}=2.88 \times 10^{6} \mathrm{nmK}$. Which of the following is correct?

1. $U_{1}>U_{2}$
2. $\mathrm{U}_{3}<\mathrm{U}_{2}>\mathrm{U}_{1}$
3. $\mathrm{U}_{1}=0$
4. $U_{3}=0$
5. A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then
6. Compressing the gas isothermally or adiabatically will require the same amount of work.
7. Which of the case (whether compression through isothermal or through adiabatic process) requires more work will depend upon the atomicity of the gas.
8. Compressing the gas isothermally will require more work to be done.
9. Compressing the gas through adiabatic process will require more work to be done.
10. The molecules of a given mass of a gas have r.m.s. velocity of $200 \mathrm{~m} \mathrm{~s}^{-1}$ at $27^{\circ} \mathrm{C}$ and $1.0 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$ pressure. When the temperature and pressure of the gas are respectively, $127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}$ the r.m.s. velocity of its molecules in $m s^{-1}$
11. $\frac{100 \sqrt{2}}{3} m s^{-1}$
12. $\frac{100}{3} m s^{-1}$
13. $100 \sqrt{2} m s^{-1}$
14. $\frac{400}{\sqrt{3}} m s^{-1}$
15. A uniform rope of length L and mass m_{1} hangs vertically from a rigid support. A block of mass m_{2} is attached to the free end of the rope. A transverse pulse of wavelength λ_{1} is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is λ_{2}. The ratio $\frac{\lambda_{2}}{\lambda_{1}}$ is
16. $\sqrt{\frac{m_{2}}{m_{1}}}$
17. $\sqrt{\frac{m_{1}+m_{2}}{m_{1}}}$
18. $\sqrt{\frac{m_{1}}{m_{2}}}$
19. $\sqrt{\frac{m_{1}+m_{2}}{m_{2}}}$
20. An air column, closed at one end and open at the other, resonates with a tuning fork when the smallest length of the column is 50 cm . The next larger length of the column resonating with the same tuning fork is
21. 150 cm
22. 200 cm
23. 66.7 cm
24. 100 cm
25. A siren emitting a sound of frequency 800 Hz moves away from an observer towards a cliff at a speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$. Then, the frequency of sound that the observer hears in the echo reflected from the cliff is? (The Velocity of Sound in air $=330 \mathrm{~m} \mathrm{~s}^{-1}$)
26. 838 Hz
27. 885 Hz
28. 765 Hz
29. 800 Hz
30. Two identical charged spheres suspended from a common point by two massless strings of lengths l , are initially at a distance $\mathrm{d}(\mathrm{d} \ll \mathrm{l})$ apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity V. Then V varies as a function of the distance x between the spheres, as
31. $v \propto x^{-1 / 2}$
32. $v \propto x^{-1}$
33. $y \propto x^{1 / 2}$
34. $v \propto x$
35. A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at

50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf's is

1. $3: 4$
2. $3: 2$
3. $5: 1$
4. $5: 4$
5. A square loop ABCD carrying a current i , is placed near and coplanar with a long straight conductor XY carrying a current I, the net force on the loop will be

6. $\frac{2 \mu_{0} I i L}{3 \pi}$
7. $\frac{\mu_{0} I i L}{2 \pi}$
8. $\frac{2 \mu_{0} I i}{3 \pi}$
9. $\frac{\mu_{0} I i}{2 \pi}$
10. The magnetic susceptibility is negative for
11. ferromagnetic material only
12. paramagnetic and ferromagnetic materials
13. diamagnetic material only
14. paramagnetic material only
15. A long solenoid has 1000 turns. When a current of 4 A flows through it, the magnetic flux linked with each turn of the solenoid is $4 \times 10^{-3} \mathrm{~Wb}$. The self-inductance of the solenoid is
16. 2 H
17. 1H
18. 4 H
19. 3 H
20. Match the corresponding entries of column 1 with column 2.[Where m is the magnification
produced by the mirror

Column-I Column-II

(A) $m=-2$
(p) Convex mirror
(B) $\mathrm{m}=-\frac{1}{2}$
(q) Concave mirror
(C) $\mathrm{m}=2$
(r) Real image
(D) $\mathrm{m}=+\frac{1}{2}$
(s) Virtual image
(A) \quad (B) \quad (C) \quad (D)

(1)	p,s	q,r	q,s	q,r
(2)	r,s	q, s	q, r	p, s
(3)	q, r	q, r	q, s	p, s
(4)	p, r	p, s	p, q	r, s

1. 1
2. 2
3. 3
4. 4
5. The angle of incidence for a ray of light at a refracting surface of a prism is 45°. The angle of prism is 60°. If the ray suffers minimum deviation through the prism, the angle of minimum deviation and refractive index of the material of the prism respectively, are
6. $45^{\circ} ; \sqrt{2}$
7. $30^{\circ} ; \frac{1}{\sqrt{2}}$
8. $45^{\circ} ; \frac{1}{\sqrt{2}}$
9. $30^{\circ} ; \sqrt{2}$
10. An astronomical telescope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance
11. 50 cm
12. 54 cm
13. 37.3 cm
14. 46 cm
15. An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is
16. $c(2 m E)^{\frac{1}{2}}$
17. $\frac{1}{c}\left(\frac{2 m}{E}\right)^{\frac{1}{2}}$
18. $\frac{1}{c}\left(\frac{E}{2 m}\right)^{\frac{1}{2}}$
19. $\left(\frac{E}{2 m}\right)^{\frac{1}{2}}$
(c being velocity of light)
20. When a metallic surface is illuminated with radiation of wavelength λ the stopping potential is V. If the same surface is illuminated with radiation of wavelength 2λ the stopping potential is $\frac{V}{4}$, The threshold wavelength for the metallic surface is
21. $\frac{5}{2} \lambda$
22. 3λ
23. 4λ
24. 5λ
25. When an α-particle of mass m moving with velocity v bombards on a heavy nucleus of charge $Z e$, its distance of closest approach from the nucleus depends on m as
26. $\frac{1}{m^{2}}$
27. m
28. $\frac{1}{m}$
29. $\frac{1}{\sqrt{m}}$
30. Given the value of Rydberg constant is $10^{7} \mathrm{~m}^{-1}$, the wave number of the last line of the Balmer series in hydrogen spectrum will be
31. $0.25 \times 10^{7} \mathrm{~m}^{-1}$
32. $2.5 \times 10^{7} \mathrm{~m}^{-1}$
33. $0.025 \times 10^{4} \mathrm{~m}^{-1}$
34. $0.5 \times 10^{7} \mathrm{~m}^{-1}$

Chemistry

Section A

46. Match the compounds given in column I with the hybridisation and shape given in column II and mark the correct option.

Column I	
$\mathrm{A} \mathrm{XeF}_{6}$	i
BXeO_{3}	distorted octahedral
CXeOF_{4}	iii pyramidal
DXeF_{4}	iv square pyramidal

A B C D (iv) (iii) (i) (ii)
$\begin{array}{llll}A & B & \mathbf{C} & \mathbf{D}\end{array}$
2. (iv) (i) (ii) (iii)
$\begin{array}{llll}A & B & \mathbf{C}\end{array}$
3. (i) (iii) (iv) (ii)
A
A B $\quad \mathbf{C} \quad$ D
(i) (ii) (iv) (iii)
47. Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for onehalf of the hydrogen to escape?

1. $\frac{3}{8}$
2. $\frac{1}{2}$
3. $\frac{1}{8}$
4. $\frac{1}{4}$
5. For the following reactions:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathrm{KOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}=$ $\mathrm{CH}_{2}+\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$
(B)

(C)

Which of the following statement is correct?

1. (A) is elimination, (B)and (C) are substitution reactions.
2. (A) is substitution, (B) and (C) are addition reactions.
3. (A) and (B) are elimination reactions and
(C) is addition reaction.
4. (A) is elimination, (B) is substitution and
(C) is addition reaction.
5. The ionic radii of A^{+}and B^{-}ions are $0.98 \times 10^{-10} \mathrm{~m}$ and $1.81 \times 10^{-10} \mathrm{~m}$. The coordination number of each ion in AB is
6. 8
7. 2
3.6
8. 4
9. Lithium has a b c c structure. Its density is $530 \mathrm{~kg} \mathrm{~m}^{-3}$ and its atomic mass is
$6.94 \mathrm{~g} \mathrm{~mol}^{-1}$. Calculate the edge length of a unit cell of lithium metal.
$\left(\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
10. 527 pm
11. 264 pm
12. 154 pm
13. 352 pm
14. Which of the following statements about the composition of the vapour over an ideal 1:1 molar mixture of benzene and toluene is correct? Assume that the temperature is constant at $25^{\circ} \mathrm{C}$. (Given, vapour pressure data at $25^{\circ} \mathrm{C}$, benzene $=12.8 \mathrm{kPa}$, toluene $=3.85 \mathrm{kPa}$
15. The vapour will contain equal amounts of benzene and toluene.
16. Not enough information is given to make a prediction.
17. The vapour will contain a higher percentage of benzene.
18. The vapour will contain a higher percentage of toluene.
19. Which one of the following statements is correct when SO_{2} is passed through acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution?
20. SO_{2} is reduced.
21. Green $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is formed.
22. The solution turns blue.
23. The solution is decolourised .
24. The correct statement regarding the basicity of arylamines is
25. arylamines are generally more basic than alkylamines because of aryl group
26. arylamines are generally more basic than alkylamines, because the nitrogen atom in arylamines is sp-hybridised
27. arylamines are generally less basic than alkylamines because the nitrogen lone-pair electrons are delocalised by interaction with the aromatic ring π-electron system
28. arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalised by interaction with the aromatic ring π-electron system.
29. In which of the following options the order of arrangement does not agree with the variation of property indicated against it?
$\mathrm{I}<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$ (increasing electron 1. gain enthalpy)
$\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}$ (increasing
30. metallic radius)
$\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}$
31. (increasing ionic size)
$\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}$ (increasing first
32. ionisation enthalpy)
33. MY and NY_{3}, two nearly insoluble salts, have the same $\mathrm{K}_{\text {sp }}$ values of 6.2×10^{-13} at room temperature. Which statement would be true in regard to MY and NY_{3} ?

The salts MY and NY_{3} are more soluble in 0.5 M KY than in pure

1. water.

The addition of the salt of KY to solution of MYand NY_{3} will have
2. no effect on their solubilities.
3. The molar solubilities of MY and
3. NY_{3} in water are identical.

The molar solubility of MY in
4. water is less than that of NY_{3}
56. Which of the following statements about hydrogen is incorrect?

1. Hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$exists freely in solution.
2. Dihydrogen does not act as a reducing agent.
3. Hydrogen has three isotopes of which tritium is the least common.
4. Hydrogen never acts as cation in ionic salts.(generally)
5. Which of the following statements is false?
6. $C a^{2+}$ ions are not important in maintaining the regular beating of the heart.
7. $M g^{2+}$ ions are important in the green parts of the plants.
8. $M g^{2+}$ ions form a complex with ATP.
9. $C a^{2+}$ ions are important in blood clotting.
10. Which is the correct statement for the given acids?
11. Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid.
12. Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid.
13. Both are diprotic acids.
14. Both are triprotic acids.
15. Which one of the following order is correct for the bond dissociation enthalpy of halogen molecules?
16. $\mathrm{Br}_{2}>\mathrm{I}_{2}>\mathrm{F}_{2}>\mathrm{Cl}_{2}$
17. $F_{2}>C I_{2}>B r_{2}>I_{2}$
18. $I_{2}>B r_{2}>\mathrm{Cl}_{2}>F_{2}$
19. $C I_{2}>B r_{2}>F_{2}>I_{2}$
20. Which of the following biphenyls is optically active?
21.

2.

3.

4.

61. The correct statement regarding the comparison of staggered and eclipsed conformations of ethane, is

1. the eclipsed conformation of ethane is more stable than staggered conformation even though the eclipsed conformation has torsional strain
2. the staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain
3. the staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has torsional strain
4. the eclipsed conformation of ethane is more stable than staggered conformation, because eclipsed conformation has no torsional strain.
5. In the reaction,
 Y. X and Y are
6. $\mathrm{X}=2$-butyne, $\mathrm{Y}=2$-hexyne
7. $\mathrm{X}=1$ - butyne , $\mathrm{Y}=2$ - hexyne
8. $\mathrm{X}=1$-butyne, $\mathrm{Y}=3$-hexyne
9. $\mathrm{X}=2$-butyne , $\mathrm{Y}=3$-hexyne
10. Consider the nitration of benzene using mixture of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3}. If a large amount of KHSO_{4} is added to the mixture, the rate of nitration will be
11. Unchanged
12. Doubled
13. Faster
14. Slower
15. Which of the following reagents would distinguish cis-cyclopenta-1,2-diol from the trans - isomer?
16. MnO_{2}
17. Aluminium isopropoxide
18. Acetone
19. Ozone
20. The correct statement regarding a carbonyl compound with a hydrogen atom on its alphacarbon, is
21. a carbonyl compound with a hydrogen atom on its alphacarbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation
22. a carbonyl compound with a hydrogen atom on its alphacarbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism
23. a carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol
24. a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
25. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is
26. $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$
27. $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}<0$
28. $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}=0$
29. $\Delta \mathrm{H}>0$ and $\Delta \mathrm{S}<0$
30. The product obtained as a result of a reaction of nitrogen with CaC_{2} is
31. CaCN_{2}
32. CaCN_{3}
33. $\mathrm{Ca}_{2} \mathrm{CN}$
34. $\mathrm{Ca}(\mathrm{CN})_{2}$
35. When copper is heated with conc. HNO_{3} it produces
36. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NO}$ and NO_{2}
37. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{~N}_{2} \mathrm{O}$
38. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NO}_{2}$
39. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NO}$
40. Among the following, the correct order of acidity is
41. $\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
42. $\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}$
43. $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}$
44. $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$

Consider the following liquid-vapour equilibrium.

Liquid \rightleftharpoons Vapour
Which of the following relation is correct?

1. $\frac{\mathrm{dmP}}{\mathrm{dT}^{2}}=\frac{-\Delta \mathrm{H}_{\mathrm{v}}}{\mathrm{T}^{2}}$
2. $\frac{\mathrm{dln} \mathrm{P}}{\mathrm{dT}}=\frac{\Delta \mathrm{H}_{v}}{\mathrm{RT}^{2}}$
3. $\frac{\mathrm{dln} \mathrm{G}}{\mathrm{dT}^{2}}=\frac{\Delta \mathrm{H}_{v}}{\mathrm{RT}^{2}}$
4. $\frac{\mathrm{dnP}}{\mathrm{dT}}=\frac{-\Delta \mathrm{H}_{v}}{\mathrm{RT}}$
5. The addition of a catalyst during a chemical reaction alters which of the following quantities?
6. Enthalpy
7. Activation energy
8. Entropy
9. Internal energy
10. Fog is a colloidal solution of
11. Solid in gas
12. Gas in gas
13. Liquid in gas
14. Gas in liquid
15. Which one of the following characteristics is associated with adsorption?
ΔG and ΔH are negative but ΔS
16. is positive.
$\Delta \mathrm{G}$ and $\Delta \mathrm{S}$ are negative but $\Delta \mathrm{H}$ is 2. positive.
$\Delta \mathrm{G}$ is negative but $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ is 3. positive .
17. $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ all are negative
18. The reaction

can be classified as
19. dehydration reaction.
20. Williamson alcohol synthesis reaction.
21. Williamson ether synthesis reaction.
22. alcohol formation reaction.
23. The product formed by the reaction of an aldehyde with a primary amine is
24. carboxylic acid
25. aromatic acid
26. Schiff's base
27. Ketone
28. Which one given below is a non-reducing sugar?
29. Glucose
30. sucrose
31. Maltose
32. Lactose
33. In a protein molecule various amino acids are linked together by
34. peptide bond
35. dative bond
36. α-glycosidic bond
37. β-glycosidic bond
38. The correct statement regarding RNA and DNA, respectively is
39. the sugar component in RNA is arabinose and the sugar component in DNA is ribose
40. the sugar component in RNA is 2deoxyribose and the sugar component in DNA is arabinose
41. the sugar component in RNA is arabinose and the sugar component in DNA is 2deoxyribose
42. the sugar component in RNA is ribose and the sugar component in DNA is 2 deoxyribose.
43. Natural rubber has
44. alternate cis- and trans-configuration
45. random cis- and trans-configuration
46. all cis-configuration
47. all trans-configuration
48. The pair of electrons in the given carbanion, $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}^{-}$, is present in which of the following orbitals?
49. sp^{2}
50. sp
51. 2 p
52. sp^{3}
53. The pressure of H_{2} required to make the potential of H_{2} electrode zero in pure water at 298 K
54. $10^{-10} \mathrm{~atm}$
55. $10^{-4} \mathrm{~atm}$
56. $10^{-14} \mathrm{~atm}$
57. $10^{-12} \mathrm{~atm}$
58. The electronic configurations of Eu (Atomic No. 63), Gd (Atomic No. 64) and Tb (Atomic No. 65) are
$[\mathrm{Xe}] 4 \mathrm{f}^{6} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$ and $[\mathrm{Xe}$
59. $\int 4 f^{8} 5 d^{1} 6 s^{2}$

$$
[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2} \text { and }[\mathrm{Xe}] 4 \mathrm{f}^{9}
$$

2. $6 \mathrm{~s}^{2}$

$$
[\mathrm{Xe}] 4 \mathrm{f}^{7} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{8} 6 \mathrm{~s}^{2} \text { and }[\mathrm{Xe}] 4 \mathrm{f}^{8} 5 \mathrm{~d}^{1}
$$

3. $6 \mathrm{~s}^{2}$
$[\mathrm{Xe}] 4 \mathrm{f}^{6} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2},[\mathrm{Xe}] 4 \mathrm{f}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$ and $[\mathrm{Xe}$
4. $\int \mathrm{f}^{9} 6 \mathrm{~s}^{2}$
5. Which of the following has longest $\mathrm{C}-\mathrm{O}$
bond length? (Free $\mathrm{C}-\mathrm{O}$ bond length in CO is $1.128 \mathrm{~A}^{\circ}$)
6. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
7. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
8. $\mathrm{Ni}(\mathrm{CO})_{4}$
9. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
10.

Two electrons occupying the same orbital are distinguished by

1. azimuthal quantum number
2. spin quantum number
3. principal quantum number
4. magnetic quantum number.
5. Predict the correct order among the following ?
6. bond pair - bond pair > lone pair - bond pair > lone pair - lone pair
7. lone pair - bond pair >bond pair - bond pair > lone pair - lone pair
8. lone pair - lone pair > lone pair - bond pair $>$ bond pair - bond pair
9.

lone pair - lone pair > bond pair - bond pair > lone pair - bond pair
86. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. Which of the given statements is false?

1. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is smaller than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}
2. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4} is larger than the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}
3. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}, The $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}, and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ are all greater than 90°
4. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4}
5. At $100^{0} \mathrm{C}$, the vapour pressure of a solution of 6.5 g of a solute in 100 g water is 732 mm . If $\mathrm{k}_{\mathrm{b}}=0.52$, the boiling point of this solution will be
6. $102{ }^{0} \mathrm{C}$
7. $103{ }^{0} \mathrm{C}$
8. $101^{0} \mathrm{C}$
9. $100^{0} \mathrm{C}$
10. The rate of first-order reaction is 0.04 mol $\mathrm{L}^{-1} \mathrm{~S}^{-1}$ at 10 seconds and $0.03 \mathrm{molL}^{-1} \mathrm{~S}^{-1}$ at 20 seconds after initiation of the reaction. The half-life period of the reaction is
11. 44.1 s
12. 54.1 s
13. 24.1s
14. 34.1 s
15. Match items of Column I with the items of Column II and assign the correct code :

Column I
(A)
A) Cyanide
(i) Ultrapure Ge
(B) Froth flotatiion process
(ii) Dressing of
(C) Electrolytic
(C) reduction
(iii) $\begin{aligned} & \text { Extraction of } \\ & \mathrm{Al}\end{aligned}$
(D) Zone refining
(iv) Ax
(v) Purification
of Ni

	A	B	C	D
1	i	ii	iii	iv
2	iii	iv	v	i
3	iv	ii	iii	i
4	ii	iii	i	v

1. 1
2. 2
3. 3
4. 4
5. Which of the following is an analgesic?
6. Streptomycin
7. Chloromycetin
8. Novalgin
9. Penicillin

Section A

91. Which of the following statements is not correct?
92. Pollen germination and pollen tube growth are regulated by chemical components of pollen interacting with those of the pistil.
93. Some reptiles have also been reported as pollinators in some plant species.
94. Pollen grains of many species can germinate on the stigma of a flower, but only one pollen tube of the same species grows into the style.
95. Insects that consume pollen or nectar without bringing about pollination are called pollen/ nectar robbers.
96. Which one of the following statements is not true?
97. Pollen grains of many species cause severe allergies.
98. Stored pollen in liquid nitrogen can be used in the crop breeding programmes.
99. Tapetum helps in the dehiscence of anther.
100. Exine of pollen grains is made up of sporopollenin
101. The primitive prokaryotes responsible for the production of biogas from the dung of ruminant animals, include the
102. methanogens
103. eubacteria
104. halophiles
105. thermoacidophiles
106. The Avena curvature is used for bioassay of
107. IAA
108. ethylene
109. ABA
110. GA_{3}
111. Specialised epidermal cells surrounding the guard cells are called
112. bulliform cells
113. lenticels
114. complementary cells
115. subsidiary cells
116. Tricarpellary, syncarpous gynoecium is found in flowers of
117. Fabaceae
118. Poaceae
119. Liliaceae
120. Solanaceae
121. Emerson's enhancement effect and red drop have been instrumental in the discovery of
122. photophosphorylation and cyclic electron transport
123. oxidative phosphorylation
124. photophosphorylation and non-cyclic electron transport
125. two photosystems operating simultaneously.
126. In a chloroplast the highest number of protons during ETS are found in
127. intermembrane space
128. antennae complex
129. stroma
130. lumen of thylakoids
131. A system of rotating crops with legume or grass pasture to improve soil structure and fertility is called
132. strip farming
133. shifting agriculture
134. ley farming
135. contour farming
136. In a test cross involving F_{1} dihybrid flies, more parental type offspring were produced than the recombinant-type offspring. This indicates
137. the two genes are linked and present on the same chromosome
138. both of the characters are controlled by more than one gene
139. the two genes are located on two different chromosomes
140. chromosomes failed to separate during meiosis.
141. Nomenclature is governed by certain universal rules. Which one of the following is contrary to the rules of nomenclature?
142. The names are written in Latin and are italicised.
143. When written by hand, the names are to be underlined.
144. Biological names can be written in any language.
145. The first word of biological name represents the genus name, and the second is a specific epithet
146. Stems modified into flat green organs performing the functions of leaves are known as
147. phylloclades
148. scales
149. cladodes
150. phyllodes
151. The standard petal of a papilionaceous corolla is also called
152. vexillum
153. corona
154. carina
155. pappus
156. Chrysophytes, Euglenoids, Dinoflagellates and Slime moulds are included in the kingdom
157. Fungi
158. Animalia
159. Monera
160. Protista
161. One of the major components of cell wall of most fungi is
162. cellulose
163. chitin
164. hemicellulose
165. peptidoglycan
166. Which of the following statements is wrong for viroids?
167. They cause infections.
168. Their RNA is of high molecular weight
169. They lack a protein coat.
170. They are smaller than viruses.
171. Which one of the following statements is wrong?
172. Eubacteria are also called false bacteria.
173. Phycomycetes are also called algal fungi.
174. Cyanobacteria are also called blue-green algae
175. Golden algae are also called desmids.
176. Water soluble pigments found in plant cell vacuoles are
177. carotenoids
178. anthocyanins
179. xanthophylls
180. chlorophylls
181. Match the terms in column I with their description in column II and choose the correct

Column I
A. Dominance

	A	B	C	D
1	iv	i	ii	iii
2	iv	iii	i	ii
3	ii	i	iv	iii
4	ii	iii	iv	i

1. 1
2. 2
3. 3
4. 4
5. Which of the following is not a stem modification?
6. Tendrils of cucumber
7. Flattened structures of Opuntia
8. Pitcher of Nepenthes
9. Thorns of Citrus
10. Which of the following would appear as the pioneer organisms on bare rocks?
11. Mosses
12. Green algae
13. Lichens
14. Liverworts
15. A complex of ribosomes attached to a single strand of RNA is known as
16. polypeptide
17. Okazaki fragment
18. polysome
19. polymer
20. Spindle fibres attach to

B. Codominance	(ii)In a heterozygous organism only one allele expresses itself	3. telomere of the chromosome
C. Pleiotropy	(iii)In a heterozygous organism both alleles express themselves fully	4. kinetochore of the chromosome

D. Polygenic inheritance(iv) A single gene influences mathy charactets of the following all three are macronutrients?

1. centromere of the chromosome
2. kinetosome of the chromosome

Column II

1. Molybdenum, Magnesium, Manganese
2. Nitrogen, Potassium, Phosphorus
3. Boron, Zinc, Manganese
4. Iron, Copper, Molybdenum
5. Which of the following is not a characteristic feature during mitosis in somatic cells?
6. Chromosome movement
7. Synapsis
8. Spindle fibres
9. Disappearance of nucleolus
10. A cell at telophase stage is observed by a student in a plant brought from the field. He tells his teacher that this cell is not like other cells at telophase stage.There is no formation of cell plate and thus the cell is containing more number of chromosomes as compared to other dividing cells. This would result in
11. somaclonal variation
12. polyteny
13. aneuploidy
14. polyploidy
15. A tall true breeding garden pea plant is crossed with a d true breeding garden pea plant. When the
F_{1} plants were selfed the resulting genotypes were in the ratio of
16. 3: $1:$: Tall: Dwarf
17. $3: 1:$ Dwarf: Tall
18. 1: 2: 1: : Tall homozygous: Tall heterozygous: Dwarf
19. $1: 2: 1:$: Tall heterozygous : Tall homozygous : Dwarf
20. Which of the following is wrongly matched in the given table?

Microbe Product Application
Removal of
1.Streptococcus Streptokinase clot from
blood vessel
$\left.\begin{array}{lcc}\hline \text { 2. } & \begin{array}{c}\text { Clostridium } \\ \text { butylicum }\end{array} & \text { Lipase }\end{array} \begin{array}{c}\text { Removal of } \\ \text { oil stains }\end{array}\right]$

1. 1
2. 2
3. 3
4. 4
5. Water vapour comes out from the plant leaf through the stomatal opening. Through the same stomatal opening carbon dioxide diffuses into the plant during photosynthesis. Reason out the above statements using one of following options.
6. The above processes happen only during night time.
7. One process occurs during day time and the other at night.
8. Both processes can not happen simultaneously.
9. Both processes can happen together because the diffusion of water and CO_{2} is different
10. In bryophytes and pteridophytes, transport of male gametes requires
11. birds
12. water
13. wind
14. insects
15. Which one of the following cell organelles is enclosed by a single membrane?
16. Lysosomes
17. Nuclei
18. Mitochondria
19. Chloroplasts
20. Which one of the following is the starter codon?
21. UAA
22. UAG
23. AUG
24. UGA
25. Mitochondria and chloroplast are
(A) semi-autonomous organelles
(B) formed by division of pre-existing organelles and they contain DNA but lack protein synthesising machinery.

Which one of the following options is correct?

1. (A) is true but (B) is false.
2. Both (A) and (B) are false.
3. Both (A) and (B) are correct.
4. (B) is true but (A) is false.
5. A plant in your garden avoids photorespiratory losses, has improved water use efficiency, shows high rates of photosynthesis at high temperatures and has improved efficiency of nitrogen utilisation. In which of the following physiological groups would you assign this plant?
6. CAM
7. Nitrogen fixer
8. C_{3}
9. C_{4}
10.

Proximal end of the filament of stamen is attached to the

1. placenta
2. thalamus or petal
3. anther
4. connective
5. The coconut water from tender coconut represents
6. free nuclear proembryo
7. free nuclear endosperm
8. endocarp
9. fleshy mesocarp.
10. Seed formation without fertilisation in flowering plants involves the process of
11. somatic hybridisation
12. apomixis
13. sporulation
14. budding
15. Select the correct statement.
16. Sequoia is one of the tallest tree species.
17. The leaves of gymnosperms are not well adapted to extremes of climate.
18. Gymnosperms are both homosporous and heterosporous.
19. Salvinia, Ginkgo and Pinus all are gymnosperms.
20. Cotyledon of maize grain is called
21. coleoptile
22. scutellum
23. plumule
24. coleorhiza
25. Microtubules are the constituents of
26. centrioles, spindle fibres and chromatin
27. centrosome, nucleosome and centrioles
28. cilia, flagella and peroxisomes
29. spindle fibres, centrioles and cilia
30. Which of the following is required as inducer
(s) for the expression of Lac operon?
31. Lactose
32. Fructose
33. Glucose
34. Galactose
35. In meiosis crossing over is initiated at
36. zygotene
37. diplotene
38. pachytene
39. leptotene

Section A

133. Following are the two statements regarding the origin of life.
(A) The earliest organisms that appeared on the earth were non-green and presumably anaerobes.
(B) The first autotrophic organisms were the chemoautotrophs that never released oxygen.

Of the above statements which one of the following options is correct?

1. Both (A) and (B) are correct.
2. Both (A) and (B) are false.
3. (A) is correct but (B) is false.
4. (B) is correct but (A) is false.
5. Which one of the following is a characteristic feature of cropland ecosystem?
6. Absence of weeds
7. Ecological succession
8. Absence of soil organisms
9. Least genetic diversity
10. Lack of relaxation between successive stimuli in sustained muscle contraction is known as
11. tetanus
12. tonus
13. spasm
14. fatigue
15. It is much easier for a small animal to run uphill than for a large animal, because
16. small animals have a lower O_{2} requirement
17. the efficiency of muscles in large animals is less than in the small animals
18. it is easier to carry a small body weight
19. smaller animals have a higher metabolic rate
20. Which of the following guards the opening of hepatopancreatic duct into the duodenum?

1. Pyloric sphincter

2. Sphincter of Oddi
3. Semilunar valve
4. Ileocaecal valve
5. Which is the National Aquatic Animal of lndia?
6. Blue whale
7. Sea-horse
8. Gangetic shark
9. River dolphin
10. Which of the following is the most important cause of animals and plants being driven to extinction?
11. Habitat loss and fragmentation
12. Co-extinctions
13. Over-exploitation
14. Alien species invasion
15. Changes in GnRH pulse frequency in females is controlled by circulating levels of
16. progesterone only
17. progesterone and inhibin
18. estrogen and progesterone
19. estrogen and inhibin
20. Identify the correct statement on 'inhibin'.
21. Is produced by granulosa cells in ovary and inhibits the secretion of LH
22. Is produced by nurse cells in testes and inhibits the secretion of LH
23. Inhibits the secretion of LH, FSH and prolactin
24. Is produced by granulosa cells in ovary and inhibits the secretion of FSH
25. When does the growth rate of a population following the logistic model equal zero? The logistic model is given as
$\mathrm{dN} / \mathrm{dt}=\mathrm{rN}(1-\mathrm{N} / \mathrm{K})$
26. when N / K equals zero
27. when death rate is greater than birth rate
28. when N / K is exactly one
29. when N nears the carrying capacity of the habitat
30. Antivenom injection contains preformed antibodies while polio drops that are administered into the body contain
31. gamma globulin
32. attenuated pathogens
33. activated pathogens
34. harvested antibodies
35. In mammals, which blood vessel would normally carry largest amount of urea?
36. Hepatic vein
37. Hepatic portal vein
38. Renal vein
39. Dorsal aorta
40. Which of the following features is not present in Periplaneta americana?
41. Exoskeleton composed of Nacetylglucosamine
42. Metamerically segmented body
43. Schizocoelom as body cavity
44. Indeterminate and radial cleavage during embryonic development
45. Depletion of which gas in the atmosphere can lead to an increased incidence of skin cancers?
46. Ammonia
47. Methane
48. Nitrous oxide
49. Ozone
50. Joint Forest Management Concept was introduced in India during
51. 1980s
52. 1990s
53. 1960s
54. 1970s
55. Which of the following structures is homologous to the wing of a bird?
56. Hindlimb of rabbit
57. Flipper of whale
58. Dorsal fin of a shark
59. Wing of a moth
60. Analogous structures are a result of
61. shared ancestry
62. stabilising selection
63. divergent evolution
64. convergent evolution
65. The term ecosystem was coined by
66. E. Haeckel
67. E.Warming
68. E.P. Odum
69. A.G. Tansley
70. In context of amniocentesis, which of the following statements is incorrect?
71. It can be used for detection of Down's syndrome.
72. It can be used for detection of cleft palate.
73. It is usually done when a woman is between 14-16 weeks pregnant.
74. It is used for prenatal sex determination.
75. Which type of tissue correctly matches with its location?

Tissue	Location
Transitional epithelium	Tip of nose
2Cuboidal epithelium	Lining of stomach
3Smooth muscle	Wall of intestine
4Areolar tissue	Tendons

1. 1
2. 2
3. 3
4. 4
5. Which of the following features is not present in the Phylum Arthropoda?
6. Parapodia
7. Jointed appendages
8. Chitinous exoskeleton
9. Metameric segmentation
10. Reduction in pH of blood will
11. decrease the affinity of hemoglobin with oxygen
12. release bicarbonate ions by the liver
13. reduce the rate of heart beat
14. reduce the blood supply to the brain
15. In the stomach, gastric acid is secreted by the
16. peptic cells
17. acidic cells
18. gastrin secreting cells
19. parietal cells
20. Which of the following approaches does not give the defined action of contraceptive?
21. Hormonal contraceptives - Prevent/retard entry of sperms, prevent ovulation and fertilisation
22. Vasectomy - Prevents spermatogenesis
23. Barrier methods - Prevent fertilisation
24. Intra uterine devices - Increase phagocytosis of sperms, suppress sperm motility and fertilising capacity of sperms
25. Select the incorrect statement.
26. LH and FSH decrease gradually during the follicular phase.
27. LH triggers secretion of androgens from the Leydig cells.
28. FSH stimulates the Sertoli cells which help in spermiogenesis.
29. LH triggers ovulation in ovary.
30. A river with an inflow of domestic sewage rich in organic waste may result in
31. an increased production of fish due to biodegradable nutrients
32. death of fish due to lack of oxygen
33. drying of the river very soon due to algal bloom
34. increased population of aquatic food web organisms.
35. In higher vertebrates, the immune system can distinguish self-cells and non-self. If this property is lost due to genetic abnormality and it attacks self-cells, then it leads to
36. autoimmune disease
37. active immunity
38. allergic response
39. graft rejection
40. Fertilisation in humans is practically feasible only if
41. the ovum and sperms are transported simultaneously to ampullary- isthmic junction of the cervix
42. the sperms are transported into cervix within 48 hrs of release of ovum in uterus
43. the sperms are transported into vagina just after the release of ovum in fallopian tube
44. the ovum and sperms are transported simultaneously to ampullary- isthmic junction of the fallopian tube
45. Which of the following most appropriately describes haemophilia?
46. Chromosomal disorder
47. Dominant gene disorder
48. Recessive gene disorder
49. X-linked recessive gene disorder
50. Which of the following is not required for any of the techniques of DNA fingerprinting available at present?
51. Restriction enzymes
52. DNA-DNA hybridisation
53. Polymerase chain reaction
54. Zinc finger analysis
55. Asthma may be attributed to
56. inflammation of the trachea
57. accumulation of fluid in the lungs
58. bacterial infection of the lungs
59. allergic reaction of the mast cells in the lungs
60. Which one of the following characteristics is not shared by birds and mammals?
61. Viviparity
62. Homeothermy
63. Internal fertilisation
64. Double circulation
65. Which of the following characteristic features always holds true for the corresponding group of animals?
66. Possess a mouth with an upper and a lower jaw - Chordata
67. 3-chambered heart with one incompletely divided ventricle -Reptilia
68. Cartilaginous endoskeleton -

Chondrichthyes
4. Viviparous - Mammalia
166. Blood pressure in the pulmonary artery is

1. more than that in the pulmonary vein
2. less than that in the venae cavae
3. same as that in the aorta
4. more than that in the carotid
5. Photosensitive compound in human eye is made up of
6. opsin and retinol
7. transducin and retinene
8. guanosine and retinal
9. opsin and retinal
10. Which of the following pairs of hormones are not antagonistic (having opposite effects) to each other?
11. Aldosterone - Atrial Natriuretic Factor
12. Relaxin - Inhibin
13. Parathormone - Calcitonin
14. Insulin - Glucagon
15. Which of the following statements is not true for cancer cells in relation to mutations?
16. Mutations inactivate the cell control.
17. Mutations inhibit production of telomerase.
18. Mutations in proto-oncogenes accelerate the cell cycle.
19. Mutations destroy telomerase inhibitor.
20. The two polypeptides of human insulin are linked together by
21. covalent bonds
22. disulphide bridges
23. hydrogen bonds
24. phosphodiester bonds
25. Name the chronic respiratory disorder caused mainly by cigarette smoking.
26. Respiratory acidosis
27. Respiratory alkalosis
28. Emphysema
29. Asthma
30. Gause's principle of competitive exclusion states that
31. no two species can occupy the same niche indefinitely for the same limiting resources
32. always larger organisms exclude smaller ones through competition
33. always more abundant species will exclude the less abundant species through competition
34. competition exclude species having different food preferences.
35. Pick out the correct statements.
(A) Haemophilia is a sex-linked recessive disease.
(B) Down's syndrome is due to aneuploidy.
(C) Phenylketonuria is an autosomal recessive gene disorder.
(D) Sickle cell anaemia is an X-linked recessive gene disorder.
36. (A), (C) and (D) are correct.
37. (A), (B) and (C) are correct.
38. (A) and (D) are correct.
39. (B) and (D) are correct.
40. The amino acid tryptophan is the precursor for the synthesis of
41. ostrogen and progesterone
42. cortisol and cortisone
43. melatonin and serotonin
44. thyroxine and triiodothyronine
45. Which of the following is a restriction endonuclease?
46. DNase I
47. RNase
48. Hind II
49. Protease
50. A typical fat molecule is made up of
51. one glycerol and one fatty acid molecule
52. three glycerol and three fatty acid molecules
53. three glycerol molecules and one fatty acid molecule
54. one glycerol and three fatty acid molecules
55. Which one of the following statements is wrong?
56. Uracil is a pyrimidine.
57. Glycine is a sulphur containing amino acid.
58. Sucrose is a disaccharide.
59. Cellulose is a polysaccharide.
60. Which of the following is not a feature of the plasmids?
61. Transferable
62. Single-stranded
63. Independent replication
64. Circular structure
65. The Taq polymerase enzyme is obtained from
66. Bacillus subtilis
67. Pseudomonas putida
68. Thermus aquaticus
69. Thiobacillus ferroxidans
70. Which part of the tobacco plant is infected by Meloidegyne incognita?
71. Stem
72. Root
73. Flower
74. Leaf
