NEET 2019 (Odisha)

Test Instructions

1. Total duration of this test is $\mathbf{1 8 0}$ minutes.
2. This test has 4 subjects consisting of 180 questions in total.
3. There are $\mathbf{4}$ total sections in the test.
4. Sections Info :

Physics
a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt -1 .

Chemistry

a. Section \mathbf{A} has $\mathbf{4 5}$ questions, compulsory questions $\mathbf{4 5}$. $\mathbf{4}$ marks will be given for correct attempt and incorrect attempt -1

Botany

a. Section \mathbf{A} has 47 questions, compulsory questions 47.4 marks will be given for correct attempt and incorrect attempt -1

Zoology

a. Section \mathbf{A} has $\mathbf{4 3}$ questions, compulsory questions 43.4 marks will be given for correct attempt and incorrect attempt $\mathbf{- 1}$.
5. Total marks for this test is $\mathbf{7 2 0}$ marks.
6. No marks will be deducted for unattempted questions.
7. This test can be submitted only once.
8. Once the test has been submitted, you cannot edit the responses.
9. Results will be anounced post test submission.
10. The test will be auto-submitted once the timer ends.

Physics

Section A

1. The main scale of a vernier callipers has n divisions/cm. n divisions of the vernier scale coincide with ($n-1$) divisions of main scale. The least count of the vernier callipers is,
2. $\frac{1}{\mathrm{n}(\mathrm{n}+1)} \mathrm{cm}$
3. $\frac{1}{(\mathrm{n}+1)(\mathrm{n}-1)} \mathrm{cm}$
4. $\frac{1}{\mathrm{n}} \mathrm{cm}$
5. $\frac{1}{\mathrm{n}^{2}} \mathrm{~cm}$
6. An object kept in a large room having air temperature of $25^{\circ} \mathrm{C}$ takes 12 minutes to cool from $80^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.The time taken to cool for the same object from $70^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ would be nearly,
7. 15 min
8. 10 min
9. 12 min
10. 20 min
11. The value of $\mathrm{y}\left(=\frac{\mathbf{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}\right)$ for hydrogen, helium and another ideal diatomic gas X (whose molecules are not rigid but have an additional vibrational mode), are respectively equal to,
12. $\frac{7}{5}, \frac{5}{3}, \frac{7}{5}$
13. $\frac{7}{5}, \frac{5}{3}, \frac{9}{7}$
14. $\frac{5}{3}, \frac{7}{5}, \frac{9}{7}$
15. $\frac{5}{3}, \frac{7}{5}, \frac{7}{5}$
16. A sphere encloses an electric dipole with charges $\pm 3 \times 10^{-6} \mathrm{C}$. What is the total electric flux across the sphere?
17. $6 \times 10^{-6} \mathrm{Nm}^{2} / \mathrm{C}$
18. $-3 \times 10^{-6} \mathrm{Nm}^{2} / \mathrm{C}$
19. Zero
20. $3 \times 10^{-6} \mathrm{Nm}^{2} / \mathrm{C}$
21. Two metal spheres, one of radius R and the other of radius 2 R respectively have the same surface charge density σ. They are brought in contact and separated. What will be the new surface charge densities on them?
22. $\sigma_{1}=\frac{5}{3} \sigma, \sigma_{2}=\frac{5}{6} \sigma$
23. $\sigma_{1}=\frac{5}{6} \sigma, \sigma_{2}=\frac{5}{2} \sigma$
24. $\sigma_{1}=\frac{5}{2} \sigma, \sigma_{2}=\frac{5}{6} \sigma$
25. $\sigma_{1}=\frac{5}{2} \sigma, \sigma_{2}=\frac{5}{3} \sigma$
26. Two toroids 1 and 2 have total no. of turns 200 and 100 respectively with average radii 40 cm and 20 cm respectively. If they carry same current i, the ratio of the magnetic fields along the two loops is,
27. $1: 2$
28. 1:1
29. $4: 1$
30. $2: 1$
31. For a transparent medium, relative permeability and permittivity, μ_{r} and ϵ_{r} are 1.0 and 1.44 respectively. The velocity of light in this medium would be,
32. $4.32 \times 10^{8} \mathrm{~m} / \mathrm{s}$
33. $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
34. $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
35. $2.08 \times 10^{8} \mathrm{~m} / \mathrm{s}$
36. An LED is constructed from a p-n junction diode using Ga As P. The energy gap is 1.9 eV . The wavelength of the light emitted will be equal to
$1.654 \times 10^{-11} \mathrm{~m}$
37. $10.4 \times 10^{-26} \mathrm{~m}$
3.654 nm
38. $654 \mathrm{~A}^{\circ}$
39. An equiconvex lens has power P. It is cut into two symmetrical halves by a plane containing the principal axis. The power of one part will be,
40. P
41. 0
42. $\frac{\mathrm{P}}{2}$
43. $\frac{P}{4}$
44. A particle of mass 5 m at rest suddenly breaks on its own into three fragments. Two fragments of mass m each move along mutually
perpendicular direction with speed v each. The energy released during the process is,
45. $\frac{4}{3} \mathrm{mv}^{2}$
46. $\frac{3}{5} \mathrm{mv}^{2}$
47. $\frac{5}{3} \mathrm{mv}^{2}$
48. $\frac{3}{2} \mathrm{mv}^{2}$
49. An object flying in air with velocity $(20 \hat{i}+25 \hat{j}-12 \widehat{k})$ suddenly breaks into two pieces whose masses are in the ratio $1: 5$. The smaller mass flies off with a velocity $(100 \hat{\mathrm{i}}+35 \hat{\mathrm{j}}+8 \widehat{\mathrm{k}})$. The velocity of the larger piece will be,
50. $-20 \hat{\mathrm{i}}-15 \hat{\mathrm{j}}-80 \widehat{\mathrm{k}}$
51. $4 \hat{\mathrm{i}}+23 \hat{\mathrm{j}}-16 \widehat{\mathrm{k}}$
52. $-100 \hat{\mathrm{i}}-35 \hat{\mathrm{j}}-8 \widehat{\mathrm{k}}$
53. $20 \hat{\mathrm{i}}+15 \hat{\mathrm{j}}-80 \widehat{\mathrm{k}}$
54. A person travelling in a straight line moves with a constant velocity v_{1} for certain distance ' x ' and with a constant velocity v_{2} for next equal distance. The average velocity v is given by the relation
55. $\mathrm{v}=\sqrt{\mathrm{v}_{1} \mathrm{v}_{2}}$
56. $\frac{1}{v}=\frac{1}{v_{1}}+\frac{1}{v_{2}}$
57. $\frac{2}{\mathrm{v}}=\frac{1}{\mathrm{v}_{1}}+\frac{1}{\mathrm{v}_{2}}$
58. $\frac{\mathrm{v}}{2}=\frac{\mathrm{v}_{1}+\mathrm{v}_{2}}{2}$
59. A person standing on the floor of an elevator drops a coin. The coin
reaches the floor in time t_{1} if the elevator is at rest and in time t_{2} if the elevator is moving uniformly. Then
60. $\mathrm{t}_{1}=\mathrm{t}_{2}$
61. $\mathrm{t}_{1}<\mathrm{t}_{2}$ or $\mathrm{t}_{1}>\mathrm{t}_{2}$ depending upon whether the lift is going up or down
62. $\mathrm{t}_{1}<\mathrm{t}_{2}$
63. $\mathrm{t}_{1}>\mathrm{t}_{2}$
64. Two bullets are fired horizontally and simultaneously towards each other from roof tops of two buildings 100 m apart and of same height of 200 m , with the same velocity of 25 m / s. When and where will the two bullets collide? $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
65. They will not collide
66. After 2 s at a height of 180 m
67. After 2 s at a height of 20 m
68. After 4 s at a height of 120 m
69. A particle starting from rest, moves in a circle of radius ' r '. It attains a velocity of $V_{0} \mathrm{~m} / \mathrm{s}$ in the $\mathrm{n}^{\text {th }}$ round. Its angular acceleration will be,
70. $\frac{\mathrm{V}_{0}^{2}}{4 \pi \mathrm{nr}} \mathrm{rad} / \mathrm{s}^{2}$
71. $\frac{\mathrm{V}_{0}}{\mathrm{n}} \mathrm{rad} / \mathrm{s}^{2}$
72. $\frac{\mathrm{V}_{0}^{2}}{2 \pi \mathrm{mr}^{2}} \mathrm{rad} / \mathrm{s}^{2}$
73. $\frac{\mathrm{V}_{0}^{2}}{4 \pi \mathrm{nr}^{2}} \mathrm{rad} / \mathrm{s}^{2}$
74.

An object of mass 500 g , initially at rest, is acted upon by a variable force whose X-component varies with X in the manner shown. The velocities of the object at the points $X=8 \mathrm{~m}$ and $\mathrm{X}=12 \mathrm{~m}$, would have the respective values of (nearly)

1. $18 \mathrm{~m} / \mathrm{s}$ and $20.6 \mathrm{~m} / \mathrm{s}$
2. $18 \mathrm{~m} / \mathrm{s}$ and $24.4 \mathrm{~m} / \mathrm{s}$
3. $23 \mathrm{~m} / \mathrm{s}$ and $24.4 \mathrm{~m} / \mathrm{s}$
4. $23 \mathrm{~m} / \mathrm{s}$ and $20.6 \mathrm{~m} / \mathrm{s}$
5. A truck is stationary and has a bob suspended by a light string, in a frame attached to the truck. The truck suddenly moves to the right with an acceleration of a. The pendulum will tilt
6. to the left and angle of inclination of the pendulum with the vertical is $\tan ^{-1}\left(\frac{g}{a}\right)$
7. to the left and angle of inclination of the pendulum with the vertical is $\sin ^{-1}\left(\frac{g}{a}\right)$
8. to the left and angle of inclination of the pendulum with the vertical is $\tan ^{-1}\left(\frac{a}{g}\right)$
9. to the left and angle of inclination of the pendulum with the vertical is $\sin ^{-1}\left(\frac{a}{g}\right)$
10. A body of mass m is kept on a rough horizontal surface (coefficient of friction $=\mu$). A horizontal force is applied on the body, but it does not move. The resultant of normal reaction and the frictional force acting on the object is given by F , where F is,
11. $|\vec{F}|=m g$
12. $|\overrightarrow{\mathrm{F}}|=\mathrm{mg}+\mu \mathrm{mg}$
13. $|\overrightarrow{\mathrm{F}}|=\mu \mathrm{mg}$
14. $|\overrightarrow{\mathrm{F}}| \leq \mathrm{mg} \sqrt{1+\mu^{2}}$
15. A solid cylinder of mass 2 kg and radius 50 cm rolls up an inclined plane of angle of inclination 30°. The centre of mass of the cylinder has speed of $4 \mathrm{~m} / \mathrm{s}$. The distance travelled by the cylinder on the inclined surface will be, $\left[\right.$ take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]
16. 2.4 m
17. 2.2 m
18. 1.6 m
19. 1.2 m
20. Assuming that the gravitational potential energy of an object at infinity is zero, the change in
potential energy (final - initial) of an object of mass m, when taken to a height h from the surface of earth (of radius R), is given by,
21. $\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
22. $-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
23. $\frac{\mathrm{GMmh}}{\mathrm{R}(\mathrm{R}+\mathrm{h})}$
24. mgh
25. The time period of a geostationary satellite is 24 h , at a height $\mathrm{R}_{\mathrm{E}}\left(\mathrm{R}_{\mathrm{E}}\right.$ is radius of earth) from surface of earth. The time period of another satellite whose height is $2.5 \mathrm{R}_{\mathrm{E}}$ from surface will be,
26. $\frac{12}{2.5} \mathrm{~h}$
27. $6 \sqrt{2} \mathrm{~h}$
28. $12 \sqrt{2} \mathrm{~h}$
29. $\frac{24}{2.5} \mathrm{~h}$
30. The stress-strain curves are drawn for two different materials X and Y . It is observed that the ultimate strength point and the fracture point are close to each other for material X but are far apart for material Y. We can say that materials X and Y are likely to be (respectively),
31. Plastic and ductile
32. Ductile and brittle
33. Brittle and ductile
34. Brittle and plastic
35. In a U-tube as shown in the fig. water and oil are in the left side and right side of the tube respectively. The heights from the bottom for water and oil columns are 15 cm and 20 cm respectively. The density of the oil is
$\left[\right.$ take $\left.\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}\right]$

36. $1333 \mathrm{~kg} / \mathrm{m}^{3}$
37. $1200 \mathrm{~kg} / \mathrm{m}^{3}$
38. $750 \mathrm{~kg} / \mathrm{m}^{3}$
39. $1000 \mathrm{~kg} / \mathrm{m}^{3}$
40. Two small spherical metal balls, having equal masses, are made from materials of densities
ρ_{1} and $\rho_{2}\left(\rho_{1}=8 \rho_{2}\right)$ and have radii of 1 mm and 2 mm , respectively, they are made to fall vertically (from rest) in a viscous medium whose coefficient of viscosity equals η and whose density is $0.1 \rho_{2}$. The ratio of their terminal velocities would be,
41. $\frac{79}{36}$
42. $\frac{79}{73}$
43. $\frac{19}{36}$
44. $\frac{39}{72}$
45. A deep rectangular pond of surface area A, containing water (density $=\rho$), specific heat capacity $=s$), is located in a region where the outside air temperature is at a steady value of $-26^{\circ} \mathrm{C}$. The thickness of the frozen ice layer in this pond, at a certain instant is x .

Taking the thermal conductivity of ice as K , and its specific latent heat of fusion as L, the rate of increase of the thickness of ice layer, at this instant, would be given by

1. $26 \mathrm{~K} / \rho \times(\mathrm{L}+4 \mathrm{~s})$
2. $26 \mathrm{~K} / \rho \times(\mathrm{L}-4 \mathrm{~s})$
3. $26 \mathrm{~K} /\left(\rho \mathrm{x}^{2} \mathrm{~L}\right)$

4. $26 \mathrm{~K} /(\rho \mathrm{xL})$

26. 1 g of water, of volume $1 \mathrm{~cm}^{3}$ at $100^{\circ} \mathrm{C}$, is converted into steam at same temperature under normal atmospheric pressure $\left(1 \times 10^{5} \mathrm{~Pa}\right)$. The volume of steam formed equals $1671 \mathrm{~cm}^{3}$. If the specific latent heat of vaporization of water is $2256 \mathrm{~J} / \mathrm{g}$, the change in internal energy is:
27. 2256 J
28. 2423 J
29. 2089 J
30. 167 J
31. The distance covered by a particle undergoing SHM in one time period is (amplitude = A),
32. 4A
33. Zero
34. A
35. 2 A
36. A mass falls from a height ' h ' and its time of fall ' \mathfrak{t} ' is recorded in terms of time period T of a simple pendulum. On the surface of earth it is found that $\mathrm{t}=2 \mathrm{~T}$. The entire set up is taken on the surface of another planet whose mass is half of that of earth and radius the same. Same experiment is repeated and corresponding times noted as t ' and T^{\prime}. Then we can say
37. $\mathrm{t}^{\prime}=2 \mathrm{~T}^{\prime}$
38. $\mathrm{t}^{\prime}=\sqrt{2} \mathrm{~T}^{\prime}$
39. $\mathrm{t}^{\prime}>2 \mathrm{~T}^{\prime}$
40. $\mathrm{t}^{\prime}<2 \mathrm{~T}$
41. A tuning fork with frequency 800 Hz produces resonance in a resonance column tube with upper end open and lower end closed by water surface. Successive resonance are observed at lengths $9.75 \mathrm{~cm}, 31.25$ cm and 52.75 cm . The speed of sound in air is,
42. $172 \mathrm{~m} / \mathrm{s}$
43. $500 \mathrm{~m} / \mathrm{s}$
44. $156 \mathrm{~m} / \mathrm{s}$
45. $344 \mathrm{~m} / \mathrm{s}$
46. Two identical capacitors C_{1} and C_{2} of equal capacitance are connected as shown in the circuit. Terminals a and b of the key k are connected to charge capacitor C_{1} using battery of EMF V volt. Now disconnecting a and b the terminals b and c are connected. Due to this, what will be the percentage loss of energy?

47. 25%
48. 75%
49. 0\%
50. 50%
51. The reading of an ideal voltmeter in the circuit shown is,

52. 0.4 V
53. 0.6 V
3.0 V
54. 0.5 V
55.

The meter bridge shown is in balance position with $\frac{P}{Q}=\frac{l_{1}}{1_{2}}$. If we now interchange the positions of galvanometer and cell, will the bridge work? If yes, what will be balance condition?

1. yes, $\frac{\mathrm{P}}{\overline{\mathrm{Q}}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}$
2. yes, $\frac{P}{Q}=\frac{l_{2}-l_{1}}{l_{2}+l_{1}}$
3. no, no null point
4. yes, $\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{I}_{2}}{\mathrm{l}_{1}}$
5. A straight conductor carrying current i splits into two parts as shown in the figure. The radius of the circular loop is R. The total magnetic field at the centre P of the loop is,

6. $\frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$, inward
7. Zero
8. $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, outward
9. $3 \mu_{0} \mathrm{i} / 32 \mathrm{R}$, inward
10. The relations amongst the three elements of earth's magnetic field, namely horizontal component H , vertical component V and dip sare, ($\mathrm{B}_{\mathrm{E}}=$ total magnetic field)
11. $\mathrm{V}=\mathrm{B}_{\mathrm{E}}, \mathrm{H}=\mathrm{B}_{\mathrm{E}} \tan \delta$
12. $\mathrm{V}=\mathrm{B}_{\mathrm{E}} \tan \delta, \mathrm{H}=\mathrm{B}_{\mathrm{E}}$
13. $\mathrm{V}=\mathrm{B}_{\mathrm{E}} \sin \delta, \mathrm{H}=\mathrm{B}_{\mathrm{E}} \cos \delta$
14. $\mathrm{V}=\mathrm{B}_{\mathrm{E}} \cos \delta, \mathrm{H}=\mathrm{B}_{\mathrm{E}} \sin \delta$
15. A cycle wheel of radius 0.5 m is rotated with constant angular velocity of $10 \mathrm{rad} / \mathrm{s}$ in a region of magnetic field of 0.1 T which is perpendicular to the plane of the wheel. The EMF generated between its centre and the rim is,
16. Zero
17. 0.25 V
18. 0.125 V
19. 0.5 V
20. The variation of EMF with time for four types of generators are shown in the figures. Which amongst them can be called AC?
(a)

(b)

(c)

(d)

21. Only (a)
22. (a) and (d)
23. (a), (b), (c), (d)
24. (a) and (b)
25. $10 \frac{\lambda}{2}$
26. $9 \frac{\lambda}{2}$
27. A circuit when connected to an AC source of 12 V gives a current of 0.2 A. The same circuit when connected to a DC source of 12 V , gives a steady current of 0.4 A . The circuit is
28. Series LCR
29. Series LR
30. Series RC
31. Series LC
32. A double convex lens has focal length 25 cm . The radius of curvature of one of the surfaces is double of the other. Find the radii if the refractive index of the material of the lens is 1.5.
33. $50 \mathrm{~cm}, 100 \mathrm{~cm}$
34. $100 \mathrm{~cm}, 50 \mathrm{~cm}$
35. $25 \mathrm{~cm}, 50 \mathrm{~cm}$
36. $18.75 \mathrm{~cm}, 37.5 \mathrm{~cm}$
37. In a Young's double slit experiment, if there is no initial phase difference between the light from the two slits, a point on the screen corresponding to the fifth minimum has path difference
38. $11 \frac{\lambda}{2}$
39. $5 \frac{\lambda}{2}$
40. Angular width of the central maxima in the Fraunhofer diffraction for $\lambda=$ $6000{ }^{\circ}$ is θ_{0}. When the same slit is illuminated by another monochromatic light, the angular width decreases by 30%. The wavelength of this light is
41. $420{ }^{0} \mathrm{~A}^{\circ}$
42. $1800{ }^{0}$
43. $4200{ }^{0}{ }^{\circ}$
44. $6000{ }^{0}{ }^{\circ}$
45. A proton and an α-particle are accelerated from rest to the same energy. The de Broglie wavelengths λ_{p} and λ_{α} are in the ratio,
46. $4: 1$
47. $2: 1$
48. $1: 1$
49. $\sqrt{2}: 1$
50. The work function of a photosensitive material is 4.0 eV . The longest wavelength of light that can cause photon emission from the subs is (approximately)
51. 310 nm
52. 3100 nm
53. 966 nm
54. 31 nm
55. The radius of the first permitted Bohr orbit, for the electron, in a hydrogen atom equals $0.51 A$ and its ground state energy equals -13.6 eV . If the electron in the hydrogen atom is replaced by muon (μ^{-}) [charge same as electron and mass $207 \mathrm{~m}_{\mathrm{e}}$], the first Bohr radius and ground state energy will be,
56. $2.56 \times 10^{-13} \mathrm{~m},-13.6 \mathrm{eV}$
57. $0.53 \times 10^{-13} \mathrm{~m},-3.6 \mathrm{eV}$
58. $25.6 \times 10^{-13} \mathrm{~m},-2.8 \mathrm{eV}$
59. $2.56 \times 10^{-13} \mathrm{~m},-2.8 \mathrm{keV}$
60. The rate of radioactive disintegration at an instant for a radioactive sample of half life $2.2 \times 10^{9} \mathrm{~s}$ is $10^{10} \mathrm{~s}^{-1}$ The number of radioactive atoms in that sample at that instant is,
61. 3.17×10^{19}
62. 3.17×10^{20}
63. 3.17×10^{17}
64. 3.17×10^{18}
65. The circuit diagram shown here corresponds to the logic gate,

66. NAND
67. NOR
68. AND

4. OR

Chemistry

Section A

46. The volume occupied by 1.8 g of water vapour at $374^{\circ} \mathrm{C}$ and 1 bar pressure will be
$\left[\right.$ Use $\left.\mathbf{R}=0.083 \mathrm{barLK}^{-1} \mathrm{~mol}^{-1}\right]$
47. 5.37 L
48. 96.66 L
49. 55.87 L
50. 3.10 L
51. In water saturated air, the mole fraction of water vapour is 0.02 . If the total pressure of the saturated air is 1.2 atm , the partial pressure of dry air is
52. 0.98 atm
53. 1.18 atm
54. 1.76 atm
55. 1.176 atm
56. The molar solubility of
$\mathrm{CaF}_{2}\left(\mathrm{~K}_{\text {sp }}=5.3 \times 10^{-11}\right)$ in 0.1 M solution of NaF will be
57. $5.3 \times 10^{-10} \mathrm{moll}^{-1}$
58. $5.3 \times 10^{-11} \mathrm{molL}^{-1}$
59. $5.3 \times 10^{-8} \mathrm{molL}^{-1}$
60. $5.3 \times 10^{-9} \mathrm{molL}^{-1}$
61. The oxidation state of Cr in CrO_{5} is
62. -6
63. +12
64. +6
65. +10
66. The number of hydrogen bonded water molecule(s) associated with $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
67. 5
68. 3
69. 1
70. 2
71. The alkane that gives only one mono-chloro product on chlorination with Cl_{2} in presence of diffused sunlight is
72. Isopentane
73. 2, 2-dimethylbutane
74. neopentane
75. n-pentane
76. In the following reaction,

number of sigma (σ) bonds present in the product A , is
77. 9
78. 24
79. Formula of nickel oxide with metal deficiency defect in its crystal is $\mathrm{Ni}_{0.98} \mathrm{O}$. The crystal contains Ni^{2+} and Ni^{3+} ions. The fraction of nickel existing as Ni^{2+} ions in the crystal is
80. 0.3
81. 0.96
82. 0.04
83. 0.50
84. The standard electrode potential $\left(\mathrm{E}^{\ominus}\right)$ values of
$\mathrm{Al}^{3+} / \mathrm{Al}, \mathrm{Ag}^{+} / \mathrm{Ag}, \mathrm{K}^{+} / \mathrm{K}$ and $\mathrm{Cr}^{3+} /$ Cr are $-1.66 \mathrm{~V}, 0.80 \mathrm{~V},-2.93 \mathrm{~V}$ and 0.74 V , respectively. The correct decreasing order of reducing power of the metal is

$$
\begin{aligned}
& \text { 1. } \mathrm{Al}>\mathrm{K}>\mathrm{Ag}>\mathrm{Cr} \\
& \text { 2. } \mathrm{Ag}>\mathrm{Cr}>\mathrm{Al}>\mathrm{K} \\
& \text { 3. } \mathrm{K}>\mathrm{Al}>\mathrm{Cr}>\mathrm{Ag} \\
& \text { 4. } \mathrm{K}>\mathrm{Al}>\mathrm{Ag}>\mathrm{Cr}
\end{aligned}
$$

55. Following limiting molar conductivities are given as
$\lambda_{\mathrm{m}}^{\circ}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\mathrm{x} \mathrm{Scm}^{2} \mathrm{~mol}^{-1} \lambda_{\mathrm{m}}^{\circ}$ $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)=$ y $\mathrm{Scm}^{2} \mathrm{~mol}^{-1} \lambda_{\mathrm{m}}^{\circ}$ $\left(\mathrm{CH}_{3} \mathrm{COOK}\right)=\mathrm{z} \mathrm{Scm}{ }^{2} \mathrm{~mol}^{-1}$ $\lambda_{\mathrm{m}}^{\circ}\left(\right.$ in $\mathrm{Scm}^{2} \mathrm{~mol}^{-1}$) for CH_{3} COOH willbe
56. $\frac{(x-y)}{2}+z$
57. $x-y+2 z$
58. $x+y-z$
59. $x-y+z$
60. A first order reaction has a rate constant of $2.303 \times 10^{-3} \mathrm{~s}^{-1}$. The time required for 40 g of this reactant to reduce to 10 g will be [Given that $\log _{10} 2=0.3010$]
1.602 s
61. 230.3 s
62. 301 s
63. 2000 s
64. For a reaction, activation energy $\mathrm{E}_{\mathrm{a}}=0$ and the rate constant at 200 K is $1.6 \times 10^{6} \mathrm{~s}^{-1}$. The rate constant at 400 K will be [Given that gas constant, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
65. $3.2 \times 10^{6} \mathrm{~s}^{-1}$
66. $3.2 \times 10^{4} \mathrm{~s}^{-1}$
67. $1.6 \times 10^{6} \mathrm{~s}^{-1}$
68. $1.6 \times 10^{3} \mathrm{~s}^{-1}$
69. The correct option representing a Freundlich adsorption isotherm is
70. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{-1}$
71. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{0.3}$
72. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{2.5}$
73. $\frac{\mathrm{x}}{\mathrm{m}}=\mathrm{kp}^{-0.5}$
74. Identify the incorrect statement.
75. Gangue is an ore contaminated with undesired materials
76. The scientific and technological process used for isolation of the metal from its ore is known as metallurgy
77. Minerals are naturally occurring chemical substances in the earth's crust
78. Ores are minerals that may contain a metal
79. When neutral or faintly alkaline KMnO_{4} is treated with potassium iodide, iodide ion is converted into ' X '. ' X ' is
80. IO^{-}
81. I_{2}
82. IO_{4}^{-}
83. IO_{3}^{-}
84. The reaction that does not give benzoic acid as the major product is
85.

2.

3.

62. The amine that reacts with Hinsberg's reagent to give an alkali insoluble product is
1.

2.

3.

4.

63. Which of the following is the correct order of dipole moment?

1. $\mathrm{H}_{2} \mathrm{O}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
2. $\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
3. $\mathrm{BF}_{3}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
4. $\mathrm{BF}_{3}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{H}_{2} \mathrm{O}$
5. An ideal gas expands isothermally from $10^{-3} \mathrm{~m}^{3}$ to $10^{-2} \mathrm{~m}^{3}$ at 300 K
against a constant pressure of 10^{5} $\mathrm{N} . \mathrm{m}^{2}$. The work done by the gas is
6. -900 kJ
7. +270 kJ
8. -900 J
9. +900 kJ
10. The pH of $0.01 \mathrm{M} \mathrm{NaOH} \mathrm{(aq)}$
solution will be
11. 9
12. 7.01
13. 2
14. 12
15. Which of the following cannot act both as Bronsted acid and as Bronsted base?
16. HSO_{4}^{-}
17. HCO_{3}^{-}
18. NH_{3}
19. HCl
20. Which of the alkali metal chloride ($\mathrm{MCl})$ forms its dihydrate salt ($\mathrm{MCl} .2 \mathrm{H}_{2} \mathrm{O}$) easily?
21. KCl
22. LiCl
23. CsCl
24. RbCl
25. Crude sodium chloride obtained by crystallisation of brine solution does
not contain
26. CaSO_{4}
27. MgSO_{4}
28. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
29. MgCl_{2}
30. Aluminium chloride in acidified aqueous solution forms a complex ' A ', in which hybridisation state of Al is ' B '. What are ' A ' and ' B ', respectively?
31. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{d}^{2} \mathrm{sp}^{3}$
32. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
33. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}, \mathrm{sp}^{3}$
34. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}, \mathrm{dsp}^{2}$
35. The liquified gas that is used in dry cleaning along with a suitable detergent is
36. CO_{2}
37. Water gas
38. Petroleum gas
39. NO_{2}
40. Which of the following compounds is used in cosmetic surgery?
41. Zeolites
42. Silica
43. Silicates
44. Silicones

Which of the following oxoacids of phosphorus has strongest reducing property?

1. $\mathrm{H}_{3} \mathrm{PO}_{4}$
2. $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
3. $\mathrm{H}_{3} \mathrm{PO}_{3}$
4. $\mathrm{H}_{3} \mathrm{PO}_{2}$
5. Identify the correct formula of 'oleum' from the following.
6. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
7. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
8. $\mathrm{H}_{2} \mathrm{SO}_{3}$
9. $\mathrm{H}_{2} \mathrm{SO}_{4}$
10. The most stable carbocation, among the following, is
11.

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$
2.

3.

75. Which of the following statements is correct regarding a solution of two components A and B exhibiting positive deviation from ideal behaviour?

1. Intermolecular attractive forces between $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ are equal to those between A-B.
2. Intermolecular attractive forces between A-A and B-B are stronger than those between A-B.
3. $\Delta_{\text {mix }} \mathrm{H}=0$ at constant T and P .
4. $\Delta_{\text {mix }} \mathrm{V}=0$ at constant T and P .
5. Match the catalyst with the process

Catalyst Process
(p) The oxidation
(i) $\mathrm{V}_{2} \mathrm{O}_{5}$ of ethyne to ethanal
(ii) (q)
$\mathrm{TiCl}_{4}+\mathrm{Al}$ Polymerization of $\left(\mathrm{CH}_{3}\right)_{3} \quad$ alkynes
(r) Oxidation of
(iii) PdCl_{2}
SO_{2} in the manufacture of $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iv) Nickel complexes
(s)

Polymerization of ethylene

Which of the following is the correct option?

1. (i)-(r), (ii)-(s), (iii)-(p), (iv)-(q)
2. (i)-(p), (ii)-(q), (iii)-(r), (iv)-(s)
3. (i)-(p), (ii)-(r), (iii)-(q), (iv)-(s)
4. (i)-(r), (ii)-(p), (iii)-(s), (iv)-(q)
5. The Crystal Field Stabilisation Energy (CFSE) for $\left[\mathrm{CoCl}_{6}\right]^{-4}$ is $18000 \mathrm{~cm}^{-1}$. The CFSE for $\left[\mathrm{CoCl}_{4}\right]^{-2}$ will be
6. $8000 \mathrm{~cm}^{-1}$
7. $6000 \mathrm{~cm}^{-1}$
8. $16000 \mathrm{~cm}^{-1}$
9. $18000 \mathrm{~cm}^{-1}$
10. The hydrolysis reaction that takes place at the slowest rate, among the following is

11.

3. $\mathrm{CH}_{2}-\mathrm{OH}_{2}-\mathrm{Cl} \xrightarrow{\text { aq. } \mathrm{NaOH}} \mathrm{H}_{3} \mathrm{C}-$
4. $\stackrel{\mathrm{H}_{2} \mathrm{C}}{=} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\text { aq. } \mathrm{NaOH}} \mathrm{H}_{2} \mathrm{C}$
79. When vapours of a secondary alcohol is passed over heated copper at 573 K , the product formed is

1. an alkene
2. a carboxylic acid
3. a ketone
4. an aldehyde
5. The major products C and D formed in the following reaction respectively are
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ $\frac{\text { excessHl }}{\Delta} \mathrm{C}+\mathrm{D}$
6. $-\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ and HO
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$ and $\mathrm{I}-\mathrm{C}$
7. $\left(\mathrm{CH}_{3}\right)_{3}$
$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ and $\mathrm{I}-$
8. $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
9. $\mathrm{H}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$ and $\mathrm{HO}-$
10. Which structure(s) of proteins remain(s) intact during denaturation process?
11. Tertiary structure only
12. Both secondary and tertiary structures
13. Primary structure only
14. Secondary structure only
15. The polymer that is used as a substitute for wool in making commercial fibres is
16. Buna-N
17. melamine
18. nylon-6,6
19. polyacrylonitrile
20. The artificial sweetener stable at cooking temperature and does not provide calories is
21. alitame
22. saccharin
23. aspartame
24. sucralose
25. Reversible expansion of an ideal gas under isothermal and adiabatic conditions are as shown in the figure.

$\mathrm{AB} \rightarrow$ Isothermal expansion
AC \rightarrow Adiabatic expansion
Which of the following options is not correct?
26. $\mathrm{T}_{\mathrm{C}}>\mathrm{T}_{\mathrm{A}}$
27. $\Delta \mathrm{S}_{\text {isothermal }}>\Delta \mathrm{S}_{\text {adiabatic }}$
28. $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}}$
29. $\mathrm{W}_{\text {isothermal }}>\mathrm{W}_{\text {adiabatic }}$
30. In hydrogen atom, the de Broglie wavelength of an electron in the second Bohr orbit is (Bohr's radius, $\mathrm{a}_{0}=52.9 \mathrm{pm}$)
31. 105.3 pm
32. $211.6 \pi \mathrm{~mm}$
33. 211.6 pm
34. $52.9 \pi \mathrm{pm}$
35. Orbital having 3 angular nodes and 3 total nodes is
36. 6d
37. 5 p
38. 3d
39. 4 f
40. The density of 2 M aqueous solution of NaOH is $1.28 \mathrm{~g} / \mathrm{cm}^{3}$. The molality of the solution is [Given that molecular mass of $\mathrm{NaOH}=40 \mathrm{~g}$ mol^{-1}]
41. 1.20 m
42. 1.56 m
43. 1.67 m
44. 1.32 m
45. Match the oxide given in column A with its property given in column B

Column-

A

(A) $\mathrm{Na}_{2} \mathrm{O}$	(i) Neutral
(B) $\mathrm{Al}_{2} \mathrm{O}_{3}$	(ii) Basic
(C) $\mathrm{N}_{2} \mathrm{O}$	(iii) Acidic
(D) $\mathrm{Cl}_{2} \mathrm{O}_{7}$	(iv) Amphoteric

Which of the following options has all correct pairs?

2. | (A) | (B) | (C) | (D) |
| :--- | :--- | :--- | :--- |
| iii | ii | i | iv |

4. | (A) | (B) | (C) | (D) |
| :--- | :--- | :--- | :--- |
| ii | iv | i | iii |
5. Which of the following is paramagnetic?
6. O_{2}
7. N_{2}
8. H_{2}
9. Li_{2}
10. A compound ' X ' upon reaction with $\mathrm{H}_{2} \mathrm{O}$ produces a colorless gas ' Y ' with rotton fish smell. Gas ' Y ' is absorbed in a solution of CuSO_{4} to give $\mathrm{Cu}_{3} \mathrm{P}_{2}$ as one of the products. Predict the compound ' X '.
11. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
12. $\mathrm{Ca}_{3} \mathrm{P}_{2}$
13. $\mathrm{NH}_{4} \mathrm{Cl}$
14. $\mathrm{As}_{2} \mathrm{O}_{3}$

Section A

91. One scientist cultured Cladophora in a suspension of Azotobacter and illuminated the culture by splitting light through a prism. He observed that bacteria accumulated mainly in the region of
92. violet and green light
93. indigo and green light
94. orange and yellow light
95. blue and red light
96. Which of the following shows whorled phyllotaxy?
97. Mustard
98. China rose
99. Alstonia

4. Calotropis

93. Bicarpellary ovary with obliquely placed septum is seen in
94. Brassica
95. Aloe
96. Solanum
97. Sesbania
98. In a marriage between male with blood group A and female with blood group B, the progeny had either blood group AB or B . What could be the possible genotype of parents ?
99. $\mathrm{I}^{\mathrm{A}} \mathrm{i}$ (Male) : $\mathrm{I}^{\mathrm{B}} \mathrm{I}^{\mathrm{B}}$ (Female)
100. $I^{A} I^{A}$ (Male) : $I^{B} I^{B}$ (Female)
101. $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\mathrm{A}}$ (Male): $\mathrm{I}^{\mathrm{B}} \mathrm{i}$ (Female)
102. $\mathrm{I}^{\mathrm{A}} \mathrm{i}$ (Male) : $\mathrm{I}^{\mathrm{B}} \mathrm{i}$ (Female)
103. Where is respiratory electron transport system (ETS) located in plants?
104. Mitochondrial matrix
105. Outer mitochondrial membrane
106. Inner mitochondrial membrane
107. Intermembrane space
108. Match the organisms in column-I with habitats in column-II.

Column I
Column II
(A) Halophiles
(I) Hot springs
(B) Thermoacidophiles (II)

Aquatic environment
(III) $\begin{aligned} & \text { Guts of } \\ & \text { ruminants }\end{aligned}$
(C) Methanogens
(D) Cyanobacteria (IV) Salty area

Select the correct answer from the options given below:-

	(A)	(B)	(C)	(D)
(1)	IV	I	III	II
(2)	I	II	III	IV
(3)	III	IV	II	I
(4)	II	IV	III	I

1. 1
2. 2
3. 3
4. 4
5. Match the following RNA polymerase with their transcribed products :

Column I

Column

II
(a) RNA polymerase I
(i) tRNA
(b) RNA
polymerase II
(ii) rRNA
(c) RNA (iii)
polymerase III hnRNA

Select the correct option from the following :

1	i	iii	ii
2	i	ii	iii
3	ii	iii	i
4	iii	ii	i

1. 1
2. 2
3. 3
4. 4
5. Match the placental types (column-I) with their examples (column-II).

Column I

Column II

(a) Basal
(i) Mustard
(b) Axile
(ii) China rose
(c) Parietal
(iii) Dianthus
(d) Free
central
(iv) Sunflower

Choose the correct answer from the following

	a	b	c	d
1	ii	iii	iv	i
2	i	ii	iii	iv
3	iv	ii	i	iii
4	iii	iv	i	ii

1. 1
2. 2
3. 3
4. 4
5. Match the column I with column II.

Column I Column II
(a) Golgi (i) Synthesis of apparatus protein
(b)
Lysosomes
(ii) Trap waste
and excretory products

(c)	(iii) Formation of glycoproteins and glycolipids
(d)	(iv) Digesting

Ribosomes biomolecules

Choose the right match from the options given below:-

	a	b	c	d
1	iii	iv	ii	i
2	iv	iii	i	ii
3	iii	ii	iv	i
4	i	ii	iv	iii

1. 1
2. 2
3. 3
4. 4
5. Which of the following is not a feature of active transport of solutes in plants?
6. Occurs against concentration gradient
7. Non-selective
8. Occurs through membranes
9. Requires ATP
101.The main difference between active and passive transport across cell membrane is
10. passive transport is non-selective whereas active transport is selective.
11. passive transport requires a concentration gradient across a biological membrane whereas active transport requires energy to move solutes.
12. passive transport is confined to anionic carrier proteins whereas active transport is confined to cationic channel proteins.
13. active transport occurs more rapidly than passive transport.
102.Regeneration of parts of grass removed by herbivores is largely due to the activity of
14. lateral meristem
15. apical meristem
16. intercalary meristem
17. secondary meristem
103.What will be the direction of net movement of water molecules when a plant cell is placed in a hypotonic solution?
18. Water will flow in both directions
19. Water will flow out of the cell
20. Water will flow into the cell
21. No flow of water in any direction

Which of the following is against the rules of ICBN?

1. Hand written scientific names should be underlined.
2. Every species should have a generic name and a specific epithet.
3. Scientific names are in Latin and should be italized.
4. Generic and specific names should be written starting with small letters.
5. Which of the following nucleic acids is present in an organism having 70S ribosomes only?

1. Single stranded DNA with protein coat

2. Double stranded circular naked DNA
3. Double stranded DNA enclosed in nuclear membrane
4. Double stranded circular DNA with histone proteins
106.An enzyme catalysing the removal of nucleotides from ends of DNA is
5. DNA ligase
6. endonuclease
7. exonuclease
8. protease
9.

Which scientist experimentally proved that DNA is the sole genetic material in bacteriophage ?

1. Beadle and Tautum
2. Messelson and Stahl
3. Hershey and Chase
4. Jacob and Monod
5. In mung bean, resistance to yellow mosaic virus and powdery mildew were brought about by
6. mutation breeding
7. biofortification
8. tissue culture
9. hybridization and selection
10. In order to increase the yield of sugarcane crop, which of the following plant growth regulators should be sprayed?
11. Ethylene
12. Auxins
13. Gibberellins
14. Cytokinins
110.The production of gametes by the parents, the formation of zygotes and nature of the F_{1} and F_{2} individuals can be understood using
15. pie diagram
16. a pyramid diagram
17. Punnet square
18. venn diagram
19. Removal of shoot tips is a very useful technique to boost the production of tea-leaves. This is because
20. gibberellins prevent bolting and are inactivated
21. auxins prevent leaf drop at early stages
22. effect of auxins is removed and growth of lateral buds is enhanced
23. gibberellins delay senescence of leaves
24. What type of pollination takes place in Vallisneria?
25. Pollination occurs in submerged condition by water
26. Flowers emerge above surface of water, and pollination occurs by insects
27. Flowers emerge above water surface, and pollen is carried by wind
28. Male flowers are carried by water currents to female flowers at surface of water
29. Which is the most common type of embryo sac in angiosperms ?
30. Tetrasporic with one mitotic stage of divisions
31. Monosporic with three sequential mitotic divisions
32. Monosporic with two sequential mitotic divisions
33. Bisporic with two sequential mitotic divisions
114.In which one of the following, both autogamy and geitonogamy are prevented?
34. Wheat
35. Papaya
36. Castor
37. Maize
115.The two antibiotic resistance genes on vector pBR322 are for
38. ampicillin and tetracycline
39. ampicillin and chloramphenicol
40. chloramphenicol and tetracycline
41. tetracycline and kanamycin
42. A selectable marker is used to:
43. help in eliminating the nontransformants, so that the transformants can be selectively grown.
44. identify the gene for a desired trait in an alien organism
45. select a suitable vector for transformation in a specific crop
46. mark a gene on a chromosome for isolation using restriction enzyme
117.In RNAi, the genes are silenced using
47. ds-RNA
48. ss-DNA
49. ss-RNA
50. ds-DNA
51. What will be the sequence of mRNA produced by the following stretch of DNA?

3' ATGCATGCATGCATG5'
TEMPLATE STRAND
5' TACGTACGTACGTAC3'
CODING STRAND

1. 3'AUGCAUGCAUGCAUG5'
2. 5'UACGUACGUACGUAC 3'
3. 3' UACGUACGUACGUAC 5'
4. 5' AUGCAUGCAUGCAUG 3'
5. In the process of transcription in eukaryotes, the RNA polymerase I transcribes
6. mRNA with additional processing, capping and tailing
7. tRNA, 5 SrRNA and snRNAs
8. rRNAs- 28S, 18S and 5.8S
9. precursor of mRNA, hnRNA
120.Which of the following cell organelles is present in the highest number in secretory cells?
10. Mitochondria
11. Golgi complex
12. Endoplasmic reticulum
13. Lysosomes
14. "Ramachandran plot" is used to confirm the structure of
15. RNA
16. Proteins
17. Triacylglycerides
18. DNA
122.In Hatch and Slack pathway, the primary CO_{2} acceptor is
19. oxaloacetic acid
20. phosphoglyceric acid
21. phosphoenolpyruvate
22. RuBisCO
123.From the following, identify the correct combination of salient features of genetic code
23. universal, non-ambiguous, overlapping
24. degenerate, overlapping, commaless
25. universal, ambiguous, degenerate
26. degenerate, non-overlapping, non-ambiguous
124.The contrasting characteristics generally in a pair used for identification of newly discovered organism in taxonomic key are referred to as
27. lead
28. couplet
29. doublet
30. triplet
125.In the dicot root the vascular cambium originates from :-
31. Tissue located below the phloem bundles and a portion of pericycle tissue above protoxylem
32. Cortical region
33. Parenchyma between endodermis and pericycle
34. Intrafascicular and interfascicular tissue in a ring
35. Which of the following statements about methanogens is not correct?
36. They can be used to produce biogas.
37. They are found in the rumen of cattle and their excreta.
38. They grow aerobically and breakdown cellulose- rich food.
39. They produce methane gas.
127.Prosthetic groups differ from coenzymes in that
40. they require metal ions for their activity
41. they are tightly bound to apoenzymes.
42. their association with apoenzymes is transient.
43. they can serve as co-factors in a number of enzyme-catalyzed reactions.
128.Crossing over takes place between which chromatids and in which stage of the cell cycle ?
44. Non-sister chromatids of nonhomologous chromosomes at zygotene stage of prophase I.
45. Non-sister chromatids of homologous chromosomes at pachytene stage of prophase I.
46. Non-sister chromatids of homologous chromosomes at zygotene stage of prophase I.
47. Non-sister chromatids of nonhomologous chromosomes at pachytene stage of prophase I.
48. Which of the following bacteria reduce nitrate in soil into nitrogen ?
49. Nitrobacter
50. Nitrococcus
51. Pseudomonas
52. Nitrosomonas
130.Exploitation of bioresources of a nation by multinational companies without authorization from the concerned country is referred to as
53. bioweapon
54. biopiracy
55. bioethics
56. biowar
131.After meiosis I, the resultant daughter cells have
57. same amount of DNA as in the parent cell in S phase
58. twice the amount of DNA in comparison to haploid gamete
59. same amount of DNA in comparison to haploid gamete
60. four times the amount of DNA in comparison to haploid gamete
132.A biocontrol agent to be a part of an integrated pest management should be
61. species-specific and symbiotic
62. free living and broad spectrum
63. narrow spectrum and symbiotic
64. species-specific and inactive on non-target organisms
133.Mad cow disease in cattle is caused by an organism which has
65. inert crystalline structure
66. abnormally folded protein
67. free RNA without protein coat
68. free DNA without protein coat
69. Which of the following statements is correct?
70. Lichens do not grow in polluted areas.
71. Algal component of lichens is called mycobiont.
72. Fungal component of lichens is called phycobiont
73. Lichens are not good pollution indicators.
135.Non-membranous nucleoplasmic structures in nucleus are the site for active synthesis of
74. proteins
75. mRNA
76. rRNA
77. tRNA
136.Among the following pairs of microbes, which pair has both the microbes that can be used as biofertilizers?
78. Aspergillus and Rhizopus
79. Rhizobium and Rhizopus
80. Cyanobacteria and Rhizobium
81. Aspergillus and Cyanobacteria
137.What initiation and termination factors are involved in the transcription of prokaryotes?
82. σ and ρ, respectively
83. α and β, respectively
84. β and γ, respectively
85. α and σ, respectively

> Zoology

Section A

138.Match the following joints with the bones involved.

Column-

I
(a) ${ }_{\text {joint }}^{\text {Glidin }}$
(i) carpal and metacarpal of thumb
Between
(b) $\begin{aligned} & \text { Hinge } \\ & \text { joint }\end{aligned}$
(ii) atlas and axis
(c) Pivot
(iii) $\begin{aligned} & \text { Between the } \\ & \text { carpals }\end{aligned}$
(d) Saddle
joint
Between the
(iv) humerus and ulna

Select the correct option from the following.
(a)
(b)
(c)
(d)
$1 \quad$ iii \quad iv \quad ii \quad i

2	iv	i	ii	iii
3	iv	ii	iii	i
4	i	iii	ii	iv

1. 1
2. 2
3. 3
4. 4
139.Exploration of molecular, genetic and species level diversity for novel products of economic importance is known as
5. biopiracy
6. bioenergetics
7. bioremediation
8. bioprospecting
140.In which genetic condition, each cell in the affected person, has three sex chromosomes XXY?
9. Thalassemia
10. Klinefelter's Syndrome
11. Phenylketonuria
12. Turner's Syndrome
141.Identify A, B and C in the diagrammatic representation of the mechanism of hormone action.

C

Select the correct option from the following.

A B	C
$\begin{gathered} \text { Steroid } \\ \text { hormone } \\ \begin{array}{l} \text { Hormone- } \\ \text { receptor } \\ \text { complex } \end{array} \\ \hline \end{gathered}$	Protein
Protein ${ }^{2}$. hormone Receptor 2.	Cyclic AMP
Steroid 3. ${ }^{3}$ hormone Receptor	Second messenger
4. Protein Cyclic hormone AMP	Hormonereceptor complex

1. 1

2. 2
3. 3
4. 4
142.Decline in the population of indian native fishes due to introduction of Clarias gariepinus in river Yamuna can be categoriesd as
5. Co-extinction
6. Habitat fragmentation
7. Over exploitation
8. Allen species invasion
143.The maximum volume of air a person can breathe in after a forced expiration is known as
9. expiratory capacity
10. vital capacity
11. inspiratory capacity
12. total lung capacity
144.Select the correct statement.
13. Expiration occurs due to external intercostal muscles
14. Intrapulmonary pressure is lower than the atmospheric pressure during inspiration.
15. Inspiration occurs when atmospheric pressure is less than intrapulmonary pressure.
16. Expiration is initiated due to contraction of diaphragm.
17. Which of the following is a correct statement?
18. IUDs once inserted need not be replaced.
19. IUDs are generally inserted by the user herself.
20. IUDs increase phagocytosis of sperms in the uterus.
21. IUDs suppress gametogenesis.
146.All the components of the nodal tissue are autoexcitable. Why does the SA node act as the normal pacemakar?
22. SA node has the lowest rate of depolarisation.
23. SA node is the only component to generate the threshold potential.
24. Only SA node can convey the action potential to the other components.
25. SA node has the highest rate of depolarisation.
147.A population of a species invades a new area. Which of the following condition will lead to Adaptive Radiation ?
26. Area with large number of habitats having very low food supply
27. Area with a single type of vacant habitat
28. Area with many types of vacant habitats
29. Area with many habitats occupied by a large number of species
148.Match the items of column I with column II

Column I
(a) method of
sex
determination
XX - XY
(b) $\begin{aligned} & \text { mexhod of } \\ & \text { sex }\end{aligned}$
determination
(c) Karyotype 45 (iii) Grasshopper ZW - ZZ
(d) $\begin{aligned} & \text { method of } \\ & \text { sex }\end{aligned}$
determination

Select the correct option from the following :

	a	b	c	d
1	ii	iv	i	iii
2	i	iv	ii	iii
3	iii	iv	i	ii
4	iv	ii	i	iii

1. 1
2. 2
3. 3
4. 4
5. Which of the following statements is incorrect?
6. Cockroaches exhibit mosaic vision with less sensitivity and more resolution.
7. A mushroom- shaped gland is present in the $6^{\text {th }}-7^{\text {th }}$ abdominal segments of male cockroach.
8. A pair of spermatheca is present in the $6^{\text {th }}$ segment of female cockroach.
9. Female cockroach possesses sixteen ovarioles in the ovaries.
150.Match the items given in column I with those in column II and choose the correct option.

Column I Column II
(a) Rennin
(i) Vitamin B_{12}
(b) Enterokinase (ii)
Facilitated
Oxyntic
(c) cells
(iii) $\begin{aligned} & \text { Milk } \\ & \text { proteins }\end{aligned}$
(d)Fructose (iv) Trypsinogen

	a	b	c	d
1	iii	iv	ii	i
2	iv	iii	i	ii
3	iv	iii	ii	i
4	iii	iv	i	ii

1. 1
2. 2
3. 3
4. 4
5. Which of the following hormones is responsible for both the milk ejection reflex and the foetal ejection reflex ?
6. Estrogen
7. Prolactin
8. Oxytocin
9. Relaxin
10. Kwashiorkor disease is due to
11. simultaneous deficiency of proteins and fats
12. simultaneous deficiency of proteins and calories
13. deficiency of carbohydrates
14. protein deficiency not accompained by calorie deficiency
153.If an agricultural field is liberally irrigated for a prolonged period of time, it is likely to face problem of:
15. Metal toxicity
16. Alkalinity
17. Acidity
18. Salinity
154.Select the correct sequence of events
19. Gametogenesis \rightarrow Gamete transfer \rightarrow Syngamy \rightarrow Zygote
\rightarrow Cell division (Cleavage) \rightarrow
Cell differentiation \rightarrow
Organogenesis
20. Gametogenesis \rightarrow Gamete transfer \rightarrow Syngamy \rightarrow Zygote \rightarrow Cell division (Cleavage) \rightarrow
Organogenesis \rightarrow Cell differentiation
21. Gametogenesis \rightarrow Syngamy \rightarrow

Gamete transfer \rightarrow Zygote \rightarrow Cell division (Cleavage) \rightarrow Cell differentiation \rightarrow Organogenesis
4. Gametogenesis \rightarrow Gamete transfer \rightarrow Syngamy \rightarrow Zygote \rightarrow Cell differentiation \rightarrow Cell division (Cleavage) \rightarrow
Organogenesis
155.Match the items in Column-I with those in Column-II:

Column I

Column II

Select the correct option from the following :

	a	b	c	d
1	iii	iv	ii	i
2	iii	ii	iv	i
3	iv	iii	ii	i
4	iv	ii	iii	i

1. 1
2. 2
3. 3
4. 4
5. Match the following parts of a nephron with their function:

Column I Column II

Descending
(a)
limb of
(i) Reabsorption loop Proximal
(b) convoluted (ii) Reabsorption tubule

Ascending	Conditional reabsorption		
(c)limb of Henle's loop	(iii) of Sodium ion and water		
Distal			Reabsorption
:---			
(d) convoluted (iv)of ion, water and organic tubule			

Select the correct option from the following :

	a	b	c	d
1	i	iii	ii	iv
2	ii	iv	i	iii
3	i	iv	ii	iii
4	iv	i	iii	ii

1. 1
2. 2
3. 3
4. 4
5. Match the following genera with their respective phylum:
(a) Ophiura (i) Mollusca
(b) Physalia (ii) Platyhelminthes
(c) Pinctada (iii) Echinodermata
(d) Planaria (iv) Coelenterata

Select the correct option:

	a	b	c	d
1	iv	i	iii	ii
2	iii	iv	i	ii
3	i	iii	iv	ii
4	iii	iv	ii	i

1. 1
2. 2
3. 3
4. 4
158.Match the following cell structure with its characteristic feature.

Column

I

Column II

Cement

(a) Tight junctions (i)	neighbouring cells together to form sheet
(b) Adhering $_{\text {(ii) }}$ junctions	Transmit information through chemical to another cell

neighbouring cells together to form sheet
Transmit
information
(ii) through
chemical to another cell

Establish a barrier to (c) Gunctions $^{\text {(iii) }}$ prevent leakage of fluid across epithelial cells
(d)Synaptic junctionsCytoplasmic (iv)channels to facilitate communication between adjacent cells

Select correct option from the following.

	(a)	(b)	(c)	(d)
1.	ii	iv	i	iii
2.	iv	ii	i	iii
3.	iii	i	iv	ii
4.	iv	iii	i	ii

1. 1
2. 2
3. 3
4. 4
5. Which of the following animals are true coelomates with bilateral symmetry?
6. Adult echinoderms
7. Aschelminthes
8. Platyhelminthes
9. Annelids
160.Select the incorrect statement regarding inbreeding.
10. Inbreeding helps in elimination of deleterious alleles from the
population
11. Inbreeding is necessary to evolve a pureline in any animal
12. Continued inbreeding reduces fertility and leads to inbreeding depression
13. Inbreeding depression can not be overcome by out-crossing
161.Artificial light, extended work-time and reduced sleep time disrupt the activity of
14. thymus gland
15. pineal gland
16. adrenal gland
17. posterior pituitary gland
18. Which of the following conditions will stimulate parathyroid gland to release parathyroid hormone?
19. Fall in active Vitamin D levels
20. Fall in blood Ca^{2+} levels
21. Fall in bone Ca^{2+} levels
22. Rise in blood Ca^{2+} levels
23. Which of the following statements is not correct?
24. An action potential in an axon does not move backward because the segment behind is in a refractory phase.
25. Depolarisation of hair cells of cochlea results in the opening of
the mechanically gated potassium-ion channels.
26. Rods are very sensitive and contribute to daylight vision.
27. In the knee-jerk reflex, stimulus is the stretching of muscle and response is its contraction.
28. Which of the following receptors are specifically responsible for maintenance of balance of body and posture?
29. Basilar membrane and otoliths
30. Hair cells and organ of Corti
31. Tectorial membrane and macula
32. Crista ampullaris and macula
165.No new follicles develop in the luteal phase of the menstrual cycle because
33. follicles do not remain in the ovary
34. FSH levels are high in the luteal phase
35. LH levels are high in the luteal phase
36. both FSH and LH levels are low in the luteal phase
166.A specialised nodal tissue embedded in the lower corner of the right atrium, close to Atrio-ventricular septum, delays the spreading of
impulses to heart apex for about 0.1 sec. The delay allows
37. blood to enter aorta.
38. the ventricles to empty completely.
39. blood to enter pulmonary arteries.
40. the atria to empty completely.
167.In Australia, marsupials and placental mammals have evolved to share many similar characteristics. This type of evolution may be referred to as
41. adaptive radiation
42. divergent evolution
43. cyclical evolution
44. convergent evolution
168.Humans have acquired immune system that produces antibodies to neutralize pathogens. Still innate immune system is present at the time of birth because it
45. is very specific and uses different macrophages.
46. produces memory cells for mounting fast secondary response.
47. has natural killer cells which can phagocytose and destroy microbes.
48. provides passive immunity.
169.Western Ghats have a large number of plant and animal species that are not found anywhere else. Which of the following terms will you use to notify such species?
49. Endemic
50. Vulnerable
51. Threatened
52. Keystone
53. Which of the following is an innovative remedy for plastic waste?
54. Burning in the absence of oxygen
55. Burrying 500 m deep below soil surface
56. Polyblend
57. Electrostatic precipitator
58. Which of the following sexually transmitted diseases do not specifically affect reproductive organs?
59. Genital warts and hepatitis-B
60. Syphilis and genital herpes
61. AIDS and hepatitis B
62. Chlamydiasis and AIDS
63. Which of the following diseases is an autoimmune disorder?
64. Myasthenia gravis
65. Arthritis
66. Osteoporosis
67. Gout
173.Carnivorous animals - lions and leopards, occupy the same niche but lions predate mostly larger animals and leopards take smaller ones. This mechanism of competition is referred to as
68. character displacement
69. altruism
70. resource partitioning
71. competitive exclusion
174.Between which among the following, the relationship is not an example of commensalism?
72. Orchid and the tree on which it grows
73. Cattle egret and grazing cattle
74. Sea anemone and Clown fish
75. Female wasp and fig species
76. Which of the following statements is correct about the origin and evolution of men?
77. Agriculture came around 50,000 years back.
78. The Dryopithecus and Ramapithecus primates existing 15 million years ago, walked like men.
79. Homo habilis buried their dead.
80. Neanderthal men lived in Asia betweeen 1,00,000 and 40,000 years back.
81. Which of the following statements about ozone is correct?
82. Tropospheric ozone protects us from UV radiations.
83. Stratospheric ozone is 'bad'
84. Tropospheric ozone is 'good'
85. Stratospheric ozone protects us from UV radiations.
177.Coca alkaloid or cocaine is obtained from
86. Papaver somniferum
87. Atropa belladona
88. Erythroxylum coca

4. Datura

178.Given below are four statements pertaining to separation of DNA fragments using gel electrophoresis. Identify the incorrect statements.
(a) DNA is negatively charged molecule and so it is loaded on gel towards the Anode terminal.
(b) DNA fragments travel along the surface of the gel whose concentration does not affect movement of DNA.
(c) Smaller the size of DNA fragment larger is the distance it
travels through it.
(d) Pure DNA can be visualized directly by exposing UV radiation.
Choose correct answer from the options given below

1. (a), (c) and (d)
2. (a), (b) and (c)
3. (b), (c) and (d)
4. (a), (b) and (d)
179.Match the following enzymes with their functions :

Column I Column II

(a) Restriction endonuclease
(i) Joins the

DNA
fragments
(ii) Extends
(b) Restriction primers on exonuclease genomic DNA
template
(iii) Cuts
(c) DNA DNA at a ligase specific position
(d) Taq (iv) Removes polymerase nucleotides
from the ends of DNA

Select the correct option from the following :

	a	b	c	d
1	iii	i	iv	ii
2	iii	iv	i	ii
3	iv	iii	i	ii
4	ii	iv	i	iii

1. 1
2. 2
3. 3
4. 4
5. Which of the following organic compounds is the main constituent of lecithin?
6. Arachidonic acid
7. Phospholipid
8. Cholesterol
9. Phosphoprotein
