Test Instructions

1. Total duration of this test is $\mathbf{1 8 0}$ minutes.
2. This test has 4 subjects consisting of 180 questions in total.
3. There are $\mathbf{4}$ total sections in the test.
4. Sections Info :

Physics
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt -1

Chemistry

a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt -1

Botany

a. Section \mathbf{A} has 47 questions, compulsory questions 47.4 marks will be given for correct attempt and incorrect attempt -1 .

Zoology

a. Section \mathbf{A} has $\mathbf{4 3}$ questions, compulsory questions 43.4 marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$.
5. Total marks for this test is $\mathbf{7 2 0}$ marks.
6. No marks will be deducted for unattempted questions.
7. This test can be submitted only once.
8. Once the test has been submitted, you cannot edit the responses.
9. Results will be anounced post test submission.
10. The test will be auto-submitted once the timer ends.

Physics

Section A

1. A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}} \mathrm{c}$ is velocity of light, G is universal constant of gravitation and e is charge]
2. $c^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$
3. $\frac{1}{c^{2}}\left[\frac{e^{2}}{G 4 \pi \varepsilon_{0}}\right]^{1 / 2}$
4. $\frac{1}{c} G \frac{e^{2}}{4 \pi \varepsilon_{0}}$
5. $\frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$
6. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_{1}. On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time t_{2}. The time taken by her to walk up on the moving escalator will be
7. $\frac{t_{1} t_{2}}{t_{2}-t_{1}}$
8. $\frac{t_{1+t_{2}}}{t_{2}+t_{1}}$
9. $t_{1}-t_{2}$
10. $\frac{t_{1}+t_{2}}{2}$
11. The x and y coordinates of the particle at any time are $\mathrm{x}=5 \mathrm{t}-2 t^{2}$ and $y=10 t$ respectively, where x and y are in metres and t in seconds.

The acceleration of the particle at $\mathrm{t}=$ 2 is

1. $5 \mathrm{~ms}^{-2}$
2. $-4 m s^{-2}$
3. $-8 m s^{-2}$
4. 0
5. Consider a drop of rain water having mass 1 g falling from a height of 1 km . It hits the ground with a speed of $50 \mathrm{~ms}^{-1}$. Take 'g' constant with a value $10 \mathrm{~ms}^{-2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is
6. (i) 1.25 J
-8.25 J
(ii)
7. (i) 100 J
(ii) 8.75
J
8. (i) 10 J
(ii) -8.75 J
9. (i) -10 J
(ii) 8.25 J
10. Which of the following statements are correct?
(1) Centre of mass of a body always coincides with the centre of gravity of the body.
(2) Centre of mass of a body is the point at which the total gravitational torque on the body is zero.
(3) A couple on a body produces both translational and rotational motion in a body.
(4) Mechanical advantage greater
than one means that small effort can be used to lift a large load.
11. (1) and (2)
12. (2) and (3)
13. (3) and (4)
14. (2) and (4)
15. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm is free to rotate about its geometrical axis. What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N ?
16. $0.25 \mathrm{rads}^{-2}$
17. 25 rads $^{-2}$
18. $5 \mathrm{rads}^{-2}$
19. $2.5 \mathrm{rads}^{-2}$
20. A U tube with both ends open to the atmosphere, is partially filled with water. Oil, which is immiscible with water, is poured into one side until it stands at a distance of 10 mm above the water level on the other side. Meanwhile the water rises by 65 mm from its original level (see diagram). The density of the oil is

21. $425 \mathrm{~kg} \mathrm{~m}^{-3}$
22. $800 \mathrm{~kg} \mathrm{~m}^{-3}$
23. $928 \mathrm{~kg} \mathrm{~m}^{-3}$
24. $650 \mathrm{~kg} \mathrm{~m}^{-3}$
25. A spherical black body radiates 1000 watt power at 450 K . If the radius were halved and the temperature doubled, the power radiated (in watt) would be
26. 450
27. 1000
28. 1800
29. 225
30. Two rods A and B of different materials are welded together as shown in figure. Their thermal conductivities are K_{1} and K_{2}.

The thermal conductivity of the composite rod will be

1. $\frac{3\left(K_{1}+K_{2}\right)}{2}$
2. $K_{1}+K_{2}$
3. $2\left(K_{1}+K_{2}\right)$
4. $\frac{K_{1}+K_{2}}{2}$
5. Thermodynamic processes are indicated in the following diagram.

Match the following.
Column-l Column-II
P) Process I A) Adiabatic
Q) Process II B) Isobaric
R) Process III C) Isochoric
S) Process IV D) Isothermal
$\mathrm{P} \rightarrow \mathrm{C}, \mathrm{Q} \rightarrow \mathrm{A}, \mathrm{R} \rightarrow \mathrm{D}, \mathrm{S} \rightarrow$ 1. B

$$
\mathrm{P} \rightarrow \mathrm{C}, \mathrm{Q} \rightarrow \mathrm{D}, \mathrm{R} \rightarrow \mathrm{~B}, \mathrm{~S} \rightarrow
$$

2. A
$\mathrm{P} \rightarrow \mathrm{D}, \mathrm{Q} \rightarrow \mathrm{B}, \mathrm{R} \rightarrow \mathrm{A}, \mathrm{S} \rightarrow$
3. C
$\mathrm{P} \rightarrow \mathrm{A}, \mathrm{Q} \rightarrow \mathrm{C}, \mathrm{R} \rightarrow \mathrm{D}, \mathrm{S} \rightarrow$ 4. B
4. A carnot engine having an efficiency of $\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at lower temperature is
5. 90 J
6. 99 J
7. 100 J
8. 1 J
9. The two nearest harmonics of a tube closed at one end and open at other
end are 220 Hz and 260 Hz . What is the fundamental frequency of the system?
10. 20 Hz
11. 30 Hz
12. 40 Hz
13. 10 Hz
14. Two cars moving in opposite directions approach each other with speed of $22 \mathrm{~ms}^{-1}$ and $16.5 \mathrm{~ms}^{-1}$ respectively. The driver of the first car blows a horn having a frequency 400 Hz . The frequency heard by the driver of the second car is [velocity of sound $340 \mathrm{~m} \mathrm{~s}^{-1}$]
15. 361 Hz
16. 411 Hz
17. 448 Hz
18. 350 Hz
19. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system
20. decreases by a factor of 2
21. remains the same
22. increases by a factor of 2
23. increases by a factor of 4
24. The resistance of a wire is ' R ' ohm. If it is melted and stretched to ' n ' times its original length, its new resistance will be
25. $\frac{R}{n}$
26. $n^{2} R$
27. $\frac{R}{n^{2}}$
28. $n R$
29. A potentiometer is an accurate and versatile device to make electrical measurements of EMF because the method involves
30. potential gradients
31. a condition of no current flow through the battery
32. a combination of cells, galvanometer and resistances
33. cells
34. An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current ' I ' along the same direction as shown in figure. Magnitude of force per unit length on the middle wire ' B ' is given by

35. $\frac{2 \mu_{0} I^{2}}{\pi d}$
36. $\frac{\sqrt{2} \mu_{0} I^{2}}{\pi d}$
37. $\frac{\mu_{0} I^{2}}{\sqrt{2} \pi d}$
38. $\frac{\mu_{0} I^{2}}{2 \pi d}$
39. A 250 -turn rectangular coil of length 2.1 cm and width 1.25 cm carries a current of $85 \mu \mathrm{~A}$ and subjected to a magnetic field of strength 0.85 T . Work done for rotating the coil by 180° against the torque is
40. $4.55 \mu \mathrm{~J}$
41. $2.3 \mu \mathrm{~J}$
42. $1.15 \mu \mathrm{~J}$
43. $9.1 \mu \mathrm{~J}$
44. Figure shows a circuit that contains three identical resistors with resistance $\mathrm{R}=9.0 \Omega$ each, two identical inductors with inductance L $=2.0 \mathrm{mH}$ each, and an ideal battery with emf $\varepsilon=18 \mathrm{~V}$. The current i through the battery just after the switch closed is

45. 0.2 A
46. 4 A
47. 0 ampere
48. 2 mA
49. In an electromagnetic wave in free space the root mean square value of the electric field is $E_{\mathrm{rms}}=6 \mathrm{Vm}^{-1}$. The peak value of the magnetic field is
50. $2.83 \times 10^{-8} \mathrm{~T}$
51. $0.70 \times 10^{-8} \mathrm{~T}$
52. $4.23 \times 10^{-8} \mathrm{~T}$
53. $1.41 \times 10^{-8} \mathrm{~T}$
54. A thin prism having refracting angle 10° is made of glass of refractive index 1.42. This prism is combined with another thin prism of glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of second prism should be
55. 6°
56. 8°
57. 10°
58. 4°
59. Two polaroids P_{1} and P_{2} are placed with their axis perpendicular to each other. Unpolarised light I_{0}, is incident on P_{1}. A third polaroid P_{3} is kept in between P_{1} and P_{2} such that its axis makes an angle 45° with that of P_{1}. The intensity of transmitted light through P_{2} is
60. $\frac{I_{0}}{4}$
61. $\frac{I_{0}}{8}$
62. $\frac{I_{0}}{16}$
63. $\frac{I_{0}}{2}$
64. Young's double slit experiment is first performed in air and then in a medium other than air. It is found that 8th bright fringe in the medium lies where 5th dark fringe lies in air. The refractive index of the medium is nearly
65. 1.59
66. 1.69
67. 1.78
68. 1.25
69. The ratio of resolving powers of an optical microscope for two
wavelengths $\lambda_{1}=4000 \stackrel{0}{\AA}$ and $\lambda_{2}=6000{ }^{0}$ is
70. $9: 4$
71. $3: 2$
72. $16: 81$
73. $8: 27$
74. Which one of the following represents forward bias diode?
75.

2.

3.

4.

26. In a common emitter transistor amplifier the audio signal voltage across the collector is 3 V . The resistance of collector is $3 k \Omega$. If current gain is 100 and the base resistance is $2 k \Omega$, the voltage and power gain of the amplifier is

1. 15 and 200
2. 150 and 15000
3. 20 and 2000
4. 200 and 1000
5. The given electrical network is equivalent to

6. NOR gate
7. NOT gate
8. AND gate
9. The photoelectric threshold wavelength of silver is
$3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is

Given $h=4.14 \times 10^{-15} \mathrm{eVs}$ and $c=3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$]

1. $\approx 0.6 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
2. $\approx 61 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
3. $\approx 0.3 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
4. $\approx 6 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
5. Two blocks A and B of masses 3 m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively

6. $\frac{g}{3}, g$
7. g, g
8. $\frac{g}{3}, \frac{g}{3}$
9. $g, \frac{g}{3}$
10. One end of string of length l is connected to a particle of mass ' m ' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed ' v ', the net force on the particle (directed towards centre) will be (T represents the tension in the string)
11. $T+\frac{m v^{2}}{l}$
12. $T-\frac{m v^{2}}{l}$
13. zero
14. T
15. Two discs of same moment of inertia rotating about their regular axis passing through center and perpendicular to the plane of disc with angular velocities ω_{1} and ω_{2}. They are brought into contact face to face coinciding the axis of rotation. The expression for loss of energy during this process is:
16. $\frac{1}{4} I\left(\omega_{1}-\omega_{2}\right)^{2}$
17. $I\left(\omega_{1}-\omega_{2}\right)^{2}$
18. $\frac{1}{8} I\left(\omega_{1}-\omega_{2}\right)^{2}$
19. $\frac{1}{2} I\left(\omega_{1}+\omega_{2}\right)^{2}$

Two astronauts are floating in gravitational free space after having lost contact with their spaceship. The two will

1. move towards each other.
2. move away from each other.
3. will become stationary.
4. keep floating at the same distance between them.
5. The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then
6. $\mathrm{d}=1 \mathrm{~km}$
7. $d=\frac{3}{2} \mathrm{~km}$
8. $\mathrm{d}=2 \mathrm{~km}$
9. $d=\frac{1}{2} \mathrm{~km}$
10. The bulk modulus of a spherical object is ' B '. If it is subjected to uniform pressure ' p ', the fractional decrease in radius is
11. $\frac{B}{3 p}$
12. $\frac{3 p}{B}$
13. $\frac{p}{3 B}$
14. $\frac{p}{B}$
15. A gas mixture consists of 2 moles of O_{2} and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is
16. 15 RT
17. 9 RT
18. 11 RT
19. 4 RT
20. A particle executes linear simple harmonic motion with an amplitude of 3 cm . When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is
21. $\frac{\sqrt{5}}{2 \pi}$
22. $\frac{4 \pi}{\sqrt{5}}$
23. $\frac{2 \pi}{\sqrt{3}}$
24. $\frac{\sqrt{5}}{\pi}$
25. A spring of force constant k is cut into lengths of ratio $1: 2: 3$. They are connected in series and the new force constant is k/. Then they are connected in parallel and force constant is $\mathrm{k} /$. Then $\mathrm{k} / \mathrm{k} / /$ is:
26. $1: 9$
27. $1: 11$
28. $1: 14$
29. $1: 6$
30. Suppose the charge of a proton and an electron differ slightly. One of them is $(-e)$, the other is $(e+\Delta e)$. If the net of electrostatic force and gravitational force between two
hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then Δe is of the order of..... Given mass of hydrogen is: $\left[m_{h}=1.67 \times 10^{-27} \mathrm{~kg}\right]$
31. $10^{-23} \mathrm{C}$
32. $10^{-37} \mathrm{C}$
33. $10^{-47} \mathrm{C}$
34. $10^{-20} \mathrm{C}$
35. The diagrams below show regions of equipotentials.

A positive charge is moved from A to B in each diagram.

1. In all the four cases the work done is the same.
2. Minimum work is required to move q in figure (I)
3. Maximum work is required to move q in figure (II).
4. Maximum work is required to move q in figure (III).
5. If θ_{1} and θ_{2} be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of $\operatorname{dip} \theta$ is given by
6. $\tan ^{2} \theta=\tan ^{2} \theta_{1}+\tan ^{2} \theta_{2}$
7. $\cot ^{2} \theta=\cot ^{2} \theta_{1}-\cot ^{2} \theta_{2}$
8. $\tan ^{2} \theta=\tan ^{2} \theta_{1}-\tan ^{2} \theta_{2}$
9. $\cot ^{2} \theta=\cot ^{2} \theta_{1}+\cot ^{2} \theta_{2}$
10. A long solenoid of diameter 0.1 m has 2×10^{4} turns per meter. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s . If the resistance of the coil is $10 \pi^{2} \Omega$, the total charge flowing through the coil during this time is
11. $16 \mu \mathrm{C}$
12. $32 \mu \mathrm{C}$
13. $16 \pi \mu \mathrm{C}$
14. $32 \pi \mu \mathrm{C}$
15. A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L. When the mirror is rotated through a small angle θ the spot of the light is found to move through a distance y on the scale. The angle θ is given by
16. $\frac{y}{x}$
17. $\frac{x}{2 y}$
18. $\frac{x}{y}$
19. $\frac{y}{2 x}$
20. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (kelvin) and mass m, is
21. $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
22. $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
23. $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
24. $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
25. The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is
26. 1
27. 4
28. 0.5
29. 2
30. Radioactive material 'A' has decay constant '8 λ ' and material ' B ' has decay constant ' λ '. Initially they have same number of nuclei. After what time, the ratio of number of nuclei of material 'B' to that 'A will be e ?
31. $\frac{1}{7 \lambda}$
32. $\frac{1}{8 \lambda}$
33. $\frac{1}{9 \lambda}$
34. $\frac{1}{\lambda}$

Chemistry

Section A

46.

For a given reaction,
$\Delta \mathrm{H}=35.5 \mathrm{kJmol}^{-1}$ and
$\Delta \mathrm{S}=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ The reaction is spontaneous at(Assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with temperature.)

1. $\mathrm{T}>425 \mathrm{~K}$
2. all temperatures
3. T > 298 K
4. $\mathrm{T}<425 \mathrm{~K}$
5. The element $\mathrm{Z}=114$ has been discovered recently. It will belong to which of the following family/group and electronic configuration?

Carbon family, $\quad[\mathrm{Rn}] 5 \mathrm{f}^{14} 6$ 1. $\mathrm{d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{2}$

Oxygenfamily, $[\mathrm{Rn}] 5 \mathrm{f}^{14} 6$
2. $\mathrm{d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{4}$

Nitrogen family, $[\mathrm{Rn}] 5 \mathrm{f}^{14} 6$
3. $\mathrm{d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{6}$

Halogen family, $\quad[\mathrm{Rn}] 5 \mathrm{f}^{14} 6$ 4. $\mathrm{d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{5}$
48. Which of the following pairs of compounds is isoelectronic and isostructural?

1. $\mathrm{TeI}_{2}, \mathrm{XeF}_{2}$
2. $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$
3. $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
4. $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$
5. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an
initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy ΔU of the gas in joules will be
6. -500 J
7. -505 J
8. +505 J
9. 1136.25 J
10. The equilibrium constants of the following are
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; K_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}_{3} \quad \mathrm{~K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{3} \quad K_{3}$
The equilibrium constant (K) of the reaction :
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \stackrel{K}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be
11.

$K_{2} K_{3}^{3} / K_{1}$
2.

$$
K_{2} K_{3} / K_{1}
$$

3.

$$
K_{2}^{3} K_{3} / K_{1}
$$

4.

$$
K_{1} K_{3}^{3} / K_{2}
$$

51. Concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} L^{-1}$. Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
52. 2. 66×10^{-12}
1. 4.5×10^{-11}
2. 5. 3×10^{-12}
1. 2.42×10^{-8}
2. In which pair of ions both the species contain S - S bond?
3. $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
4. $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
5. $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
6. $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
7. HgCl_{2} and I_{2} both when dissolved in water containing I^{-}ions, the pair of species formed is
8. $\mathrm{HgI}_{2}, \mathrm{I}^{-}$
9. $\mathrm{HgI}_{4}^{2-}, \mathrm{I}_{3}^{-}$
10. $H g_{2} I_{2}, \mathrm{I}^{-}$
11. $\mathrm{HgI}_{2}, \mathrm{I}_{3}^{-}$
12. With respect to the conformers of ethane, which of the following statements is true?
13. Bond angle changes but bond length remains same.
14. Both bond angle and bond length change.
15. Both bond angle and bond length remain same.
16. Bond angle remains same but bond length changes.
17. Which is the incorrect statement?
18. Density decreases in case of crystals with Schottky defect.
19. $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezoelectric crystal.
20. Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal.
$\mathrm{FeO}_{0,98}$ has non -
stoichiometric metal
21. deficiency defect.
22. In the electrochemical cell :

[^0]changed to 1.0 M and that of CuSO_{4} changed to 0.01 M ,the emf changes to E_{2}. From the following, which one is the relationship between E_{1} and E_{2}
(Given, RT/F = 0.059)

1. $\mathrm{E}_{1}<\mathrm{E}_{2}$
2. $\mathrm{E}_{1}>\mathrm{E}_{2}$
3. $\mathrm{E}_{2}=0 \neq \mathrm{E}_{1}$
4. $\mathrm{E}_{1}=\mathrm{E}_{2}$
5. A first order reaction has a specific reaction rate of $10^{-2} \mathrm{sec}^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?
6. 138.6 sec
7. 346.5 sec
8. 693.0 sec
9. 238.6 sec
10. Extraction of gold and silver involves leaching with CN^{-}ion.
Silver is later recovered by
11. distillation
12. zone refining
13. displacement with Zn
14. liquation.
15. The correct order of the stoichiometries of AgCl formed when AgNO_{3} in excess is treated with the complexes
$\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$,
$\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectively is
16. $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
17. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
18. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
19. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
20. Pick out the correct statement with respect to $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$

It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and 1. tetrahedral.

It is $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised and 2. octahedral.

It is dsp 2 hybridised and
3. square planar.

It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and 4. octahedral.
61. The heating of phenyl methyl ether with HI produces

1. iodobenzene
2. phenol
3. benzene
4. ethyl chloride.
5. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating?

6.

3.

4.

63. Which of the following statements is not correct?

1. Ovalbumin is a simple food reserve in egg-white
2. Blood proteins thrombin and fibrinogen are involved in blood clotting
3. Denaturation makes the proteins more active
4. Insulin maintains the sugar level in the blood of a human body
5. The species, having bond angles of 120° is
6. CIF_{3}
7. $N C l_{3}$
8. $B C l_{3}$
9. PH_{3}

The most suitable method of separation of 1:1 mixture of ortho and para-nitrophenols is

1. chromatography
2. crystallisation
3. steam distillation
4. sublimation.
5. Which one of the following statement is not correct?
6. The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium.
7. Enzymes catalyse mainly biochemical reactions.
8. Coenzymes increase the catalytic activity of enzyme.
9. Catalyst does not initiate any reaction.
10. Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field?
11. K
12. Rb
13. Li
14. Na
15. It is because of inability of $n s^{2}$ electrons of the valence shell to participate in bonding that
16. Sn^{2+} is Oxidising while Pb^{4+} is reducing
17. Sn^{2+} and Pb^{2+} are both Oxidising and reducing
18. Sn^{4+} is reducing while Pb^{4+} is Oxidising
19. Sn^{2+} is reducing while Pb^{4+} is Oxidising.
20. The IUPAC name of the compound

\qquad .
21. 5-formylhex-2-en-3-one
22. 5-methyl-4-oxohex-2-en-5-al
23. 3-keto-2-methylhex-5-enal
24. 3-keto-2-methylhex-4-enal
25. The correct statement regarding electrophile is
26. electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile
27. electrophiles are always neutral species and can form a bond by accepting a pair of electrons from a nucleophile
28. electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile
29. electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile.
30. Which of the following is a sink for CO ?
31. Micro-organisms present in the soil
32. Oceans
33. Plants
34. Haemoglobin
35. Mechanism of a hypothetical reaction
$\mathrm{X}_{2}+\mathrm{Y}_{2} \rightarrow 2 \mathrm{XY}$ is given below :
(i) $\mathrm{X}_{2} \rightarrow \mathrm{X}+\mathrm{X}$ (fast)
(ii) $\mathrm{X}+\mathrm{Y}_{2} \rightleftharpoons \mathrm{XY}+\mathrm{Y}$ (slow)
(iii) $\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{XY}$ (fast)

The overall order of the reaction will be

1. 2
2. 0
3. 1.5
4. 1
5.

The reason for greater range of oxidation states in actinides is attributed to

1. actinide contraction
2. 5f, 6d and 7s sub levels have comparable energies
3. 4 f and 5 d levels being close in energies
4. the radioactive nature of actinoides
5. An example of a sigma bonded organometallic compound is
6. Grignard reagent
7. ferrocene
8. cobaltocene
9. ruthenocene.
10. Which one is the most acidic compound?
11.

2.

3.

4.

CH_{3}
76. Which of the following reactions is appropriate for converting acetamide to methanamine?

1. Hoffmann hypobromamide reaction
2. Stephen's reaction
3. Gabriel phthalimide synthesis

4. Carbylamine reaction

77. The correct increasing order of basic strength for the following compounds is

(I)

(II)

(III)
78. III $<\mathrm{I}<$ II
79. III $<$ II $<$ I
80. II $<\mathrm{I}<$ III
81. II $<$ III $<$ I
82. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be
(Giventhat :
$\mathrm{SrCO}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{SrO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}, \mathrm{K}_{\mathrm{p}}$ $=1.6 \mathrm{~atm}$
83. 10 litre
84. 4 litre
85. 2 litre
86. 5 litre
87. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$,
88. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},
$$

2. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},
$$

3. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

$$
\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
$$

4. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
5. Identify A and predict the type of reaction.

6.

2.

3.
 and cine substitution reaction
4.

81. Consider the reactions,

Identify A, X, Y and Z.

1. A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, ZSemicarbazide.
2. A -Ethanal, X -Ethanol, Y-But-2enal ,Z-Semicarbazone.
3. A-Ethanol, X-Acetaldehyde, YButanone, Z-Hydrazone.
4. A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-Hydrazine.
5. Which one is the wrong statement?
6. The uncertainty principle is $\Delta E \times \Delta t \geq \frac{h}{4 \pi}$
7. Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.
8. The energy of 2s-orbita 1 is less than the energy of 2 p -orbital in case of hydrogen like atoms.
9. de-Broglie's wavelength is given by $\lambda=\frac{h}{m v}$, where $\mathrm{m}=$ mass of
the particle, $\mathrm{v}=$ velocity of the partice.
10. Which one of the following pairs of species have the same bond order?
11. $\mathrm{O}_{2}, \mathrm{NO}^{+}$
12. $\mathrm{CN}^{-}, \mathrm{CO}$
13. $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}$
14. CO, NO
15. Name the gas that can readily decolourise acidified KMnO_{4} solution.
16. SO_{2}
17. NO_{2}
18. $\mathrm{P}_{2} \mathrm{O}_{5}$
19. CO_{2}
20. Column-Column-II I

(A) $\mathrm{XX} \mathrm{\prime}$	(i) T-shape
(B) XX_{1}	(ii) $\begin{gathered}\text { Pentagonal } \\ \text { bipyramidal }\end{gathered}$
(C) XX_{5}	(iii) Linear
(D) XX_{7}	(iv) Square pyramidal
	(v) Tetrahedral

Match the interhalogen compounds of column-I with the geometry in column-II and assign the correct code.

$$
\begin{aligned}
& \text { 1. A -iii } ; \mathrm{B}-\mathrm{i} ; \mathrm{C}-\mathrm{iv} ; \mathrm{D}-\mathrm{ii} \\
& \text { 2. A-v } ; \mathrm{B}-\mathrm{iv} ; \mathrm{C}-\mathrm{iii} ; \mathrm{D}-\mathrm{ii}
\end{aligned}
$$

3. A-iv ; B - iii ; C -ii ; D-i
4. A-iii ; B - iv ; C -i ; D - ii
5. Which one is the correct order of acidity?
6.

2. $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{CH}_{3}$

3. $\mathrm{CH}_{3}-\mathrm{CH}_{3}-\mathrm{C} \equiv \stackrel{\mathrm{CH}_{2}}{=}=\mathrm{CH}_{2} \gg \mathrm{CH} \equiv \mathrm{CH}$

4. $\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-$
edict the correct intermediate r
duct in the following react
${ }_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{HgSO}_{4}]{\mathrm{H}_{2} \mathrm{O} \mathrm{H}_{2} \mathrm{SO}_{4}}$

Intermediate $\rightarrow \underset{(\mathrm{B})}{\text { Product }}$
1.

2.

3.
CH_{3} 4. $\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}$

88. Which of the following is dependent on temperature?

1. Molarity
2. Mole fraction
3. Weight percentage
4. Molality
5. If molality of the dilute solution is doubled, the value of molal depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ will be
6. halved
7. tripled
8. unchanged
9. doubled.
10. Mixture of chloroxylenol and terpineol acts as
11. antiseptic
12. antipyretic
13. antibiotic
14. analgesic.

Section A

91. Viriods differ from viruses in having
92. DNA molecules without protein coat
93. RNA molecules with protein coat
94. RNA molecules without protein coat
95. DNA molecules with protein coat
96. Anaphase Promoting Complex (APC) is a protein degradation machinery necessary for proper mitosis of animal cell. If APC is defective in a human cell, which of the following is expected to occur?
97. Chromosomes will be fragmented.
98. Chromosomes will not segregate.
99. Recombination of chromosome arms will occur.
100. Chromosomes will not condense.
101. During DNA replication, Okazaki fragments are used to elongate
102. the lagging strand towards replication fork
103. the leading strand away from replication fork
104. the lagging strand away from the replication fork
105. the leading strand towards replication fork
106. The genotypes of a husband and wife are $I^{A} I^{B}$ and I^{A}

Among the blood types of their children, how many different genotypes and phenotypes are possible?

1. 3 genotypes; 4 phenotypes
2. 4 genotypes; 3 phenotypes
3. 4 genotypes; 4 phenotypes
4. 3 genotypes; 3 phenotypes
5. Which of the following RNAs should be the most abundant RNA in animal cell?
6. tRNA
7. mRNA
8. SnRNA
9. rRNA
10. Spliceosomes are not found in cells of
11. Fungi
12. Animals
13. Bacteria
14. Plants
15. If there are 999 bases in an RNA that code for a protein with 333 amino acids, and the base at position 901 is deleted such that the length of the RNA becomes 998 bases, how many codons will be altered?
16. 11
17. 33
18. 333
19. 1
20. Among the following characters, which one was not considered by Mendel in his experiments on pea?
21. Trichomes-Glandular or nonglandular
22. Seed-Green or yellow
23. Pod-Inflated or constricted
24. Stem-Tall or dwarf
25. Plants which produce characteristic pneumatophores and show vivipary belong to
26. halophytes
27. psammophytes
28. hydrophytes
29. mesophytes
100.The association of histone H_{1} with a nucleosome indicates that
30. DNA replication is occurring
31. The DNA is condensed into a chromatin fibre
32. The DNA double helix is exposed
33. Transcription is occurring
34. Which one from those given below is the period for Mendel's hybridisation experiments?
35. 1840-1850
36. 1857-1869
37. 1870-1877
38. 1856-1863
102.Root hairs develop from the region of
39. elongation
40. root cap
41. meristematic activity
42. maturation
103.In Bougainvillea, thorns are the modifications of
43. adventitious root
44. stem
45. leaf
46. stipules
104.DNA replication in bacteria occurs
47. within nucleolus
48. prior to fission
49. just before transcription
50. during S phase
105.The water potential of pure water is
51. Less than zero
52. More than zero but less than one
53. More than one
54. Zero
106.An example of colonial alga is

1. Volvox

2. Ulothrix
3. Spirogyra

4. Chlorella

107.Which of the following components provides sticky character to the bacterial cell?

1. Nuclear membrane
2. Plasma membrane
3. Glycocalyx
4. Cell wall
108.The final proof for DNA as the genetic material came from the experiments of
5. Hershey and Chase
6. Avery, MacLeod and McCarty
7. Hargobind Khorana
8. Griffith
109.The DNA fragments separated on an agarose gel can be visualised after staining with

1. Acetocarmine

2. Aniline blue
3. Ethidium bromide
4. Bromophenol blue
5. What is the criterion for DNA fragments movement on agarose gel during gel electrophoresis ?
6. The smaller the fragment size, the farther it moves.
7. Positively charged fragments move to farther end.
8. Negatively charged fragments do not move.
9. The larger the fragment size, the farther it moves.
10. Which of the following options gives the correct sequence of events during mitosis?
11. Condensation \rightarrow nuclear membrane disassembly \rightarrow arrangement at equator \rightarrow centromere division \rightarrow separation of chromatids \rightarrow telophase
12. Condensation \rightarrow crossing over \rightarrow nuclear membrane
disassembly \rightarrow segregation \rightarrow
telophase
13. Condensation \rightarrow segregation \rightarrow arrangement at the equator \rightarrow centromere division \rightarrow telophase
14. Condensation \rightarrow nuclear membrane disassembly \rightarrow crossing over \rightarrow segregation \rightarrow telophase
15. Which of the following are found in extreme saline conditions?
16. Eubacteria
17. Cyanobacteria
18. Mycobacteria
19. Archaebacteria
20. Which among the following are the smallest living cells, known without a definite cell wall, pathogenic to plants as well as animals and can survive without oxygen?

1. Pseudomonas

2. Mycoplasma

3. Nostoc

4. Bacillus

114.Fruit and leafdrop at early stages can be prevented by the application of

1. ethylene
2. auxins
3. gibberellic acid
4. cytokinins
5. Which of the following is correctly matched with the product produced by them?
6. Methanobacterium : Lactic acid
7. Penicillium notatum : Acetic acid
8. Saccharomyces cerevisiae: Ethanol
9. Acetobacter aceti : Antibiotics
10. Which of the following facilitates opening of stomatal aperture?
11. Decrease in turgidity of guard cells
12. Radial orientation of cellulose microfibrils in the cell wall of guard cells
13. Longitudinal orientation of cellulose microfibrils in the cell wall of guard cells
14. Contraction of outer wall of guard cells
15. Which statement is wrong for Krebs' cycle?

There is one point in the cycle

1. where FAD^{+}is reduced to FADH_{2}.
2. During conversion of succinyl CoA to succinic acid, a molecule of GTP is synthesised.
3. The cycle starts with condensation of acetyl group
(acetyl CoA) with pyruvic acid to yield citric acid.
4. There are three points in the cycle where NAD^{+}is reduced to $\mathrm{NADH}+\mathrm{H}^{+}$.
5. A gene whose expression helps to identify transformed cell is known as
6. vector
7. plasmid
8. structural gene
9. selectable marker
10. A dioecious flowering plant prevents both
11. autogamy and geitonogamy
12. geitonogamy and xenogamy
13. cleistogamy and xenogamy
14. autogamy and xenogamy.
15. Flowers which have single ovule in the ovary and are packed into inflorescence are usually pollinated by
16. bee
17. wind
18. bat
19. water
121.Attractants and rewards are required for
20. entomophily
21. hydrophily
22. cleistogamy
23. anemophily
122.Functional megaspore in an angiosperm develops into an
24. endosperm
25. embryo sac
26. embryo
27. ovule
123.Double fertilisation is exhibited by
28. algae
29. fungi
30. angiosperms
31. gymnosperms
124.The morphological nature of the edible part of coconut is
32. cotyledon
33. endosperm
34. pericarp
35. perisperm
125.At which of the following stages of sewage treatment, suspended solids are removed ?
36. Secondary treatment
37. Primary treatment
38. Sludge treatment
39. Tertiary treatment
126.Phosphoenol pyruvate is the primary CO_{2} acceptor in
40. C_{4} plants
41. C_{2} plants
42. C_{3} and C_{4} plants
43. C_{3} plants
127.Select the mismatch.
44. Cycas-Dioecious
45. Salvinia - Heterosporous
46. Equisetum - Homosporous
47. Pinus - Dioecious
48. Coconut fruit is a
49. berry
50. nut
51. capsule
52. drupe
129.The vascular cambium normally gives rise to
53. primary phloem
54. secondary xylem
55. periderm
56. phelloderm
57. Which of the following is made up of dead cells?
58. Collenchyma
59. Phellem
60. Phloem
61. Xylem parenchyma
131.Identify the wrong statement in context of heartwood.
62. It is highly durable.
63. It conducts water and minerals efficiently.
64. It comprises dead elements with highly lignified walls.
65. Organic compounds are deposited in it.

132. Select the mismatch.

1. Rhodospirillum - Mycorrhiza
2. Anabaena - Nitrogen fixer
3. Rhizobium - Alfalfa
4. Frankia - Alnus
133.The process of separation and purification of expressed protein formed in heterologous host before marketing is called
5. downstream processing
6. bioprocessing
7. postproduction processing
8. upstream processing.
134.Zygotic meiosis is characteristic of
9. Fucus

2. Funaria
 3. Chlamydomonas
 4. Marchantia

135.Life cycles of Ectocarpus and Ficus respectively are

1. diplontic, haplodiplontic
2. haplodiplontic, diplontic
3. haplodiplontic, haplontic
4. haplontic, diplontic
5. With reference to factors affecting the rate of photosynthesis, which of the following statements is not correct?
6. Atmospheric CO_{2} concentration upto 0.05% can enhance CO2 fixation rate
7. C3 plants respond to higher temperatures with enhanced photosynthesis while C4 plants have much lower temperature optimium
8. Tomato is a green hous crop which can be grown in Co2 enriche atmosphere for higher yield
9. Light saturation for CO_{2} fixation occurs at 10% of full sunlight
10. Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP?
11. Ribosome
12. Chloroplast
13. Mitochondrion
14. Lysosome
Zoology

Section A

138. Which of the following statements is correct?
139. The descending limb of loop of Henle is impermeable to water.
140. The ascending limb of loop of Henle is permeable to water.
141. The descending limb of loop of Henle is permeable to electrolytes.
142. The ascending limb of loop of Henle is impermeable to water.
139.A baby boy aged two years is admitted to play school and passes through a dental check-up. The dentist observed that the boy had twenty teeth. Which teeth were absent?
143. Canines
144. Premolars
145. Molars
146. Incisors
147. Which one of the following statements is not valid for aerosols?
148. They alter rainfall and monsoon patterns.
149. They cause increased agricultural productivity.
150. They have a negative impact on agricultural land.
151. They are harmful to human health.
141.Lungs are made up of air-filled sacs, the alveoli. They do not collapse even after forceful expiration, because of
152. inspiratory reserve volume
153. tidal volume
154. expiratory reserve volume
155. residual volume
142.The function of copper ions in copper releasing IUDs is
156. they inhibit gametogenesis
157. they make uterus unsuitable for implantation
158. they inhibit ovulation
159. they suppress sperm motility and fertilising capacity of sperms
160. Which of the following options best represents the enzyme composition of pancreatic juice?
161. Amylase, pepsin, trypsinogen, maltase
162. Peptidase, amylase, pepsin, rennin
163. Lipase, amylase, trypsinogen, procarboxypeptidase
164. Amylase, peptidase, trypsinogen, rennin
144.Asymptote in a logistic growth curve is obtained when
165. $\mathrm{K}=\mathrm{N}$
166. $\mathrm{K}>\mathrm{N}$
167. $\mathrm{K}<\mathrm{N}$
168. the value of 'r' approaches zero.
145.The region of biosphere reserve which is legally protected and where no human activity is allowed is known as
169. buffer zone
170. transition zone
171. restoration zone
172. core zone.
173. Capacitation occurs in
174. epididymis
175. vas deferens
176. female reproductive tract
177. rete testis
147.The hepatic portal vein drains blood to liver from
178. stomach
179. kidneys
180. intestine
181. heart
182. Match the following sexually transmitted diseases (column I) with their causative agent (column II) and select the correct option.

Column I	Column II
A Gonorrhoea (i)	HIV
B Syphilis	(ii)

	A	B	C	D
1.	iii	iv	i	ii
2.	iv	ii	iii	i
3.	iv	iii	ii	i
4.	ii	iii	iv	i

1. 1
2. 2
3. 3
4. 4
149.Mycorrhizae are the example of
5. amensalism
6. antibiosis
7. mutualism
8. fungistasis

In case of a couple where the male is having a very low sperm count, which technique will be suitable for fertilisation?

1. Gamete intracytoplasmic fallopian transfer
2. Artificial insemination
3. Intracytoplasmic sperm injection
4. Intrauterine transfer
5. Select the correct route for the passage of sperms in male frogs.
6. Testes \rightarrow Vasa efferentia \rightarrow

Kidney \rightarrow Seminal vesicle \rightarrow Urinogenital duct \rightarrow Cloaca
2. Testes \rightarrow Vasa efferentia \rightarrow Bidder's canal \rightarrow Ureter \rightarrow Cloaca
3. Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Bidder's canal \rightarrow Urinogenital duct \rightarrow Cloaca
4. Testes \rightarrow Bidder's canal \rightarrow

Kidney \rightarrow Vasa efferentia \rightarrow
Urinogenital duct \rightarrow Cloaca
152.Frog's heart when taken out of the body continues to beat for sometime.

Select the best option from the following statements.
(a) Frog is a poikilotherm.
(b) Frog does not have any coronary circulation.
(c) Heart is "myogenic" in nature.
(d) Heart is autoexcitable.

1. Only (d)
2. (a) and (b)
3. (c) and (d)
4. Only (c)
153.Important characteristic that hemichordates share with chordates is
5. ventral tubular nerve cord
6. pharynx with gill slits
7. pharynx without gill slits
8. absence of notochord
154.Presence of plants arranged into well defined vertical layers depending on their height can be seen best in
9. tropical rainforest
10. grassland
11. temperate forest
12. tropical savannah
13. Myelin sheath is produced by
14. astrocytes and Schwann cells
15. oligodendrocytes and osteoclasts
16. osteoclasts and astrocytes
17. Schwann cells and oligodendrocytes
156.GnRH, a hypothalamic hormone, needed in reproduction, acts on
18. anterior pituitary gland and stimulates secretion of LH and FSH
19. posterior pituitary gland and stimulates secretion of oxytocin and FSH
20. posterior pituitary gland and stimulates secretion of LH and relaxin
21. anterior pituitary gland and stimulates secretion of LH and oxytocin.
157.Receptor sites for neurotransmitters are present on
22. pre-synaptic membrane
23. tips of axons
24. post-synaptic membrane
25. membranes of synaptic vesicles
26. Hypersecretion of growth hormone in adults does not cause further increase in height, because
27. epiphyseal plates close after adolescence
28. bones loose their sensitivity to growth hormone in adults
29. muscle fibres do not grow in size after birth
30. growth hormone becomes inactive in adults
159.Which cells of 'crypts of Lieberkühn' secrete antibacterial lysozyme?
31. Paneth cells
32. Zymogen cells
33. Kupffer cells
34. Argentaffin cells
160.Adult human RBCs are enucleate. Which of the following statement(s) is/are most appropriate explanation for this feature?
(1) They do not need to reproduce.
(2) They are somatic cells.
(3) They do not metabolise.
(4) All their internal space is available for oxygen transport.
35. Only (1)
36. (1), (2) and (4)
37. (2) and (3)
38. Only (4)
39. Which ecosystem has the maximum biomass?

1. Grassland ecosystem

2. Pond ecosystem
3. Lake ecosystem
4. Forest ecosystem
162.Alexander von Humboldt described which of the following?
5. Laws of limiting factor
6. Species area relationship
7. Population growth equation
8. Ecological biodiversity
163.Out of \qquad 'X' \qquad pairs of ribs in humans only \qquad 'Y' \qquad pairs are true ribs. Select the option that correctly represents values of X and Y and provides their explanation.

X Y

True ribs are attached dorsally to vertebral column and sternum on the two ends The true ribs are dorsally attached to vertebral column but free on ventral side True ribs are dorsally attached to vertebral column but free on ventral side True ribs are attached dorsally to vertebral column and ventrally to the sternum

1. 1
2. 2
3. 3
4. 4
164.In case of poriferans, the spongocoel is lined with flagellated cells called 1. oscula
5. choanocytes
6. mesenchymal cells
7. ostia
165.The pivot joint between atlas and axis is a type of
8. cartilaginous joint
9. synovial joint
10. saddle joint
11. fibrous joint
166.Good vision depends on adequate intake of carotene rich food. Select the best option from the following statements.
(1) Vitamin A derivatives are formed from carotene.
(2) The photopigments are embedded in the membrane discs of the inner segment.
(3) Retinal is a derivative of vitamin
A.
(4) Retinal is a light-absorbing part of all the visual photopigments.
12. (1), (3) and (4)
13. (1) and (3)
14. (2), (3) and (4)
15. (1) and (2)
167.Transplantation of tissues/organs fails often due to non acceptance by the patient's body. Which type of
immune response is responsible for such rejections?
16. Cell-mediated immune response
17. Hormonal immune response
18. Physiological immune response
19. Autoimmune response
168.MALT constitutes about \qquad percent of the lymphoid tissue in human body.
20. 20%
21. 70%
22. 10%
23. 50%
24. Which one of the following is related to ex situ conservation of threatened animal and plants?
25. Biodiversity hotspots
26. Amazon rainforest
27. Himalayan region
28. Wildlife safari parks
170.Artificial selection to obtain cows yielding higher milk output represents
29. directional, as it pushes the mean of the character in one direction
30. disruptive, as it splits the population into two, one yielding higher output and the other lower output

3. stabilising, followed by	3. ADH
disruptive as it stabilises the	4. renin
population to produce higher	
yielding cows	174.A temporary endocrine gland in the
4. stabilising, selection as it	human body is
stabilises this character in the	1. corpus cardiacum
	2. corpus luteum
171. Which of the following represents order of 'Horse'?	3. corpus allatum
1. Perissodactyla	4. pineal gland
2. Caballus	175. Which among these is the correct combination of aquatic mammals?
3. Ferus	1. Dolphins, seals, Trygon
4. Equidae	2. Whales, dolphins, seals
172.Thalassemia and sickle cell anaemia are caused due to a problem in	3. Trygon, whales, seals
globin molecule synthesis. Select the correct statement.	4. Seals, dolphins, sharks
1. Both are due to a quantitative defect in globin chain synthesis.	176.Homozygous purelines in cattle can be obtained by
2. Thalassemia is due to less synthesis of globin molecules.	1. mating of unrelated individuals of same breed
3. Sickle cell anaemia is due to a quantitative problem of globin molecules.	2. mating of individuals of different breed 3. mating of individuals of different species
4. Both are due to a qualitative defect in globin chain synthesis.	4. mating of related individuals of same breed
173.A decrease in blood pressure/volume will not cause the release of	177.A disease caused by an autosomal primary non-disjunction is
1. atrial natriuretic factor	1. Klinefelter's syndrome
2. aldosterone	

2. Turner's syndrome \quad 179.DNA fragments are
3. sickle cell anaemia
4. Down's syndrome
5. Which of the following statements is correct with reference to enzymes?
6. Holoenzyme = Apoenzyme + Coenzyme
7. Coenzyme $=$ Apoenzyme +
Holoenzyme
8. Holoenzyme $=$ Coenzyme + Cofactor
9. Apoenzyme $=$ Holoenzyme + Coenzyme
179.DNA fragments are
10. Negatively charged
11. Neutral
12. Either positively or negatively charged depending on their size
13. Positively charged.
14. Which of the following is not a polymeric?
15. Proteins
16. Polysaccharides
17. Lipids
18. Nucleic acids

[^0]: Zn
 $\mathrm{ZnSO}_{4}(0.01 \mathrm{M}) \| \mathrm{CuSO}_{4}(1.0 \mathrm{M}$)

 Cu
 the emf of this Daniel cell is E_{1}.
 When the concentration of ZnSO_{4} is

