## Table of Contents

- Factor Tree Approach
- Exponential Form
- Summary
- What's Next?

In the previous segment, we were introduced to Euclid's Division Algorithm. In this segment, we will understand prime factorisation using the Factor tree method.

## What is the Factor tree approach?

The Factor tree approach is a technique for prime factorisation of a number.
Prime factorisation of a number is expressing the number as a product of its prime factors.
For example,
Prime factorisation of 36 means writing 36 as a product of its prime factors.

## Method 1:

## Here,

$36=2 \times 18$
$=2 \times 2 \times 9$

$$
=2 \times 2 \times 3 \times 3
$$

So, the prime factorisation of 36 is $2 \times 2 \times 3 \times 3$.

## Method 2:

The prime factors of 36 can also be obtained using the factor tree. In this method, the number to be factored is written at the top. $36=2 \times 18$. So, 2 and 18 are written below 36 as shown.


As 18 isn't a prime number, it can be broken down as $18=2 \times 9$. Learn


As 9 isn't a prime number, it can be broken down as $9=3 \times 3$.


## Factor tree

Now there are only prime numbers in the branches. Hence, the factor tree is complete. 36 can thus be expressed as $36=2 \times 2 \times 3 \times 3$.

## What is Exponential form of writing prime factors?

36 can also be written as,
$36=2^{2} \times 3^{2}$
This is the exponential form of writing the prime factors.

## Summary

***

## What's next?

In the next segment of Class 10 Maths, we look at some more examples of the factor tree method.

