Rational Numbers - Examples of Standard Form

Table of Contents

- Standard Form of Rational Number - Examples
- Summary
- What's Next?

In the previous segment, we saw what is the Standard Form (Simplest Form) of a Rational Number. In this segment, we shall see a few examples of the same.

Standard Form of Rational Numbers - Example

Q. Reduce $\frac{12}{18}$ to its standard form.

Solution:

Step 1: Find the Highest Common Factor (HCF) of numerator and denominator.
Let us find the HCF by continuous Division method.

- Divide 18 by 12 and the remainder obtained is 6 .
- Since the remainder is not zero, the remainder becomes the new divisor and the previous divisor becomes the new dividend.
- Divide 12 by 6 , the remainder is zero.
- So we stop here and the last divisor, which is 6 , is the HCF.
\therefore HCF of 12 and 18 is 6.
$1 2 \longdiv { 1 8 1 }$
12

6) $12(2$
$\frac{12}{0}$

Fig 1

Infinity

 LearnStep 2: Divide the numerator and the denominator by HCF.
$\frac{\frac{12}{6}}{\frac{18}{6}}=\frac{2}{3}$
$\therefore \frac{2}{3}$ is the standard form of $\frac{12}{18}$
Q. Reduce $\frac{16}{-48}$ to its standard form.

Solution:

The standard form cannot have a negative denominator.
So, $\frac{16}{-48}=\frac{-16}{48}$ (As they are equivalent rational number)
Step 1: Find the Highest Common Factor (HCF) of numerator and denominator. HCF of 16 and 48 is 16 .

Step 2: Divide the numerator and the denominator by HCF.
$\frac{\frac{-16}{16}}{\frac{48}{16}}=\frac{-1}{3}$
$\therefore \frac{-1}{3}$ is the standard form of $\frac{-16}{48}$ or $\frac{16}{-48}$

Summary

| Standard | -The standard form cannot have a negative denominator. So change it
 Form of |
| :--- | :--- |\quad| into an equivalent rational number. |
| :--- |

What's next?

In our next segment of Class 10 Maths, we will see how to convert decimal to fractions.

