Test Instructions

1. Total duration of this test is $\mathbf{1 8 0}$ minutes.
2. This test has 4 subjects consisting of 180 questions in total.
3. There are $\mathbf{4}$ total sections in the test.
4. Sections Info :

Physics
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt -1

Chemistry

a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt -1

Botany

a. Section \mathbf{A} has 47 questions, compulsory questions 47.4 marks will be given for correct attempt and incorrect attempt -1 .

Zoology

a. Section \mathbf{A} has $\mathbf{4 3}$ questions, compulsory questions 43.4 marks will be given for correct attempt and incorrect attempt -1
5. Total marks for this test is $\mathbf{7 2 0}$ marks.
6. No marks will be deducted for unattempted questions.
7. This test can be submitted only once.
8. Once the test has been submitted, you cannot edit the responses.
9. Results will be anounced post test submission.
10. The test will be auto-submitted once the timer ends.

Physics

Section A

1. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm the correct diameter of the ball is
2. 0.521 cm
3. 0.525 cm
4. 0.053 cm
5. 0.529 cm
6. A moving block having mass m, collides with another stationary block having mass 4 m . The lighter block comes to rest after collision. When the initial velocity of the lighter block is v, then the value of coefficient of restitution (e) will be
7. 0.5
8. 0.25
9. 0.8
10. 0.4
11. The moment of the force,
$\overrightarrow{\mathrm{F}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \widehat{\mathrm{k}}$ at $(2,0,-3)$, about the point ($2,-2,-2$), is given by:
12. $-8 \hat{\mathbf{i}}-4 \hat{\mathrm{j}}-7 \widehat{\mathrm{k}}$
13. $-4 \hat{i}-\hat{j}-8 \widehat{k}$
14. $-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \widehat{\mathrm{k}}$
15. $-7 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-8 \widehat{\mathrm{k}}$
16. Three objects, A: (a solid sphere), B: (a thin circular disk) and C: (a circular ring), each have the same mass M and radius R . They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation:
17. $W_{C}>W_{B}>W_{A}$
18. $W_{A}>W_{B}>W_{C}$
19. $W_{B}>W_{A}>W_{C}$
20. $W_{A}>W_{C}>W_{B}$
21. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $\left(K_{t}\right)$ as well as rotational kinetic energy $\left(K_{r}\right)$ simultaneously. The ratio $K_{t}:\left(K_{t}+K_{r}\right)$ for the sphere is
22. 7:10
23. 5:7
24. 10:7
25. 2:5
26. A carbon resistor of $(47 \pm 4.7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
27. Violet - Yellow - Orange - Silver
28. Yellow - Violet - Orange - Silver
29. Yellow - Green - Violet - Gold
30. Green - Orange - Violet - Gold
31. A battery consists of a variable number n of identical cells (having internal resistance r each) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graphs shows the correct relationship between I and n ?
32.

2.

3.

4.

8. Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is

1. 40Ω
2. 25Ω
3. 250Ω
4. 500Ω
5. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
6. The current source
7. The magnetic field
8. The lattice structure of the material of the rod
9. The induced electric field due to the changing magnetic field
10. An inductor 20 mH , a capacitor 100 $\mu \mathrm{F}$ and a resistor 50Ω are
connected in series across a source of emf, $\mathrm{V}=10 \sin 314 t$. The power loss in the circuit is
11. 0.79 W
12. 0.43 W
13. 2.74 W
14. 1.13 W
15. An EM wave is propagating in a medium with a velocity $\vec{v}=v \hat{i}$. The instantaneous oscillating electric field of this EM wave is along $+y$ axis. Then the direction of oscillating magnetic field of the EM wave will be along
16. -z direction
17. $+z$ direction
18. $-y$ direction
19. $-x$ direction
20. In Young's double slit experiment the separation d between the slits is 2 mm the wavelength λ of the light used is $5896 A$ and distance D between the screen and slits is 100 cm . It is found that the angular width of the fringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to
21. 1.8 mm
22. 1.9 mm
23. 2.1 mm
24. 1.7 mm
25. Unpolarised light is incident from air on a plane surface of a material of refractive index μ. At a particular angle of incidence i, it is found that the reflected and refracted rays are perpendicular to each other. Which of the following options is correct for this situation?
26. Reflected light is polarised with its electric vector parallel to the plane of incidence
27. Reflected light is polarised with its electric vector perpendicular to the plane of incidence
28. $i=\sin ^{-1}\left(\frac{1}{\mu}\right)$
29. $i=\tan ^{-1}\left(\frac{1}{\mu}\right)$
30. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
31. $1: 1$
32. 1:-1
33. $2:-1$
34. 1:-2
35. In the combination of the following gates the output Y can be written in terms of inputs A and B as

36. $\overline{A \cdot B}$
37. $A \cdot \bar{B}+\bar{A} \cdot B$
38. $\overline{A \cdot B}+A \cdot B$
39. $\overline{A+B}$
40. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field \vec{E}. Due to the force $q \vec{E}$, its velocity increases from 0 to $6 \mathrm{~m} \mathrm{~s}^{-1}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively
41. $2 \mathrm{~m} \mathrm{~s}^{-1}, 4 \mathrm{~m} \mathrm{~s}^{-1}$
42. $1 \mathrm{~m} \mathrm{~s}^{-1}, 3 \mathrm{~m} \mathrm{~s}^{-1}$
$3.1 \mathrm{~m} \mathrm{~s}^{-1}, 3.5 \mathrm{~m} \mathrm{~s}^{-1}$
$4.1 .5 \mathrm{~m} \mathrm{~s}^{-1}, 3 \mathrm{~m} \mathrm{~s}^{-1}$
43. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere? (Given : Mass of oxygen molecule
$(m)=2.76 \times 10^{-26} \mathrm{~kg}$,
Boltzmann's constant $k_{B}=1$. $38 \times 10^{-23} \mathrm{JK}^{-1}$)
44. $2.508 \times 10^{4} \mathrm{~K}$
45. $8.360 \times 10^{4} \mathrm{~K}$
46. $5.016 \times 10^{4} \mathrm{~K}$
47. 48. $254 \times 10^{4} \mathrm{~K}$
1. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
2. Raindrops will fall faster
3. Walking on the ground would become more difficult.
4. Time period of a simple pendulum on the Earth would decrease.
5. g on the Earth will not change.
6. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an obiective lens of
7. small focal length and large diameter
8. large focal length and small diameter
9. large focal length and large diameter
10. small focal length and small diameter
11. A block of mass m is placed on a smooth inclined wedge A B C of inclination θ as shown in the figure. The wedge is given an acceleration a towards the right. The relation between a and θ for the block to remain stationary on the wedge is

12. $a=\frac{g}{\operatorname{cosec} \theta}$
13. $a=\frac{g}{\sin \theta}$
14. $a=g \cos \theta$
15. $a=g \tan \theta$
16. Which one of the following statements is incorrect?
17. Rolling friction is smaller than sliding friction.
18. Limiting value of static friction is directly proportional to normal reaction.
19. Frictional force opposes the relative motion.
20. Coefficient of sliding friction has dimensions of length.
21. A body initially at rest and sliding along a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $A B=D$. The height h is equal to

22. $\frac{3}{2} D$
23. D
24. $\frac{7}{5} D$
25. $\frac{5}{4} D$
26. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
27. Angular velocity
28. Moment of inertia
29. Rotational kinetic energy
30. Angular momentum
31. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions A, B and C are K_{A}, K_{B} and K_{C} respectively. $A C$ is the major axis and $S B$ is perpendicular to $A C$ at the position of the Sun S as shown in the figure. Then

32. $K_{A}<K_{B}<K_{C}$
33. $K_{A}>K_{B}>K_{C}$
34. $K_{B}<K_{A}<K_{C}$
35. $K_{B}>K_{A}>K_{C}$
36. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area A and the second wire has crosssectional area $3 A$. If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount?
37. $9 F$
38. $6 F$
39. $4 F$
40. F
41. A small sphere of radius' r ' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
42. r^{3}
43. r^{2}
44. r^{5}
45. r^{4}
46. The power radiated by a black body is P and it radiates maximum energy at wavelength λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$ the power radiated by it becomes $n P$. The value of n is
47. $\frac{3}{4}$
48. $\frac{4}{3}$
49. $\frac{256}{81}$
50. $\frac{81}{256}$
51. A sample of 0.1 g of water at $100^{\circ} \mathrm{C}$ and normal pressure
$\left(1.013 \times 10^{5} \mathrm{~N} \mathrm{~m}^{-2}\right)$ requires 54 cal of heat energy to convert to steam at $100^{\circ} C$. If the volume of the steam produced is 167.1 cc , the change in internal energy of the sample is
52. 104.3 J
53. 208.7 J
54. 42.2 J
55. 84.5 J
56. The volume (V) of a monatomic gas varies with its temperature (T) as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state A to state B, is

57. $\frac{2}{5}$
58. $\frac{2}{3}$
59. $\frac{1}{3}$
60. $\frac{2}{7}$

The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is

1. 26.8%
2. 20 \%
3. 6.25%
4. 12.5%
5. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathrm{~m} \mathrm{~s}^{-2}$ at a distance of 5 m from the mean position. The time period of oscillation is
6. $2 \pi \mathrm{~s}$
7. $\pi \mathrm{s}$
8. 2 s
9. 1 s
10. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is
11. 13.2 cm
12. 8 cm
13. 12.5 cm
14. 16 cm
15. A tuning fork is used to produce resonance in a glass tube. The length
of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{0} C$ two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{0} C$ is
16. $330 \mathrm{~m} \mathrm{~s}^{-1}$
17. $339 \mathrm{~m} \mathrm{~s}^{-1}$
18. $350 \mathrm{~m} \mathrm{~s}^{-1}$
19. $300 \mathrm{~m} \mathrm{~s}^{-1}$
20. An electron falls from rest through a vertical distance h in a uniform and vertically upward directed electric field E. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance h. The time of fall of the electron, in comparison to the time of fall of the proton is
21. smaller
22. 5 times greater
23. 10 times greater
24. equal
25. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A, is
26. Independent of the distance between the plates
27. Linearly proportional to the
distance between the plates
28. Proportional to the square root of the distance between the plates
29. Inversely proportional to the distance between the plates
30. A set of n equal resistors, of value R each, are connected in series to a battery of emf E and internal resistance R. The current drawn is I. Now, the n resistors are connected in parallel to the same battery. Then the current drawn from battery becomes $10 I$. The value of n is
31. 10
32. 11
33. 20
34. 9
35. A metallic rod of mass per unit length $0.5 \mathrm{~kg} m^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction $0.25 T$ is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
36. 7.14 A
37. 5.98 A
38. 14.76 A
39. 11.32 A
40. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is $60 m A$. This inductor is of inductance
41. 0.138 H
42. 138.88 H
43. 1.389 H

4. 13.89 H

39. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be
1.30 cm away from the mirror
40. 36 cm away from the mirror
41. 30 cm towards the mirror
42. 36 cm towards the mirror
43. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is
44. 45^{0}
45. 30^{0}
46. zero
47. When the light of frequency $2 \vartheta_{0}$ (where ϑ_{0} is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is v_{1}. When the frequency of the incident radiation is increased to $5 \vartheta_{0}$, the maximum velocity of electrons emitted from the same plate is v_{2}. The ratio of v_{1} to v_{2} is
48. 1:2
49. 1:4
50. $4: 1$
51. $2: 1$
52. An electron of mass m with an initial velocity $\vec{v}=v_{0} \hat{i}\left(v_{0}>0\right)$ enters an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{0} \hat{\mathrm{i}}$
$\left(\mathrm{E}_{0}=\right.$ constant $\left.>0\right)$ at $\mathrm{t}=0$. If λ_{0} is its de-Broglie wavelength initially, then its de- Broglie wavelength at time t is
53. $\frac{\lambda_{0}}{\left(1+\frac{e E_{0}}{m v_{0}} t\right)}$
54. $\lambda_{0}\left(1+\frac{e E_{0}}{m v_{0}} t\right)$
55. $\lambda_{0} t$
56. λ_{0}
57. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken (in
minutes) for the disintegration of 450 nuclei is
58. 20
59. 10
60. 30
61. 15
62. In a $p-n$ junction diode, change in temperature due to heating
63. affects only reverse resistance
64. affects only forward resistance
65. does not affect resistance of p-n junction
66. affects the overall V-I
characteristics of p-n junction
67. In the circuit shown in the figure, the input voltage V_{i} is $20 V_{B E}=0$ and $V_{C E}=0$. The values of I_{B}, I_{C} and β are given by

$$
I_{B}=40 \mu \mathrm{~A}, I_{C}=10 \mathrm{~mA}, \beta=
$$

1. 250
$I_{B}=25 \mu \mathrm{~A}, I_{C}=5 \mathrm{~mA}, \beta=$
2. 200
3. $I_{B}=20 \mu \mathrm{~A}, I_{C}=5 \mathrm{~mA}, \beta=$
4. 250

$$
I_{B}=40 \mu \mathrm{~A}, I_{C}=5 \mathrm{~mA}, \beta=
$$

4. 125

Chemistry

Section A

46. The correct order of atomic radii in group 13 elements is
47. $\mathrm{B}<\mathrm{Al}<\mathrm{In}<\mathrm{Ga}<\mathrm{Tl}$
48. $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
49. $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<\mathrm{In}$
50. $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$
51. Which of the following molecules represents the order of hybridisation $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$ from left to right atoms?
52. $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
53. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
54. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
55. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
56. Consider the following species : $\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO}$ and CN . Which one of these will have the highest bond order?
57. NO
58. CN^{-}
59. CN^{+}
60. CN
61. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} \mathrm{~g} \mathrm{~L}^{-1}$ at 298 K . The value of its solubility product ($\mathrm{K}_{\text {sp }}$) will be (Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \mathrm{~mol}^{-1}$)
62. $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
63. $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
64. $1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
65. $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
66. For the redox reaction,

$$
\begin{aligned}
& \mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+} \\
& +\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The correct coefficients of the reactants for the balanced equation are

1. $16 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{H}^{+}$
2. $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+}$
3. $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+5 \mathrm{H}^{+}$
4. $5 \mathrm{MnO}_{4}^{-}+16 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{H}^{+}$
5. Which of the following statements is not true for halogens?
6. All form monobasic oxyacids.
7. All are oxidizing agents.
8. All show positive oxidation states.
9. Chlorine has the highest electrongain enthalpy.
10. Which of the following carbocations is expected to be most stable?
11.

3.

4.

53. Identify the major products P, Q and R in the following sequence of reactions:

1.

2.

3.

4.

54. Nitration of aniline in strong acidic medium also gives m - nitroaniline because

1. inspite of substituents nitro group always goes to only m -position
2. in electrophilic substitution reactions amino group is meta directive
3. in absence of substituents nitro group always goes to m -position
4. in acidic (strong) medium aniline is present as anilinium ion.
5. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio of density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
6. $\frac{\sqrt{3}}{\sqrt{2}}$
7. $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
8. $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
9. $\frac{1}{2}$
10. On which of the following properties does the coagulating power of an ion depend?
11. The magnitude of the charge on the ion alone
12. Size of the ion alone
13. Both magnitude and sign of the charge on the ion
14. The sign of charge on the ion alone
15. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
16. Fe
17. Zn
18. Mg
19. Cu
20. Which one of the following ions exhibits d-d transition and paramagnetism as well?
21. CrO_{4}^{2-}
22. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
23. MnO_{4}^{-}
24. MnO_{4}^{2-}
25. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code :

Column - I Column - II A. $\mathrm{Co}^{3+} \quad(\mathrm{i}) \sqrt{8} \mathrm{~B} \cdot \mathrm{MB} . \mathrm{Cr}^{3+}$ (ii) $\sqrt{35}$ B. M. C.

(iii) $\sqrt{3}$ B. M . D.
Ni^{2+}
(iv) $\sqrt{24}$ B. M.
(v) $\sqrt{15}$ B. M.
$\begin{array}{llll}\text { A } & B & \mathbf{C} & \mathbf{D}\end{array}$
(iv) (v) (ii) (i)

A B C D
(i) (ii) (iii) (iv)

A B C D
(iv) (i) (ii) (iii)

A $\quad \mathbf{B} \quad \mathbf{C} \quad D$
(iii) (v) (i) (ii)
60. The geometry and magnetic behavior of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are

1. Square planar geometry and diamagnetic
2. tetrahedral geometry and diamagnetic
3. Square planar geometry and paramagnetic
4. tetrahedral geometry and paramagnetic
5. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]$ is
6. geometrical isomerism
7. coordination isomerism
8. ionization isomerism
9. linkage isomerism.
10. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions :

$$
\mathrm{C}_{2} \mathrm{H}_{8} \xrightarrow{3 \mathrm{C}_{2} / \mathrm{C}} A \xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} B \xrightarrow{\mathrm{Zn}_{\mathrm{n}} \mathrm{HCl}} C
$$

The product C is

1. m -bromotoluene
2. o -bromotoluene
3. 3 -bromo- 2,4,6-trichlorotoluene
4. p-bromotoluene.
5. The compound A on treatment with Na gives B , and with PCl_{5} gives C . B and C react together to give diethyl ether. A, B and C are in the order
6. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
7. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
8. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
9. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
10. Compound $A, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively
11.

2.

3.

4.

65. The difference between amylose and amylopectin is

1. amylopectin has $1 \rightarrow 4 \alpha$ linkage and $1 \rightarrow 6 \alpha$-linkage
2. amylose has $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \beta$-linkage
3. amylopectin has $1 \rightarrow 4 \alpha$ linkage and $1 \rightarrow 6 \beta$-linkage
4. amylose is made up of glucose and galactose.
5. Regarding cross-linked or network polymers, which of the following statements is incorrect?
6. They contain covalent bonds between various linear polymer chains.
7. They are formed from bi- and trifunctional monomers.
8. Examples are bakelite and melamine.
9. They contain strong covalent bonds in their polymer chains.
10. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
A) $60 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{M}{10}$ NaOH
B) $55 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{M}{10}$ NaOH
C) $75 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{M}{5}$ NaOH
D) $100 \mathrm{~mL} \frac{M}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{M}{10}$ NaOH
pH of which one of them will be equal to 1 ?
11. B
12. A
13. D
14. C
15. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 s^{2} 2 s^{2} 2 p^{3}$, the simplest formula for this compound is
16. $\mathrm{Mg}_{2} X_{3}$
17. MgX_{2}
18. $\mathrm{Mg}_{2} X$
19. $\mathrm{Mg}_{3} X_{2}$
20. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
21. formation of intramolecular H bonding
22. formation of carboxylate ion
23. more extensive association of carboxylic acid via van der Waals' forces of attraction
24. formation of intermolecular H bonding.
25. The correction factor 'a' to the ideal gas equation corresponds to
26. density of the gas molecules
27. volume of the gas molecules
28. electric field present between the gas molecules
29. forces of attraction between the gas molecules.
30. Which one of the following conditions will favour maximum formation of the product in the reaction

$$
\mathrm{A}_{2(\mathrm{~g})}+\mathrm{B}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{X}_{2(\mathrm{~g})}, \Delta_{\mathrm{r}} \mathrm{H}=-\mathrm{X}
$$

$$
\mathrm{kJ} ?
$$

1. Low temperature and high pressure
2. Low temperature and low pressure
3. High temperature and high pressure
4. High temperature and low pressure
5. Which one of the following elements is unable to form MF_{6}^{3-} ion?
6. Ga
7. AI
8. B
9. In
10. Which of the following is correct with respect to -I effect of the substituents?($\mathrm{R}=$ alkyl)
11. $-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$
12. $-\mathrm{CH}_{3}<-\mathrm{OR}<-\mathrm{F}$
13. $-\mathrm{NH}_{2}>-\mathrm{OR}>-\mathrm{F}$
14. $-\mathrm{NR}_{2}>-\mathrm{OR}>-\mathrm{F}$
15. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
16. $\mathrm{CH} \equiv \mathrm{CH}$
17. $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
18. $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
19. CH_{4}
20. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
21. $\mathrm{N}_{2} \mathrm{O}_{5}$
22. NO_{2}
23. $\mathrm{N}_{2} \mathrm{O}$
24. NO
25. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction
26. is halved
27. is doubled
28. is tripled
29. remains unchaged
30. The correct difference between first and second order reactions is that
31. the rate of a first-order reaction does not depend on reactant concentrations; the rate of a second-order reaction does depend on reactant concentrations
32. the half-life of a first-order reaction does not depend on $[A]_{0}$ the half-life of a second-order reaction does depend on $[A]_{0}$
33. a first-order reaction can be catalysed; a second order reaction cannot be catalysed
34. the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations.
35. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
36. tetranuclear
37. mononuclear
38. trinuclear
39. dinuclear.
40. In the reaction,

the electrophile involved is
dichloromethyl cation
41. $\left(\stackrel{+}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
42. formyl cation $(\stackrel{+}{\mathrm{C}} \mathrm{HO})$
dichloromethyl anion
43. $\left(\overline{\mathrm{C}} \mathrm{HCl}_{2}\right)$
44. dichlorocarbene (: CCl_{2})
45. Which of the following compounds can form a zwitter ion?
46. Aniline
47. Acetanilide
48. Benzoic acid
49. Glycine
50. The bond dissociation energies of $\mathrm{X}_{2}, \mathrm{Y}_{2}$ and XY are in the ratio of $1: 0.5: 1 . \Delta \mathrm{H}$ for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
51. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
52. $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
53. $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
54. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
55.

Consider the change in oxidation state of bromine corresponding to different emf values as shown in the given diagram :

Then the species undergoing disproportionation is

1. BrO_{3}^{-}
2. BrO_{4}^{-}
3. Br_{2}
4. HBrO
5. In which case is number of molecules of water maximum?
6. 18 mL of water
7. 0.18 g of water
8. 0.00224 L of water vapours at 1 atm and 273 K
9. $10^{-1} \mathrm{~mol}$ of water
10. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
11. 1.4
12. 3.0
13. 2.8
14. 4.4
15. Which one is a wrong statement?
16. Total orbital angular momentum of electron in s-orbital is equal to zero.
17. An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
18. The electronic configuration of N atom is

The value of m for d_{z}^{2} is 4. zero .
86. Which of the following oxides is most acidic in nature?

1. MgO
2. BeO
3. BaO
4. CaO
5. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
6. $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
7. $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
8. $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
9. $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$
10. Given van der Waals' constant for $\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2} are respectively 4.17,0.244,1.36 and 3.59, which one of the following gases is most easily liquefied?
11. NH_{3}
12. H_{2}
13. O_{2}
14. CO_{2}
15. The correct order of N -compounds in its decreasing order of oxidation states is
16. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
17. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
18. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
19. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$
20. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom 'Cl' is
21. one
22. two
23. four
24. three

Botany

Section A

91. Casparian strips occur in
92. epidermis
93. pericycle
94. cortex
95. endodermis
96. Which of the following organisms are known as chief producers in the
oceans?
97. Dinoflagellates
98. Diatoms
99. Cyanobacteria
100. Euglenoids
101. Select the incorrect match.
102. Lamp brush chromosomes Diplotene bivalents
103. Allosomes - Sex chromosomes
104. Sub-metacentric chromosomes -L-shaped chromosomes
105. Polytene chromosomes - Oocytes of amphibians
106. Select the correct match
107. Ribozyme - Nucleic acid
108. $\mathrm{F}_{2} \mathrm{x}$ Recessive parent- Dihybrid cross
109. T.H. Morgan - Transduction
110. G. Mendel - Transformation
111. Which of the following characteristics represent 'inheritance of blood groups' in humans?
(i) Dominance
(ii) Co-dominance
(iii) Multiple allele
(iv) Incomplete dominance
(v) Polygenic inheritance
112. (ii), (iii) and (v)
113. (i), (ii) and (iii)
114. (ii), (iv) and (v)
115. (i), (iii) and (v)
116. Stomatal movement is not affected by
117. temperature
118. light
119. O_{2} concentration
120. CO_{2} concentration
121. Which of the following pairs is wrongly matched?
122. Starch synthesis in pea: Multiple alleles
123. ABO blood grouping : Codominance
124. XO type sex determination: Grasshopper

4. T.H. Morgan: Linkage

98. Ciliates differ from all other protozoans in
99. using flagella for locomotion
100. having a contractile vacuole for removing excess water
101. using pseudopodia for capturing prey
102. having two types of nuclei
103. The Golgi complex participates in
104. fatty acid breakdown
105. formation of secretory vesicles
106. respiration in bacteria
107. activation of amino acid
100.Which of the following statements is correct?
108. Ovules are not enclosed by ovary wall in gymnosperms
109. Selaginella is heterosporous, while Salvinia is homosporous.
110. Horsetails are gymnosperms
111. Stems are usually unbranched in both Cycas and Cedrus.
101.Winged pollen grains are present in
112. Mustard
113. Cycas
114. Mango
115. Pinus
102.All of the following are part of an operon except
116. an operator
117. structural genes
118. an enhancer
119. a promoter
120. What is the role of NAD^{+}in cellular respiration?
121. It functions as an enzyme
122. It functions as an electron carrier
123. It is a nucleotide source for ATP synthesis.
124. It is the final electron acceptor for anaerobic respiration.
104.Secondary xylem and secondary phloem in dicot stem are produced by
125. vascular cambium
126. phellogen
127. apical meristem
128. axillary meristem
105.Match the items given in column I with those in column II and select the correct option given below.

Column I Column II

It is a place
having a
A.Herbarium(i) $\begin{aligned} & \text { collection of } \\ & \text { preserved }\end{aligned}$ plants and animals.
A list that enumerates methodically all the species
B. Key (ii) found in an area with brief description aiding identification
C. Museum (iii) Is a place where dried and pressed plant specimens mounted on

Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as

1. polysome
2. polyhedral bodies
3. plastidome
4. nucleosome
5. Which of the following elements is responsible for maintaining turgor in cells?
6. Magnesium
7. Sodium
8. Potassium
9. Calcium
114.In which of the following forms is iron absorbed by plants?
10. Ferric
11. Ferrous
12. Free element
13. Both ferric and ferrous
14. Which technique was employed while proving the semi-conservative mode of replication of DNA for the first time?
15. Paper chromatography
16. Density gradient centrifugation
17. Mass spectroscopy
18. Electrophoresis
19. Which of these statements is

incorrect?

1. Most of the enzymes of TCA cycle are present in mitochondrial matrix.
2. Glycolysis occurs in cytosol.
3. Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
4. Oxidative phosphorylation takes place in outer mitochondrial membrane.
5. Select the correct statement.
6. Franklin Stahl coined the term "linkage".
7. Punnett square was developed by a British scientist.
8. Spliceosomes take part in translation.
9. Transduction was discovered by S. Altman
10. Offsets are produced by
11. meiotic divisions
12. mitotic divisions
13. parthenocarpy
14. parthenogenesis
15.

Pollen grains can be stored for several years in liquid nitrogen having a temperature of

1. $-120^{\circ} \mathrm{C}$
2. $-80^{\circ} \mathrm{C}$
3. $-196^{\circ} \mathrm{C}$
4. $-160^{\circ} \mathrm{C}$
120.Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its life cycle without the other?
5. Hydrilla
6. Yисса
7. Banana
8. Viola
9. Which of the following has proved helpful in preserving pollen as fossils?
10. Pollen kitt
11. Cellulosic intine
12. Oil content
13. Sporopollenin
122.Double fertilisation is
14. fusion of two male gametes of a pollen tube with two different eggs
15. fusion of one male gamete with two polar nuclei
16. fusion of two male gametes with one egg
17. syngamy and triple fusion
123.AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?
18. AGGUAUCGCAU
19. UGGTUTCGCAT
20. ACCUAUGCGAU
21. UCCAUAGCGUA
124.Select the wrong statement.
22. Cell wall is present in members of fungi and plantae.
23. Mushrooms belong to basidiomycetes.
24. Pseudopodia are locomotory and feeding structures in sporozoans.
25. Mitochondria are the powerhouse of the cell in all kingdoms except monera.
26. Which of the following events does not occur in rough endoplasmic reticulum?
27. Protein folding
28. Protein glycosylation
29. Cleavage of signal peptide
30. Phospholipid synthesis
31. Which of the following flowers only once in its lifetime?
32. Bamboo species
33. Jackfruit
34. Mango
35. Papaya
36. Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?
37. Retrovirus
38. Ti plasmid
39. λ phage
40. pBR322
41. Which among the following is not a prokaryote?
42. Saccharomyces
43. Mycobacterium
44. Nostoc
45. Oscillatoria
129.After karyogamy followed by meiosis, spores are produced exogenously in

1. Neurospora

2. Alternaria

3. Agaricus
4. Saccharomyces
130.Plants having little or no secondary growth are
5. grasses
6. deciduous angiosperms
7. conifers
8. cycads
131.The stage during which separation of the paired homologous chromosomes begins is
9. pachytene
10. diplotene
11. diakinesis
12. zygotene
132.Select the correct match
13. Alec Jeffreys - Streptococcus pneumoniae
14. Alfred Hershey and Martha Chase - TMV
15. Matthew Meselson and F. Stahl Pisum sativum

4. Francois Jacob and Jacques Monod - Lac operon

133.The correct order of steps in Polymerase Chain Reaction (PCR) is

1. extension, denaturation, annealing
2. annealing, extension, denaturation
3. denaturation, extension, annealing
4. denaturation, annealing, extension
134.A 'new' variety of rice was patented by a foreign company,though such varieties have been present in India for a long time. This is related to
5. Co-667
6. sharbati Sonora
7. lerma Rojo
8. basmati
135.In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
9. Indian Council of Medical Research (ICMR)
10. Council for Scientific and Industrial Research (CSIR)
11. Research Committee on Genetic Manipulation (RCGM)
12. Genetic Engineering Appraisal Committee (GEAC)
13. Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its people is called
14. bio-infringement
15. biopiracy
16. biodegradation
17. bioexploitation
18. Which of the following is true for nucleolus?
19. Larger nucleoli are present in dividing cells
20. It is a membrane-bound structure
21. It takes part in spindle formation
22. It is a site for active ribosomal RNA synthesis

Section A

138.Niche is

1. all the biological factors in the organism's environment
2. the physical space where an organism lives
3. the range of temperature that the organism needs to live
4. the functional role played by the organism where it lives
139.Match the items given in column I with those in column II and select the correct option given below.

Column I
Column II
A.Eutrophication(i)

UV-B
radiation
B. Sanitary
B. landfill
(ii) Deforestation
C. $\begin{aligned} & \text { Snow } \text { blindness }\end{aligned} \quad$ (iii) $\begin{aligned} & \text { Nutrient } \\ & \text { enrichment }\end{aligned}$
D. Jhum
cultivation
(iv)
Waste disposal

	A	B	C	D
1	ii	i	iii	iv
2	i	iii	iv	ii
3	iii	iv	i	ii
4	i	ii	iv	iii

1. 1
2. 2
3. 3
4. 4
140.Match the items given in column I with those in column II and select the correct option given below.
$\left.\begin{array}{ll}\text { Column I } & \text { Column II } \\ \hline \text { A. Glycosuria (i) } & \begin{array}{l}\text { Accumulation } \\ \text { of uric acid in } \\ \text { joints }\end{array} \\ \hline \text { B. Gout } & \begin{array}{l}\text { Mass of } \\ \text { (ii) } \\ \text { crystallised } \\ \text { salts within } \\ \text { the kidney }\end{array} \\ \hline \text { C. Renal } & \begin{array}{l}\text { (iii) }\end{array} \\ \hline \text { calculi } & \text { inflammation glomeruli }\end{array}\right]$

	A	B	C	D
1	iii	ii	iv	i
2	i	ii	iii	iv
3	ii	iii	i	iv
4	iv	i	ii	iii

1. 1
2. 2
3. 3
4. 4
5. Which of the following is a secondary pollutant?
6. CO
7. CO_{2}
8. SO_{2}
9. O_{3}
142.The contraceptive 'Saheli'
10. blocks estrogen receptors in the uterus, preventing eggs from getting implanted
11. increases the concentration of estrogen and prevents ovulation in females
12. is an IUD
13. is a post-coital contraceptive
143.In stratosphere, which of the
following elements acts as a catalyst in degradation of ozone and release of molecular oxygen?
14. Carbon
15. Cl
16. Fe
17. Oxygen
18. Match the items given in column I with those in column II and select the correct option given below.

Column I Column II
A.Fibrinogen(i) $\begin{aligned} & \text { Osmotic } \\ & \text { balance }\end{aligned}$

B. Globulin	(ii)Blood clotting	
C. Albumin	(iii)Defence mechanism	
	A	B
1	iii	C
2	ii	i
3	i	ii
4	ii	iii
1.1		iii
2.2		i
3.3		
4.4		
1.2		

145.Match the items given in column I with those in column II and select the correct option given below.

Column I	Column II
A. Tidal volume	(i) $\begin{aligned} & 2500- \\ & 3000 \mathrm{~mL}\end{aligned}$
Inspiratory B. reserve volume	(ii) $\begin{aligned} & 1100- \\ & 1200 \mathrm{~mL}\end{aligned}$
Expiratory C. reserve volume	(iii) ${ }_{\mathrm{mL}}^{500-550}$
D. Residual volume	(iv) $\begin{aligned} & 1000- \\ & 1100 \mathrm{~mL}\end{aligned}$

	A	B	C	D
1	iii	ii	i	iv
2	iii	i	iv	ii
3	i	iv	ii	iii
4	iv	iii	ii	i

1. 1
2. 2
3. 3
4. 4
5. Match the items given in column I with those in column II and select the correct option given below.

Column I
 Column II

Breakdown
A. Proliferative
(i)
of ndometrial
phase lining
B. Secretory
B. phase
(ii) Follicular phase
C. Menstruation(iii) $\begin{aligned} & \text { Luteal } \\ & \text { phase }\end{aligned}$

	A	B	C
1	iii	ii	i
2	i	iii	ii
3	ii	iii	i
4	iii	i	ii

1. 1
2. 2
3. 3
4. 4
5. Match the items given in column I with those in column II and select the correct option given below.

Column I Column II

Between
A. Tricuspid
valve
(i) left atrium and left ventricle Between right
B. $\begin{aligned} & \text { Bicuspid } \\ & \text { valve }\end{aligned}$
(ii) ventricle
and pulmonary artery
C. Semilunar (iii) Between valve right atrium

> 1. Thecodont, diphyodont, homodont
2. Thecodont, diphyodont, heterodont
3. Pleurodont, monophyodont, homodont
4. Pleurodont, diphyodont, heterodont
153.In which disease does mosquitotransmitted pathogen cause chronic inflammation of lymphatic vessels?

1. Elephantiasis
2. Ascariasis
3. Ringworm disease
4. Amoebiasis
154.The similarity of bone structure in the forelimbs of many vertebrates is an example of
5. homology
6. analogy
7. convergent evolution
8. adaptive radiation
9. Which of the following structures or regions is incorrectly paired with its functions?
10. Medulla oblongata : Controls respiration and cardiovascular reflexes
11. Limbic system : Consists of fibre tracts that interconnect different regions of hindbrain
12. Hypothalamus : Production of releasing hormones and regulation of temperature, hunger and thirst
13. Corpus callosum : Band of fibers connecting left and right cerebral hemispheres
156.Among the following sets of examples for divergent evolution, select the incorrect option.
14. Forelimbs of man, bat and cheetah
15. Heart of bat, man and cheetah
16. Brain of bat, man and cheetah
17. Eye of octopus, bat and man
157.The difference between
spermiogenesis and spermiation is
18. in spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed
19. in spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed
20. in spermiogenesis spermatozoa from Sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed
21. in spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from Sertoli cells into the cavity of seminiferous tubules
22. Which of the following animals does not undergo metamorphosis?
23. Earthworm
24. Tunicate
25. Moth
26. Starfish
27. Which of the following hormones can play a significant role in osteoporosis?
28. Aldosterone and prolactin
29. Progesterone and aldosterone
30. Ostrogen and parathyroid hormone
31. Parathyroid hormone and prolactin
160.Which of the following gastric cells indirectly help in erythropoiesis?
32. Chief cells
33. Mucous cells
34. Goblet cells
35. Parietal cells
161.Natality refers to
36. death rate
37. birth rate
38. number of individuals leaving the habitat
39. number of individuals entering a habitat
162.In a growing population of a country,
40. pre-reproductive individuals are more than the reproductive individuals
41. reproductive individuals are less than the post-reproductive individuals
42. reproductive and prereproductive individuals are equal in number
43. pre-reproductiveindividuals are less than the reproductive individuals
163.The transparent lens in the human eye is held in its place by
44. ligaments attached to the ciliary body
45. ligaments attached to the iris
46. smooth muscles attached to the iris
47. smooth muscles attached to the ciliary body
48. Which of the following is not an autoimmune disease?
49. Psoriasis
50. Rheumatoid arthritis
51. Alzheimer's disease
52. Vitiligo
165.All of the following are included in 'ex-situ conservation' except
53. wildlife safari parks
54. sacred groves
55. botanical gardens
56. seed banks
166.Identify the vertebrate group of animals characterised by crop and gizzard in its digestive system.
57. Amphibia
58. Reptilia
59. Aves
60. Osteichthyes
61. Which one of these animals is not a homeotherm?
62. Macropus
63. Chelone
64. Camelus

4. Psittacula

168.A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by

1. only daughters
2. only sons
3. only grandchildren
4. both sons and daughters
169.Hormones secreted by the placenta to maintain pregnancy are
5. hCG, hPL, progestogens, prolactin
6. hCG, hPL, estrogens, relaxin, oxytocin
7. hCG, hPL, progestogens, estrogens
8. hCG, progestogens, estrogens, glucocorticoids
9. Which of the following features is used to identify a male cockroach from a female cockroach?
10. Presence of a boat-shaped sternum on the $9^{\text {th }}$ abdominal segment
11. Presence of caudal styles
12. Forewings with darker tegmina

4. Presence of anal cerci

171. Which of the following options correctly represents the lung conditions in asthma and emphysema, respectively?
172. Inflammation of bronchioles; Decreased respiratory surface
173. Increased number of bronchioles; Increased respiratory surface

174. carbonyl and phosphate
175. carbonyl and hydroxyl
choose the correct answer from the options given below.
180.Given below are two statements.

Statement I: The difference in the energy content of the substrate at the ground state and the energy content of the substrate at the transition state is called activation energy.
Statement II: The substrate has
higher energy at the transition state than at the ground state.
In light of the above statements,

1. Both statement I and statement II are correct.
2. Both statement I and statement II are incorrect.
3. Statement I is correct but statement II is incorrect.
4. Statement I is incorrect but statement II is correct.
