VITEEE PYP 2023

Instructions:

- This question paper contains total 125 questions divided into four parts:

Part I: Physics Q. No -1 to 35
Part II: Chemistry Q. No- 36 to 70
Part III : Mathematics Q. No- 71 to 110
Part IV: Aptitude Test Q. No - 111 to 120
Part V: English Q. No- 121 to 125

- All questions are multiple choice questions with four options, only one of them is correct.
- For each correct response, the candidate will get 1 mark.
- There is no negative marking for the wrong answer.
- The test is of $2 \frac{1}{2}$ hours duration.

PART I : PHYSICS

1. Light of wavelength λ_{A} and λ_{B} falls on two identical metal plates A and B respectively. The maximum kinetic energy of photoelectrons is K_{A} and K_{B} respectively, then which one of the following relations is true $\left(\lambda_{A}=2 \lambda_{B}\right)$.
A. $K_{A}<\frac{K_{B}}{2}$
B. $2 \mathrm{~K}_{\mathrm{A}}=\mathrm{K}_{\mathrm{B}}$
C. $\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}$
D. $\mathrm{K}_{\mathrm{A}}>2 \mathrm{~K}_{\mathrm{B}}$

Key: A

$$
\mathrm{KE}=\frac{\mathrm{hc}}{\lambda}-\mathrm{W}_{0} \Rightarrow \mathrm{~K}_{\mathrm{A}}=\frac{\mathrm{hc}}{\lambda_{\mathrm{A}}}-\mathrm{W}_{0}
$$

Solution: $\mathrm{K}_{\mathrm{A}}=\frac{\mathrm{hc}}{2 \lambda_{\mathrm{B}}}-\mathrm{W}_{0} \ldots$ (i) $\left(\because \lambda_{\mathrm{A}}=2 \lambda_{\mathrm{B}}\right)$

$$
\begin{equation*}
\mathrm{K}_{\mathrm{B}}=\frac{\mathrm{hc}}{\lambda_{\mathrm{B}}}-\mathrm{W}_{0} \tag{ii}
\end{equation*}
$$

${ }^{\text {by }}$ Educational Institutions
From eq. (i) and eq. (ii) we have,

$$
K_{A}<\frac{K_{B}}{2}
$$

2. Which one of the following curves represents the variation of impedance (Z) with frequency f in series LCR circuit?
A.

B.

C.

D.

Key: C

Solution: Impedance at resonant frequency is minimum in series LCR circuit.

$$
\text { So, } Z=\sqrt{R^{2}+\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}}
$$

When frequency is increased or decreased, Z increases.
3. A Carnot engine takes $3 \times 10^{6} \mathrm{cal}$. of heat from a reservoir at $627^{\circ} \mathrm{C}$, and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is.
A. $4.2 \times 10^{6} \mathrm{~J}$
B. $8.4 \times 10^{6} \mathrm{~J}$
C. $16.8 \times 10^{6} \mathrm{~J}$
D. zero

Key: B
Solution:

$$
\begin{aligned}
\eta & =\frac{(627+273)-(273+27)}{627+273} \\
& =\frac{900-300}{900}=\frac{600}{900}=\frac{2}{3}
\end{aligned}
$$

work $=(\eta) \times$ Heat $=\frac{2}{3} \times 3 \times 10^{6} \times 4.2 \mathrm{~J}=8.4 \times 10^{6} \mathrm{~J}$
4. An element of 0.05im is placed at the origin as shown in figure which carries a large current of 10 A . distance of 1 m in perpendicular direction. The value of magnetic field is

$\Delta x 0.05 \hat{i} \mathrm{~m}$
A. $4.5 \times 10^{-8} \mathrm{~T}$
B. $5.5 \times 10^{-8} \mathrm{~T}$
C. $5.0 \times 10^{-8} \mathrm{~T}$
D. $7.5 \times 10^{-8} \mathrm{~T}$

Key: C
Solution: $d B=\frac{\mu_{0}}{4 \pi} \frac{|d| \sin \theta}{r^{2}}$
Here, $d I=\Delta x=0.05 \mathrm{~m}, I=10 \mathrm{~A}, r=1 \mathrm{~m} \sin \theta=\sin 90^{\circ}=1$,
$\therefore d B=10^{-7} \times \frac{10 \times 0.05 \times 1}{(1)^{2}}$
$=0.50 \times 10^{-7}=5.0 \times 10^{-8} \mathrm{~T}$
5. A sinusoidal voltage of amplitude 25 volt and frequency 50 Hz is applied to a half wave rectifier using P-n junction diode. No filter is used and the load resistor is 1000Ω. The forward resistance R_{f} of ideal diode is 10Ω. The percentage rectifier efficiency is
A. 40%
B. 20%
C. 30%
D. 15%

Key: A
Solution:

$$
\begin{gathered}
I_{m}=\frac{V_{m}}{R_{f}+R_{L}}=\frac{25}{(10+1000)}=24.75 \mathrm{~mA} \\
I_{d c}=\frac{I_{m}}{\pi}=\frac{24.75}{3.14}=7.87 \mathrm{~mA} \\
I_{\mathrm{rms}}=\frac{I_{m}}{2}=\frac{24.75}{2}=12.37 \mathrm{~mA} \\
P_{d c}=I_{d c}^{2} \times R_{L}=\left(7.87 \times 10^{-3}\right)^{2} \times 10^{3}=61.9 \mathrm{~mW} \\
P_{a c}=I_{r m s}^{2}\left(R_{f}+R_{L}\right)=\left(12.37 \times 10^{-3}\right)^{2} \times(10+1000) \\
=154.54 \mathrm{~mW}
\end{gathered}
$$

Rectifier efficiency
$\eta=\frac{P_{d c}}{P_{a c}} \times 100=\frac{61.9}{154.54} \times 100=40.05 \%$
6. A flask contains a monoatomic and a diatomic gas in the ratio of $4: 1$ by mass at a temperature of 300

K . The ratio of average kinetic energy per molecule of the two gases is
A. $1: 1$
B. $2: 1$
C. $4: 1$
D. $1: 4$

Key: A
Solution: The average kinetic energy per molecule of any ideal gas is always equal to $\left(\frac{3}{2}\right) k_{B} T$. It depends only on the temperature and is independent of the mass and nature of the gas.
7. The potential energy of a particle $\left(U_{x}\right)$ executing S.H.M. is given by
A. $U_{x}=\frac{k}{2}(x-a)^{2}$
B. $U_{x}=k_{1} x+k_{2} x^{2}+k_{3} x^{3}$
C. $U_{x}=A e^{-b x}$
D. $U_{x}=$ aconstant

Key: A
Solution: P.E. of body in S.H.M. at an instant,
$U=\frac{1}{2} m \omega^{2} y^{2}=\frac{1}{2} k y^{2}$
If the displacement, $y=(a-x)$ then

$$
U=\frac{1}{2} k(a-x)^{2}=\frac{1}{2} k(x-a)^{2}
$$

8. Consider an electric field $\vec{E}=E_{0} \hat{x}$ where E_{0} is a constant. The flux through the shaded area (as shown in the figure) due to this field is.

A. $2 E_{0} a_{2}$
B. $\sqrt{2} E_{0} a^{2}$
C. $E_{0} a^{2}$
D. $\frac{E_{0} a^{2}}{\sqrt{2}}$

Key: C
Solution:
9. The equation of a wave on a string of linear mass density $0.04 \mathrm{kgm}^{-1}$ is given by $y=0.02(m) \sin \left[2 \pi\left(\frac{t}{0.04(s)}-\frac{x}{0.50(m)}\right)\right]$ The tension in the string is
A. 4.0 N
B. $\quad 12.5 \mathrm{~N}$
C. 0.5 N
D. 6.25 N

Key: D
Solution: $T=\mu v^{2}=\mu \frac{\omega^{2}}{k^{2}}=0.04 \frac{(2 \pi / 0.004)^{2}}{(2 \pi / 0.50)^{2}}$
$=6.25 \mathrm{~N}$
10. Equipotential surfaces are shown in the figure. Then the electric field strength will be

A. $100 \mathrm{Vm}^{-1}$ along X-axis
B. $100 \mathrm{Vm}^{-1}$ long Y -axis
C. $200 \mathrm{Vm}^{-1}$ at an angle 120° with X -axis
D. $50 \mathrm{Vm}^{-1}$ at an angle 120° with X -axis

Key: C
Solution:

Using $d V=-\vec{E} \cdot d \vec{r}$

$$
\Rightarrow \Delta V=-E \Delta r \cos \theta
$$

$$
\Rightarrow E=\frac{-\Delta V}{\Delta r \cos \theta}
$$

$$
\Rightarrow E=\frac{-(20-10)}{10 \times 10^{-2} \cos 120^{\circ}}
$$

$$
=\frac{-10}{10 \times 10^{-2}\left(-\sin 30^{\circ}\right)}=200 \mathrm{~V} / \mathrm{m}
$$

Direction of E be perpendicular to the equipotential surface i.e. at 120° with X -axis.
11. Water falls from a 40 m high dam at the rate of $9 \times 10^{4} \mathrm{~kg}$ per hour. Fifty percentage of gravitational potential energy can be converted into electrical energy. Using this hydroelectric energy number of 100 W lamps, that can be lit, is:(Takeg= $10 \mathrm{~ms}^{-2}$)
A. 25
B. 50
C. 100
D. 18

Key: B
Solution: Given
$\frac{1}{2} \cdot \frac{\Delta U}{\Delta t}=P_{\text {Bulb }} \times N$, where $N=$ no. of bulb
$\Rightarrow \frac{9 \times 10^{4} \times 10 \times 40}{2 \times 3600}=100 \times N$
$\left[\because \frac{\Delta U}{\Delta t}=\frac{m g h}{3600} \frac{\mathrm{~J}}{\mathrm{~s}}\right]$
$\Rightarrow N=\frac{36 \times 10^{6}}{72 \times 10^{4}} \Rightarrow N=\frac{1}{2} \times 100 \Rightarrow N=50$
12. An electron (mass $=9 \times 10^{-31} \mathrm{~kg}$ charge $=1.6 \times 10^{-19} \mathrm{C}$). moving with a velocity of $10^{6} \mathrm{~m} / \mathrm{s}$ enters a magnetic field. If it describes a circle of radius 0.1 m , then strength of magnetic field must be.
A. $4.5 \times 10^{-5} \mathrm{~T}$
B. $1.4 \times 10^{-5} \mathrm{~T}$
C. $5.5 \times 10^{-5} \mathrm{~T}$
D. $2.6 \times 10^{-5} \mathrm{~T}$

Key: C
Solution: $B q v=\frac{m v^{2}}{r}$ orB $=\frac{m v}{r q}=\frac{\left(9 \times 10^{-31}\right) \times 10^{6}}{0.1 \times\left(1.6 \times 10^{-19}\right)}$
$=5.5 \times 10^{-5} \mathrm{~T}$
13. If V_{1} is velocity of a body projected from the point A and V_{2} is the velocity of a body projected from point B which is vertically below the highest point C. if both the bodies collide, then

A. $V_{1}=\frac{1}{2} V_{2}$
B. $V_{2}=\frac{1}{2} v_{1}$
C. $v_{1}=v_{2}$
D. $\mathrm{V}_{1}=3 \mathrm{~V}_{2}$

Key: B
Solution: Two bodies will collide at the highest point if both cover the same vertical height in the same time.

So $\frac{\mathrm{V}_{1}^{2} \sin ^{2} 30^{\circ}}{2 g}=\frac{\mathrm{V}_{2}^{2}}{2 g} \Rightarrow \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\sin 30^{\circ}=\frac{1}{2}$
$\therefore \quad \mathrm{V}_{2}=\frac{1}{2} \mathrm{~V}_{1}$
14. A square frame of side 10 cm and a long straight wire carrying current 1 A are in the plate of the paper. Starting from close to the wire, the frame moves towards the right with a constant speed of $10 \mathrm{~ms}^{-1}$ (see figure).
The e.m.f induced at the time the left arm of the frame is at $\mathrm{x}=10 \mathrm{~cm}$ from the wire is

Learn
Educational Institutions

A. $2 \mu \mathrm{~V}$
B. $1 \mu \mathrm{~V}$
C. $0.75 \mu \mathrm{~V}$
D. $0.5 \mu \mathrm{~V}$

Key: B
Solution: In the given question,
Current flowing through the wire, $\mathrm{I}=1 \mathrm{~A}$
Speed of the frame, $v=10 \mathrm{~ms}^{-1}$
Side of square loop, $\mathrm{l}=10 \mathrm{~cm}$
Distance of square frame from current carrying wires $\mathrm{x}=10 \mathrm{~cm}$.
We have to find, e.m.f induced $\mathrm{e}=$?
According to Biot-Savart's law
$B=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{Id} \sin \theta}{\mathrm{x}^{2}}=\frac{4 \pi \times 10^{-7}}{4 \pi} \times \frac{1 \times 10^{-1}}{\left(10^{-1}\right)^{2}}=10^{-6}$

Induced e.m.f.e $=\mathrm{BIV}=10^{-6} \times 10^{-1} \times 10=1 \mu \mathrm{~V}$
15. For the circuit shown in the fig. the current through the inductor is 0.9 A while the current through the condenser is 0.4 A . Then

A. current drawn from source $\mathrm{I}=1.13 \mathrm{~A}$
B. $\omega=1 /(1.5 \mathrm{LC})$
C. $I=0.5 \mathrm{~A}$
D. $I=0.6 \mathrm{~A}$

Key: C
Solution: The current drawn by inductor and capacitor will be in opposite phase. Hence net current drawn from generator.
$=I_{L}-I_{C}=0.9-0.4=0.5 \mathrm{amp}$
16. The ozone layer in the atmosphere absorbs
A. only the radiowaves
B. only the visible light
C. only the γ-rays
D. X-rays and ultraviolet rays

Key: D
Solution:
17. The P-V diagram of a diatomic ideal gas system going under cyclic process as shown in figure. The work done during an adiabatic process CD is (Use $\gamma=1.4$):

Learn

A. -500 J
B. 200 J
C. -400 J
D. 400 J

Key: A
Solution: Work done during adiabatic process CD,
$W_{C D}=\frac{P_{C} V_{C}-P_{D} V_{D}}{y-1}$
$=\frac{100 \times 4-200 \times 3}{1.4-1}=\frac{400-600}{\frac{2}{5}} \mathrm{~J}=-500 \mathrm{~J}$
18. In YDSE, how many maximas can be obtained on a screen including central maxima in both sides of the central fringe if $\lambda=3000 \AA, \mathrm{~d}=5000 \AA$
A. 2
B. 5
C. 3
D. 1

Key: C
Solution: $\Delta x_{\max }=d=5000 \AA$. Given $\lambda=3000 \AA$

$$
\text { As } \lambda<d<2 \lambda \quad \therefore n=3 .
$$

19. A and B are two metals with threshold frequencies $1.8 \times 10^{14} \mathrm{~Hz}$ and $2.2 \times 10^{14} \mathrm{~Hz}$. Two identical photons of energy 0.825 eV each are incident on them. Then photoelectrons are emitted in (Take $\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}$)
A. B alone
B. A alone
C. neither A nor B
D. both A and B

Key: B
Solution:
20. A sinusoidal voltage of amplitude 25 volt and frequency 50 Hz is applied to a half wave rectifier using P-n junction diode. No filter is used, and the load resistor is 1000Ω. The forward resistance R_{f} of ideal diode is 10Ω. The percentage rectifier efficiency is.
A. 40%
B. 20%
C. 30%
D. 15%

Key: A
Solution: $I_{m}=\frac{V_{m}}{R_{f}+R_{L}}=\frac{25}{(10+1000)}=24.75 \mathrm{~mA}$
$I_{d c}=\frac{I_{m}}{\pi}=\frac{24.75}{3.14}=7.87 \mathrm{~mA}$
$I_{\mathrm{mms}}=\frac{I_{m}}{2}=\frac{24.75}{2}=12.37 \mathrm{~mA}$
$P_{d c}=I_{d c}^{2} \times R_{\mathrm{L}}=\left(7.87 \times 10^{-3}\right)^{2} \times 10^{3}=61.9 \mathrm{~mW}$
$P_{a c}=I_{\text {ms }}{ }^{2}\left(R_{f}+R_{\mathrm{L}}\right)=\left(12.37 \times 10^{-3}\right)^{2} \times(10+1000)$
$=154.54 \mathrm{mw}$ Rectifier efficiency
$\eta=\frac{P_{\mathrm{dc}}}{P_{\mathrm{ac}}} \times 100=\frac{61.9}{154.54} \times 100=40.05 \%$

The force between two short bar magnets with magnetic moments M_{1} and M_{2} whose centres are r metres apart is 8 N when their axes are in same line. if the separation is increased to 2 r , the force between them is reduced to
A. 4 N
B. 2 N
C. 1 N
D. 0.5 N

Key: D
Solution: As $F \propto \frac{1}{r^{4}}$ and r becomes twice, therefore,

F becomes $\frac{1}{2^{4}}=\frac{1}{16}$ times
$\therefore \frac{1}{16} \times 8=0.5 \mathrm{~N}$.
22. In a Rutherford scattering experiment when a projectile of charge Z_{1} and mass M_{1} approaches a target nucleus of charge Z_{2} and mass M_{2}, the distance of closest approach is r_{0}. The energy of the projectile is
A. directly proportional to $\mathrm{Z}_{1} \mathrm{Z}_{2}$
B. inversely proportional to Z_{1}
C. directly proportional to mass M_{1}
D. directly proportional to $\mathrm{M}_{1} \times \mathrm{M}_{2}$

Key: A
Solution: The kinetic energy of the projectile is given by
$\frac{1}{2} m v^{2}=\frac{\mathrm{Ze}(2 \mathrm{e})}{4 \pi \varepsilon_{0} r_{0}}=\frac{\mathrm{Z}_{1} \mathrm{Z}_{2}}{4 \pi \varepsilon_{0} r_{0}}$

Thus, energy of the projectile is directly proportional to $\mathrm{Z}_{1} \mathrm{Z}_{2}$
23. What will be the maximum speed of a car on a road turn of radius 30 m if the coefficient of friction between the tyres and the road is 0.4 (Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Learn
A. $\quad 10.84 \mathrm{~m} / \mathrm{s}$
B. $9.84 \mathrm{~m} / \mathrm{s}$
C. $8.84 \mathrm{~m} / \mathrm{s}$
D. $6.84 \mathrm{~m} / \mathrm{s}$

Key: A
Solution: $6.84 \mathrm{~m} / \mathrm{s}$

$$
v_{\max }=\sqrt{\mu r g}=\sqrt{0.4 \times 30 \times 9.8}=10.84 \mathrm{~m} / \mathrm{s}
$$

24. A person aiming to reach the exactly opposite point on the bank of a stream is swimming with a speed of $0.5 \mathrm{~m} / \mathrm{s}$ at an angle of 120 with the direction of flow of water. The speed of water in the stream is
A. $1 \mathrm{~m} / \mathrm{s}$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $0.25 \mathrm{~m} / \mathrm{s}$
D. $0.433 \mathrm{~m} / \mathrm{s}$

Key: C
Solution: $\sin 30^{\circ}=\frac{v_{r}}{v_{m}}=\frac{1}{2}$
$\Rightarrow \mathrm{v}_{\mathrm{r}}=\frac{\mathrm{v}_{\mathrm{m}}}{2}=\frac{0.5}{2}=0.25 \mathrm{~m} / \mathrm{s}$

25. A car moves at a speed of $20 \mathrm{~ms}^{-1} \mathrm{on}$ a banked track and describes an arc of a circle of radius $40 \sqrt{3} \mathrm{~m}$. The angle of banking is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$
A. 25^{0}
B. 60^{0}
C. 45^{0}
D. 30^{0}

Key: D
Solution: banking istan θ

$$
=\frac{v^{2}}{r g}=\frac{20^{2}}{40 \sqrt{3} \times 10}=\frac{1}{\sqrt{3}}
$$

26. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$ The value of α for which angular momentum about origin is conserved is
A. 2
B. zero
C. 1
D. -1

Key: D
Solution: From Newton's second law for rotational motion,
$\vec{T}=\frac{\overrightarrow{\mathrm{d} L}}{\mathrm{dt}}, \mathrm{if} \overrightarrow{\mathrm{L}}=$ constant then $\vec{T}=0$

So, $\vec{T}=\vec{r} \times \vec{F}=0$
$(2 \hat{i}-6 \hat{j}-12 \hat{k}) \times(\alpha \hat{i}+3 \hat{j}+6 \hat{k})=0$

Solving we get $\alpha=-1$

27 A convex lens has power P. It is cut into two halves along its principal axis. Further one piece (out of the two halves) is cut into two halves perpendicular to the principal axis (as shown in figure). Choose the incorrect option for the reported pieces.

A. Power of $L_{1}=\frac{P}{2}$
B. Power of $L_{2}=\frac{P}{2}$
C. Power of $L_{3}=\frac{p}{2}$
D. Power of $L_{1}=P$

Key: A
Solution: If a lens is cut into two half along principal axis, its focal length remain unchanged only the intensity of image get reduced.

So, power of L_{1} will remain unaffected as $P=\frac{1}{f}$
28. A ball of radius r and density ρ falls freely under gravity through a distance h before entering water. Velocity of ball does not change even on entering water. If viscosity of water is η the value of h is given by

A. $\frac{2}{9} r^{2}\left(\frac{1-\rho}{\eta}\right) g$
B. $\frac{2}{81} r^{2}\left(\frac{\rho-1}{\eta}\right) g$

Learn
C. $\frac{2}{81} r^{4}\left(\frac{\rho-1}{\eta}\right)^{2} g$
D. $\frac{2}{9} r^{4}\left(\frac{\rho-1}{\eta}\right)^{2} g$

Key: C
Solution:
29. The pressure inside a tyre is 4 times that of atmosphere. If the tyre bursts suddenly at temperature 300 K , what will be the new temperature?
A. $300(4)^{7 / 2}$
B. $300(4)^{2 / 7}$
C. $300(2)^{7 / 2}$
D. $300(4)^{-2 / 7}$

Key: D
Solution: Under adiabatic change

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{\frac{1-\gamma}{V}} \text { ort }_{2}=\mathrm{T}_{1}\left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)^{\frac{1-\gamma}{V}} \\
& \therefore \mathrm{~T}_{2}=300(4 / 1)^{\frac{1-(7 / 5)}{(7 / 5)}} ; \\
& \gamma=1.4=7 / 5 \text { for air }
\end{aligned}
$$

$$
\text { or } T_{2}=300(4)^{-2 / 7}
$$

30. A parallel plate air capacitor of capacitance C is connected to a cell of emf V and then disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect?
A. The energy stored in the capacitor decreases K times.
B. The chance in energy stored is $\frac{1}{2} \mathrm{CV}^{2}\left(\frac{1}{\mathrm{~K}}-1\right)$.
C. The charge on the capacitor is not conserved.
D. The potential difference between the plates decreases K times.

Solution: Capacitance of the capacitor, $c=\frac{Q}{V}$ After inserting the dielectric, new capacitance $\mathrm{C}^{\wedge}=$ K.C $\mathrm{V}^{\prime}=\frac{\mathrm{V}}{\mathrm{K}} ; \mathrm{u}_{\mathrm{i}}=\frac{1}{2} \mathrm{CV}^{2}=\frac{\mathrm{Q}^{2}}{2 \mathrm{C}} \quad(\because \mathrm{Q}=\mathrm{CV})$ $u_{f}=\frac{Q^{2}}{2 f}=\frac{Q^{2}}{2 k c}=\frac{C^{2} V^{2}}{2 K C}=\left(\frac{u_{i}}{k}\right)$
$\Delta u=u_{f}-u_{i}=\frac{1}{2} C v^{2}\left\{\frac{1}{k}-1\right\}$
As the capacitor is isolated, so change will remain conserved p.d. between two plates of the capacitor.
$L=\frac{Q}{K C}=\frac{V}{K}$
31. A given ray of light suffers minimum deviation in an equilateral prism P. Additional prism Q and R of identical shape and of the same material as P are now added as shown in the figure. The ray will now suffer.

A. greater deviation
B. no deviation
C. same deviation as before
D. total internal reflection

Key: C
Solution:

There will be no refraction from P to Q and then from Q to R (all being identical). Hence the ray will now have the same deviation.
32. If m is magnetic moment and B is the magnetic field, then the torque is given by
A. $\vec{m} \cdot \vec{B}$
B. $\frac{|\vec{m}|}{|\vec{B}|}$
C. $\vec{m} \times \vec{B}$
D. $|\vec{m}||\vec{B}|$

Key: C
Solution:
33. An α-particle of 10 MeV collides head-on with a copper nucleus $(\mathrm{Z}=29)$ and is deflected back. Then, the minimum distance of approach between the centres of the two is:
A. $8.4 \times 10^{-15} \mathrm{~cm}$
B. $8.4 \times 10^{-15} \mathrm{~m}$
C. $4.2 \times 10^{-15} \mathrm{~m}$
D. $4.2 \times 10^{-15} \mathrm{~cm}$

Key: B
Solution:
34. A planet in a distant Solar system is 10 times more massive than the earth and its radius is 10 times smaller. Given that the escape velocity from the earth's surface is $11 \mathrm{kms}^{-1}$, the escape velocity from the surface of the planet would be
A. $1.1 \mathrm{kms}^{-1}$
B. $11 \mathrm{kms}^{-1}$
C. $110 \mathrm{kms}^{-1}$
D. $0.11 \mathrm{kms}^{-1}$

Key: C
Solution: $\frac{\left(v_{e}\right)_{p}}{\left(v_{e}\right)_{e}}=\frac{\sqrt{\frac{2 \mathrm{GM} M_{p}}{R_{p}}}}{\sqrt{\frac{2 \mathrm{GM} M_{e}}{\mathrm{R}_{e}}}}=\sqrt{\frac{M_{p}}{M_{e}} \times \frac{\mathrm{R}_{e}}{R_{p}}}$
$=\sqrt{\frac{10 M_{\mathrm{e}}}{M_{e}} \times \frac{R_{e}}{R_{e} / 10}}=10$
$\therefore\left(v_{e}\right)_{p}=10 \times\left(v_{e}\right)_{e}=10 \times 11=110 \mathrm{~km} / \mathrm{s}$
35. In fig., two equal positive point charges $q_{1}=q_{2}=2.0 \mathrm{nC}$ interact with a third point charge $\mathrm{Q}=$ $4.0 \mu \mathrm{C}$. The magnitude, as well as direction, of the net force on Q is.

A. 0.23 N in the +x -direction
B. 0.46 N in the +x -direction
C. 0.23 N in the -x -direction
D. 0.46 N in the -x -direction

Key: B
Solution: $\mathrm{F}_{\text {net }}=2\left|\mathrm{~F}_{31}\right| \cos$

$$
\alpha=2 \times \frac{1}{4 \pi \varepsilon_{0}} \times \frac{2 \times 4 \times 10^{-12}}{(0.5)^{2}} \times \frac{4}{5}=0.46 \mathrm{~N}
$$

PART II : CHEMISTRY

36. Which of the following sets of quantum numbers is correct for an electron in 4 f orbital ?
A. $\mathrm{n}=4,1=3, \mathrm{~m}=+1, \mathrm{~s}=+1 / 2$
B. $\mathrm{n}=4,1=4, \mathrm{~m}=-4, \mathrm{~s}=-1 / 2$
C. $\mathrm{n}=4, \mathrm{l}=3, \mathrm{~m}=+4, \mathrm{~s}=+1 / 2$
D. $n=3, l=2, m=-2, s=+1 / 2$

Key: A
Solution: The possible quantum numbers for 4 f electron are

$$
\mathrm{n}=4, \ell=3, \mathrm{~m}=-3,-2-1,0,1,2,3 \text { and } \mathrm{s}= \pm \frac{1}{2}
$$

Of various possiblities only option (A.is possible.
37. Arrange the following in increasing order of ionic radii?
$\mathrm{C}^{4-}, \mathrm{N}^{3-}, \mathrm{F}^{-}, \mathrm{O}^{2-}$
A. $\quad \mathrm{C}^{4-}<\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{F}^{-}$
B. $\mathrm{N}^{3-}<\mathrm{C}^{4-}<\mathrm{O}^{2-}<\mathrm{F}^{-}$
C. $\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}<\mathrm{C}^{4-}$
D. $\mathrm{O}^{2-}<\mathrm{F}^{-}<\mathrm{N}^{3-}<\mathrm{C}^{4-}$

Key: C

Learn: | Educational Institutions
Solution: All the given species are isoelectronic. In case of isoelectronic species, ionic radii increases with increase in negative charge on anions
38. The bond dissociation energies of $\mathrm{X}_{2}, \mathrm{Y}_{2}$ and XY are in the ratio of 1:0.5:1 ΔH for the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
A. $200 \mathrm{kJmol}^{-1}$
B. $100 \mathrm{kJmol}^{-1}$
C. $400 \mathrm{kJmol}^{-1}$
D. $800 \mathrm{kJmol}^{-1}$

Key: D
Solution: Let B.E ofX ${ }_{2}, \mathrm{Y}_{2}$ and XY are $x \mathrm{KJmol}^{-1}, 0.5 x \mathrm{kJmol}^{-1}$ and $x \mathrm{kJmol}^{-1}$ respectively.
$\frac{1}{2} \mathrm{X}_{2}+\frac{1}{2} \mathrm{Y}_{2} \rightarrow X Y ; \Delta H=-200 \mathrm{kJmol}^{-1}$
$\Delta H=-200=\Sigma(\text { B.E })_{\text {Reactants }}-\Sigma(\text { B.E })_{\text {Product }}$
$=\left[\frac{1}{2} \times(\mathrm{x})+\frac{1}{2} \times(0.5 \mathrm{x})\right]-[1 \times(\mathrm{x})]$
On solving, $\mathrm{x}=800 \mathrm{kJmol}^{-1}$
39. Values of dissociation constant, Ka are given as follows:

Acid	Ka
HCN	6.2×10^{-10}
HF	7.2×10^{-4}
HNO_{2}	4.0×10^{-4}

Correct order of increasing base strength of the base $\mathrm{CN}^{-}, \mathrm{F}^{-}$and NO_{2}^{-}will be :
A. $\mathrm{F}^{-}<\mathrm{CN}^{-}<\mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}<\mathrm{F}^{-}$
C. $\mathrm{F}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}$
D. $\mathrm{NO}_{2}^{-}<\mathrm{F}^{-}<\mathrm{CN}^{-}$

Key: C
Solution: Higher the value of ka lower will be the value of pka i.e., higher will be the acidic nature. Further since, $\mathrm{CN}^{-}, \mathrm{F}^{-}$and NO_{2}^{-}are conjugate base of the acids $\mathrm{HCN}, \mathrm{HF}$ and HNO_{2} respectively hence, the correct order of base strength will be $\mathrm{F}^{-}<\mathrm{NO}_{2}^{-}<\mathrm{CN}^{-}$
(\therefore stronger the acid weaker will be its conjugate base)
40. The product/s formed when diborane is hydrolysed is/are
A. $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$
B. $\mathrm{B}_{2} \mathrm{O}_{3}$ only
C. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and H_{2}
D. $\mathrm{H}_{3} B O_{3}$ only

Key: C
Solution: When diborane is hydrolysed, one can get both orthoboric acid and H_{2}
$\mathrm{B}_{2} \mathrm{H}_{6}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{BO}_{3}+6 \mathrm{H}_{2}$
41. The compounds $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
A. are tautomers
B. are position isomers
C. contain same number of $s p^{3}-s p^{3}, s p^{3}-s p^{2}$ and $s p^{2}-s p^{2}$ carbon-carbon bonds
D. exist together in dynamic equilibrium

Key: B
Solution: The two isomers differ in the position of the double bond are called position isomers, so given compounds are position isomers.
42. Choose the correct option for the following reactions.

A. 'A' and ' B ' are both Markovnikov addition products.
B. 'A' is Markovnikov product and ' B ' is anti-Markovnikov product.
C. 'A' and ' B ' are both anti-Markovnikov products.
D. 'B' is Markovnikovand ' A ' is anti-Markovnikov product.

Key: B
Solution:

(B)
(Anti Markovnikov product)
43. Which of the following has Frenkel defects?
A. Sodium chloride
B. Graphite
C. Silver bromide
D. Damond

Key: C
Solution: AgBr exhibit Frenkel defect.
44. An element X has a body centred cubic (bcC. structure with a cell edge of 200 pm . The density of the element is $5 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of atoms present in 300 g of the element X is \qquad

Given: Avogadro Constant, $\mathrm{N}_{\mathrm{A}}=6.0 \times 10^{23} \mathrm{~mol}^{-1}$.
A. $5 \mathrm{~N}_{\mathrm{A}}$
B. $6 \mathrm{~N}_{\mathrm{A}}$
C. $15 \mathrm{~N}_{\mathrm{A}}$
D. $25 \mathrm{~N}_{\mathrm{A}}$

Key: D
Solution: $\mathrm{d}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{a}^{3} \times \mathrm{N}_{\mathrm{A}}} ; \mathrm{Z}=2$ for bcc
$5 \mathrm{~g} / \mathrm{cm}^{3}=\frac{2 \times \mathrm{M}}{\left(200 \times 10^{-10} \mathrm{~cm}\right)^{3} \times 6.0 \times 10^{23}} \Rightarrow \mathrm{M}=12 \mathrm{~g}$.
12 g of element contain $=\mathrm{N}_{\mathrm{A}}$ atoms
300 g of element contains $=\mathrm{N}_{\mathrm{A}} \times \frac{300}{12}=25 \mathrm{~N}_{\mathrm{A}}$
45. On passing current through two cells, connected in series, containing Solution:ution of AgNO_{3}, and $\mathrm{CuSO}_{4}, 0.18 \mathrm{~g}$ of Ag is deposited. The amount of the Cu deposited is:
A. 0.529 g
B. $\quad 10.623 \mathrm{~g}$
C. 0.0529 g
D. 1.2708 g

Key: D
Solution: Using Faraday's second law ofelectrolysis,
$\frac{\text { Weight of } C u \text { deposited }}{\text { Weight of } A g \text { deposited }}=\frac{\text { Equ. wt. of } C u}{\text { Equ. wt. of } A g}$
$\Rightarrow \frac{\mathrm{w}_{C u}}{0.18}=\frac{63.5}{2} \times \frac{1}{108}$
$\Rightarrow \mathrm{w}_{C u}=\frac{63.5 \times 18}{2 \times 108 \times 100}=0.0529 \mathrm{~g}$.
46. The limiting molar conductivities of $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{COONa}$ and NaCl are respectively 425,90 and $125 \mathrm{mhocm}^{2} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$. The molar conductivity of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ Solution:utions is
$7.8 \mathrm{mhocm}^{2} \mathrm{~mol}^{-1}$ at the same temperature. The degree of dissociation of 0.1 M acetic acid Solution:ution at the same temperature is
A. 0.10
B. 0.02
C. 0.15
D. 0.03

Key: B
Solution: Λ° for $\mathrm{CH}_{3} \mathrm{COOH}=\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}{ }^{-} \lambda_{\mathrm{H}^{+}}^{\circ}$
$=\left(\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}}^{\circ}+\lambda_{\mathrm{Na}^{+}}^{\circ}\right)+\left(\lambda_{\mathrm{H}^{+}}^{\circ}+\lambda_{\mathrm{Cl}^{-}}^{\circ}\right)-\left(\lambda_{\mathrm{Na}^{+}}^{\circ}+\lambda_{\mathrm{Cl}^{-}}^{\circ}\right)$
$=90+425-125=390 \mathrm{mhocm}^{2} \mathrm{~mol}^{-1}$.
Degree of dissociation $(\alpha)=\frac{\Lambda_{\mathrm{m}}^{\mathrm{c}}}{\Lambda_{\mathrm{m}}^{\circ}}=\frac{7.8}{390}=0.02$
47. The rate law for a reaction between the substances A and B is given by Rate $=k[A]^{n}[B]^{m}$ On doubling the concentration of A and halving the concentration of B , the ratio of the new rate to the earlier rate of the reaction will be as
A. $(m+n)$
B. $(n-m)$
C. $2^{(n-m)}$
D. $\frac{1}{2^{(m+n)}}$

Key: C
Solution: Rate $_{1}=\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}} ;$ Rate $_{2}=\mathrm{k}[2 \mathrm{~A}]^{\mathrm{n}}[1 / 2 \mathrm{~B}]^{\mathrm{m}}$
$\therefore \frac{\text { Rate }_{2}}{\text { Rate }_{1}}=\frac{\mathrm{k}[2 \mathrm{~A}]^{\mathrm{n}}[1 / 2 B]^{\mathrm{m}}}{\mathrm{k}[\mathrm{A}]^{\mathrm{n}}[\mathrm{B}]^{\mathrm{m}}}=[2]^{\mathrm{n}}[1 / 2]^{\mathrm{m}}=2^{\mathrm{n}} \cdot 2^{-\mathrm{m}}=2^{\mathrm{n}-\mathrm{m}}$
48. In a reaction, the threshold energy is equal to
A. activation energy + normal energy of reactants
B. activation energy-normal energy of reactants
C. normal energy of reactants - activation energy
D. average kinetic energy of molecules of reactants

Key: A
Solution: Threshold Energy = Enogr of activation + Internal energy
49. Which property of white phosphorus is common to red phosphorous?
A. It burns when heated in air.
B. It reacts with hot caustic soda Solution:ution to give phosphine.
C. It shows chemiluminescence.
D. It is Solution:uble in carbon disulphide.

Key: A
Solution: Both white phosphorus and red phosphorus burns when heated in air
50. $\quad \mathrm{XeO}_{4}$ molecule is tetrahedral having :
A. Two $p \pi-d \pi$ bonds
B. One $p \pi-d \pi$ bonds
C. Four $p \pi-d \pi$ bonds
D. Three $p \pi-d \pi$ bonds

Key: C
Solution: Xenon undergo, sp3 hybridization

In the fourth excited state, xenon atom has 8 unpaired electrons

One s and three p orbital undergo sp^{3} hybridization. Four sp^{3} hybrid orbitals form four σ bonds with oxygen atoms. They are $\sigma s p^{3}-p$.Four $p \pi-d \pi$ bonds are also formed with oxygen atoms by the urpaired electrons.
51. Cuprous ion is colourless while cupric ion is coloured because
A. both have half filled p-and d-orbitals
B. cuprous ion has incomplete d-orbital and cupric ion has a complete d-orbital
C. both have unpaired electrons in the d-orbitals
D. cuprous ion has complete d-orbital and cupric ion has an incomplete d-orbital.

Key: D
Solution: In $\mathrm{Cu}^{+}[\mathrm{Ar}] 3 d^{10}$ there is no unpaired electron, $\mathrm{Cu}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{9}$ contains one unpaired electron hence coloured.
52. The reason for greater range of oxidation states in actinoids is attributed to :
A. actinoid contraction
B. $5 f, 6 \mathrm{~d}$ and 7 s levels having comparable energies
C. 4 f and 5 d levels being close in energies
D. the redioactive nature of actinoids

Key: B
Solution: Minimum or comparable energy gap between 5f,6d and 7s subshell makes electron excitation easier, hence there is a greatsr range ofoxidation states in actinoids.
53. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
A. Square planar geometry and diamagnetic
B. Tetrahedral geometry and diamagnetic
C. Tetrahedral geometry and paramagnetic
D. Square planar geometry and paramagnetic

Key: B
Solution: $N i(28):[A r] 3 d^{8} 4 s^{2}$
CO is a strong field ligand, so unpaired electrons get paired. Hence, configuration would be:

For, four 'CO' ligands $\mathrm{h} /$ ridimtiur would be sp^{3} and thus complex would be diamagnetic and of tetrahedral geometry.
54. Indicate the complex ion which shows geometrical isomerism.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{5}(N C)\right]^{3-}$

Key: A

Solution: $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$shows geometrical isomerism. The possible geometrical isomers are.

trans-isomer

cis-isomer
55. Reaction of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$ with aqueous sodium hydroxide follows \qquad
A. $\mathrm{S}_{\mathrm{N}} 1$ mechanism
B. $\mathrm{S}_{\mathrm{N}} 2$ mechanism
C. Any of the above two depending upon the temperature of reaction
D. Saytzeff rule

Key: A

Solution: In $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$ carbocation is $\mathrm{C}_{6} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{C}} \mathrm{H}_{2}$ which is stable due to resonance.
56. What is the correct order of reactivity of alcohols in the following reaction?
$\mathrm{R}-\mathrm{OH}+\mathrm{HCl} \xrightarrow{\mathrm{ZnCl}} \mathrm{R}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
A. $1^{\circ}>2^{\circ}>3^{\circ}$
B. $1^{\circ}<2^{\circ}<3^{\circ}$
C. $3^{\circ}>2^{\circ}>1^{\circ}$
D. $3^{\circ}>1^{\circ}>2^{\circ}$

Key: C

Solution: $\mathrm{HCl}+\mathrm{An} \cdot \mathrm{ZnCl}_{2}$ s known as Lucas reagent. It isused to determine degree of an alcohol.

The reaction follow nucleophilic substitution reaction in which ------OH group is replaced by ------Cl. In this reaction carbocation is formed as intermediate. Higher the stability of intermediate carbocation higher will be the reactivity of reactant molecule. Since 3° carbocation is more stable than 2° carbocation as well as 1° carbocation, so the order of reactivity of alcohols is $3^{\circ}>2^{\circ}>1^{\circ}$.
57. Which of the following cannot be made by using Williamson's synthesis?
A. Methoxybenzene
B. Benzyl p-nitrophenyl ether
C. Methyl tertiary butyl ether
D. Di-tert-butyl ether

Key: D

Solution: The two components should be $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CONa}+\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$. However tert-alkyl halides tend to undergo elimination reaction rather than substitution leading to the formation of an alkene, $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}$
58. Which of the following reactions will yield benzaldehyde as a product?

A. (B. and (C.
B. (C. and (D.
C. (A.and (D.
D. (A.and (C.

Key: C

Solution:

Learn
by Educational Institutions
In Clemmensen reduction, carbonyl compounds is treated with
A. zinc amalgam +HCl
B. sodium amalgam +HCl
C. zinc amalgan + nitric acid
D. sodiumamalgam $+\mathrm{HNO}_{3}$

Key: A

Solution: Clemmensen reduction is used to convert carbonyl group as follows

Zinc amalgam and HCI act as reagent in this reaction.
60. The correct increasing order of basic strength for the following compounds is

(I)

(II)

(III)
A. $\mathrm{II}<\mathrm{III}<\mathrm{I}$
B. $\mathrm{III}<\mathrm{I}<\mathrm{II}$
C. $\mathrm{III}<\mathrm{II}<\mathrm{I}$
D. $\mathrm{II}<\mathrm{I}<\mathrm{III}$

Key: D
Solution: III $>$ I $>$ II: Higher the electron density towards ring, higher will be its basic strength.
Electron donating group increases the basic strength while electron withdrawing group decreases the basic strength.
61. The major product of the following reaction is:

Learn

A.

C.

D.

Key: B

Solution:
(b)

62. Blister copper is
A. Impure Cu
B. Cu alloy
C. Pure Cu
D. Cu having 1% impurity

Key: D
Solution: Blister-copper contains 1-2 \% impurities. It is obtained after bessemerisation of crude copper.
63. $\quad P_{A}$ and P_{B} are the vapour pressure of pure liquid components, A and B, respectively of an ideal binary Solution: If XA represents the mole fraction of component A, the total pressure of will be.
A. $P_{A}+X_{A}\left(P_{B}-P_{A}\right)$
B. $P_{A}+X_{A}\left(P_{A}-P_{B}\right)$
C. $\mathrm{P}_{\mathrm{B}}+\mathrm{X}_{\mathrm{A}}\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}\right)$
D. $P_{B}+X_{A}\left(P_{A}-P_{B}\right)$

Key: D

Solution: $P=P_{A} X_{A}+P_{B} X_{B}=P_{A} X_{A}+P_{B}\left(1-X_{A}\right)$
$\Rightarrow P_{A} X_{A}+P_{B}-P_{B} X_{A}$
$\Rightarrow P_{B}+X_{A}\left(P_{A}-P_{B}\right)$
64. Which of the following complex shows $s p^{3} d^{2}$ hybridization?
A. $\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$
D. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

Key: C

Solution: Among these ligands, ' F ' is a weak field ligand, makes only high spin complexes which has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization.
65. 2- Pentene contains
A. 15σ - and one π-bond

Educational Institutions
B. 14σ-and one π - bond
C. 15σ - and two π - bonds
D. 14σ - and two π - bonds

Key: B
Solution: No. o $\mathrm{f} \sigma$ bonds $=14$, No. of π bond $=1$
66. For the below given cyclic hemiacetal (X), the correct pyranose structure is :

A.

B.

C.

Key: D
Solution:

X (Hemiacetal)
67. Sucrose which is dextrorotatory in nature after hydrolysis gives glucose and fructose, among which
(i) Glucose is laevorotatory and fructose is dextrorotatory.
(ii) Glucose is dextrorotatory and fructose is laevorotatory
(iii) The mixture is laevorotatory.
(iv) Both are dextrorotatory.
A. (i) and (iii)
B. (ii) and (iii)
C. (iii) and (iv)
D. (iii) only

Key: B
Solution: Sucrose is dextrorotatory but after hydrolysis gives dextrorotatory glucose and laevorotatory fructose. Since the laevorotation of fructose $\left(-92.4^{\circ}\right)$ is more than dextrorotation of glucose $\left(+52.5^{\circ}\right)$ the mixture is laevororatory.
68. Allyl cyanide molecule contains
A. 9 sigma bonds, 4 pi bonds and no lone pair
B. 9 sigma bonds, 3 pi bonds and one lone pair
C. 8 sigma bonds, 5 pi bonds and one lone pair
D. 8 sigma bonds, 3 pi bonds and two lone pairs

Key: B
Solution: Allyl cyanide is :

It contains 9 sigma bonds, 3 pi bonds and I lone pair of electrons
69. Which of the following pairs of compounds is isoelectronic and isostructural ?
A. $\mathrm{TeI}_{2}, \mathrm{XeF}_{2}$
B. $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$
C. $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
D. $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$

Key: B
Solution: $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$

Total number ofvalence electrons are equal in both the spercies and both the species exhibit linear shape
70. In which case change in entropy is negative?
A. Evaporation of water
B. Expansion of a gas at constant temperature
C. Sublimation of Solution:id to gas
D. $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})$

Key: D
Solution: $\operatorname{In} 2 \mathrm{H}(\mathrm{g}) \square \mathrm{H}_{2}(\mathrm{~g})$, no. of species decreases, therefore entropy decreases.

PART III : MATHEMATICS

71. The argument of the complex number $\left(\frac{\mathrm{i}}{2}-\frac{2}{\mathrm{i}}\right)$ is equal to
A. $\frac{\pi}{4}$

Learn
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{12}$
D. $\frac{\pi}{2}$

Key: D
Solution: Since $\left(\frac{i}{2}-\frac{2}{i}\right)=\frac{i}{2}-\frac{2 i}{i^{2}}=\frac{i}{2}+2 i=\frac{5}{2} i$

So, argument is $\tan ^{-1}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)=\tan ^{-1}\left(\frac{\frac{5}{2}}{0}\right)=\frac{\pi}{2}$
72. The lines $p\left(p^{2}+1\right) x-y+q=0$ and $\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$ are perpendicular to a common line for
A. exactly one value of P
B. exactly two values of P
C. more than two values of P
D. no value of P

Key: A
Solution: If the lines $p\left(p^{2}+1\right) x-y+q=0$
$\operatorname{and}\left(p^{2}+1\right)^{2} x+\left(p^{2}+1\right) y+2 q=0$
are perpendicular to a common line then these lines must be parallel to each other,
$\therefore m_{1}=m_{2} \Rightarrow-\frac{p\left(p^{2}+1\right)}{-1}=-\frac{\left(p^{2}+1\right)^{2}}{p^{2}+1}$
$\Rightarrow\left(p^{2}+1\right)(p+1)=0 \Rightarrow p=-1$
73. The probability that a card drawn from a pack of 52 cards will be a diamond or king is
A. $\frac{1}{52}$
B. $\frac{2}{13}$
C. $\frac{4}{13}$
D. $\frac{1}{13}$

Key: C
Solution:
74. If $n(A)=4$ and $n(B)=7$ then the difference between maximum and minimum value of $n(A \cup B)$ is
A. 1
B. 2
C. 3
D. 4

Key: D
Solution: $n(A \cup B)$ is minimum when $\mathrm{A} \subseteq \mathrm{B}$ in this case, $(\mathrm{A} \cup \mathrm{B})=\mathrm{B}$ and hence minimum value of $n(A \cup B)=n(B)=7$
$n(A \cup B)$ is maximum when A and B are disjoint.
Maximum value of $n(A \cup B)=4+7=11$ So $11-7=4$
75. The domain of the function $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{9-\mathrm{x}^{2}}}$ is
A. $-3 \leq x \leq 3$
B. $-3<x<3$
C. $-9 \leq x \leq 9$
D. $-9<x<9$

Key: B
Solution: $\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{9-\mathrm{x}^{2}}}$ Clearly, $9-\mathrm{x}^{2}>0 \Rightarrow \mathrm{x}^{2}-9<0$
76. If $\sin x+\cos x=\frac{1}{5}$ then $\tan 2 x$ is
A. $\frac{25}{17}$
B. $\frac{7}{25}$
C. $\frac{25}{7}$
D. $\frac{24}{7}$

Key: D
Solution: $\sin x+\cos x=\frac{1}{5}$
$\Rightarrow \sin ^{2} x+\cos ^{2} x+2 \sin x \cos x=\frac{1}{25}$

$$
\sin 2 x=\frac{-24}{25} \Rightarrow \cos 2 x=\frac{-7}{25} \Rightarrow \tan 2 x=\frac{24}{7}
$$

77. For binary operation defined on $\mathrm{R}-\{1\}$ such that $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}+1}$ is
A. not associative
B. not commutative
C. commutative
D. both (A) and (B)

Key: D

Solution: Commutative $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{a}}{\mathrm{b}+1}$ andb $* \mathrm{a}=\frac{\mathrm{b}}{\mathrm{a}+1}$
$\mathrm{a} * \mathrm{~b} \neq \mathrm{b} * \mathrm{a} \Rightarrow *$ is not commutative.

Learn: | Educational Institutions
Associative:
Now, $(a * b) * c=\left(\frac{a}{b+1}\right) * c=\frac{\left(\frac{a}{b+1}\right)}{c+1}=\frac{a}{(b+1)(c+1)}$
and $a *(b * c)=a *\left(\frac{b}{c+1}\right)=\frac{a}{\left(\frac{b}{c+1}\right)+1}=\frac{a(c+1)}{b+c+1}$

So, clearly $\left(a^{*} b\right)^{*} c \neq a *(b * c)$

Hance, * is not associative
78. $\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}(1)+\tan ^{-1} \frac{1}{\sqrt{3}}$ is equal to
A. π
B. $\frac{\pi}{3}$
C. $\frac{4 \pi}{3}$
D. $\frac{3 \pi}{4}$

Key: A
Solution: $\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}(1)+\tan ^{-1} \frac{1}{\sqrt{3}}$
$=\frac{\pi}{3}+\frac{\pi}{2}+\frac{\pi}{6}=\frac{6 \pi}{6}=\pi$
79. If $A=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{cc}x & 1 \\ y & -1\end{array}\right]$ and $(A+B)^{2}=A^{2}+B^{2}$, then $x+y=$
A. 2
B. 3
C. 4
D. 5

Key: D

Solution: $(A+B)^{2}=A^{2}+B^{2} \Rightarrow A B+B A=O$
$\Rightarrow\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]\left[\begin{array}{cc}x & 1 \\ y & -1\end{array}\right]+\left[\begin{array}{cc}x & 1 \\ y & -1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & -1\end{array}\right]=0$
$\Rightarrow\left[\begin{array}{cc}x-y & 2 \\ 2 x-y & 3\end{array}\right]+\left[\begin{array}{ll}x+2 & -x-1 \\ y-2 & -y+1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow 2 \mathrm{x}-\mathrm{y}+2=0$
$-x+1=0$
$2 x-2=0$ \qquad
$-y+4=0$.(iv)
from (ii), $x=1$ and from (iv), $y=4$
Now, $x+y=1+4=5$
80. The value of $\left|\begin{array}{ccc}-\mathrm{a}^{2} & a b & a c \\ a b & -\mathrm{b}^{2} & b c \\ a c & b c & -\mathrm{c}^{2}\end{array}\right|$ is
A. 0
B. abc
C. $4 a^{2} b^{2} c^{2}$
D. None of these

Key: C
Solution: Let $\Delta=\left[\begin{array}{ccc}-\mathrm{a}^{2} & a b & a c \\ a b & --\mathrm{b}^{2} & b c \\ a c & b c & -\mathrm{c}^{2}\end{array}\right]$

Taking a, b, c common from R_{1}, R_{2}, and R_{3}, respectively, we get
$\Delta=a b c\left[\begin{array}{ccc}-\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & -\mathrm{b} & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & -\mathrm{c}\end{array}\right]=\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$
[taking a, b, c common from $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ respectively]
$=a^{2} b^{2} c^{2}\left[\begin{array}{ccc}-1 & 0 & 0 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right]$
(applyingC ${ }_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{1}$)
$=a^{2} b^{2} c^{2} \cdot(-1)\left|\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right|=a^{2} b^{2} c^{2}(-1)(0-4)$
$\Rightarrow \Delta=4 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}$
81. If $\mathrm{A}=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \alpha\end{array}\right]$, then Adj. A is equal to :
A. $\left[\begin{array}{cc}\delta & -\gamma \\ -\beta & \alpha\end{array}\right]$
B. $\left[\begin{array}{cc}\delta & -\beta \\ -\gamma & \alpha\end{array}\right]$
C. $\left[\begin{array}{cc}-\delta & \beta \\ \gamma & -\alpha\end{array}\right]$
D. $\left[\begin{array}{cc}-\delta & -\beta \\ \gamma & \alpha\end{array}\right]$

Key: B
Solution: Let $A=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$
$\mathrm{C}_{11}=\delta, \mathrm{C}_{12}=-\gamma, \mathrm{C}_{21}=-\beta, \mathrm{C}_{22}=\alpha$

Learn
$\therefore \operatorname{adj} A=\left[\begin{array}{cc}\delta & -\gamma \\ -\beta & \alpha\end{array}\right]=\left[\begin{array}{cc}\delta & -\beta \\ -\gamma & \alpha\end{array}\right]$.
82. If $\sec \left(\frac{x-y}{x+y}\right)=\mathrm{a}$, then $\frac{d y}{d x}$ is
A. $-\frac{y}{x}$
B. $\frac{x}{y}$
C. $-\frac{x}{y}$
D. $\frac{y}{x}$

Key: D
Solution: Given $\sec \left(\frac{x-y}{x+y}\right)=a \Rightarrow \frac{x-y}{x+y}=\sec ^{-1} a$
Differentiating both sides, w.r.t. x , we get

$$
\begin{aligned}
& \frac{(\mathrm{x}+\mathrm{y})\left(1-\frac{d y}{d x}\right)-(\mathrm{x}-\mathrm{y})\left(1+\frac{d y}{d x}\right)}{(\mathrm{x}+\mathrm{y})^{2}}=0 \\
& \Rightarrow x+y-(x+y) \frac{d y}{d x}-(x-y)-(x-y) \frac{d y}{d x}=0 \\
& \Rightarrow 2 y=\frac{d y}{d x}(x+y+x-y) \Rightarrow 2 y=2 x \frac{d y}{d x} \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}
\end{aligned}
$$

83. The number of non zero terms in the expansion of $(1+3 \sqrt{2} x)^{9}+(1-3 \sqrt{2} x)^{9}$ is
A. 2
B. 3
C. 4
D. 5

Key: D
Solution: Given expression
$=2\left[1+{ }^{9} C_{2}(3 \sqrt{2} x)^{2}+{ }^{9} C_{4}(3 \sqrt{2} x)^{4}\right.$
$=2\left[1+{ }^{9} C_{2}(3 \sqrt{2} x)^{2}+{ }^{9} C_{4}(3 \sqrt{2} x)^{4}+{ }^{9} C_{6}(3 \sqrt{2} x)^{6}+{ }^{9} C_{8}(3 \sqrt{2} x)^{8}\right]$
\therefore the number of non-zero terms is 5
84. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the A.M. between a and b, then the value of n is
A. 1
B. 2
C. 3
D. 4

Key: A
Solution: A. M. between a and $\mathrm{b}=\frac{a+b}{2}$
$\therefore \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}=\frac{a+b}{2}$
$2 a^{n}+2 b^{n}=a^{n}+a b^{n-1}+a^{n-1} b+b^{n}$
$\Rightarrow a^{n} a^{n-1} b-a b^{n-1}+b^{n}=0$
$\Rightarrow a^{n-1}(a-b)-b^{n-1}(a-b)=0$
$\Rightarrow(a-b)\left(a^{n}-b^{n-1}\right)+b^{n}=0 \quad[\because a \neq 0]$
$\Rightarrow a^{n-1}-b^{n-1}=0 \Rightarrow a^{n-1}=b^{n-1}$
$\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0} \Rightarrow n-1=0 \Rightarrow n=1$
85. The sum of the series $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots$ upto 15 terms is
A. 1
C. 3
D. 4

Key: C

Solution: Given series is
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots$.
$n^{\text {th }}$ term $=\frac{1}{\sqrt{n}+\sqrt{n+1}} \quad \therefore 15^{\text {th }}$ term $=\frac{1}{\sqrt{15}+\sqrt{16}}$
Thus, given series upto 15 terms is
$\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots \ldots+\frac{1}{\sqrt{15}+\sqrt{16}}$
This can be re-written as
$\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+\ldots \ldots+\frac{\sqrt{15}-\sqrt{16}}{-1}$
(By rationalzation)
$=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+\sqrt{4}+\ldots . .-\sqrt{14}+\sqrt{15}-\sqrt{15}+\sqrt{16}$
$=-1+\sqrt{16}=-1+4=3$
Hence, the required sum:=3
86. The equation of the circle with center $(0,2)$ and radius 2 is $x^{2}+y^{2}-m y=0$ The value of m is
A. 1
B. 2
C. 4
D. 3

Key: C
Solution: Here $\mathrm{h}=0, \mathrm{k}=2$ and $\mathrm{r}=2$. Therefore, the required equation of the circle is

Learn
$(x-0)^{2}+(y-2)^{2}=(2)^{2}$

$$
\text { or } x^{2}+y^{2}-4 y+4=4 \text { or } x^{2}+y^{2}-4 y=0
$$

87. $\int x^{x}(1+\log x) d x$ is equal to
A. $x^{x}+C$
B. $x^{2 x}+C$
C. $x^{x} \log x+C$
D. $1 / 2(1+\log x)^{2}+C$

Key: A
Solution: $I=\int x^{x}(1+\log x) d x$
Put $\mathrm{x}^{\mathrm{x}}=\mathrm{t}$, then $\mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x}) d x=d t$
$\therefore \quad I=\int d t \Rightarrow I=t+C \Rightarrow I=x^{x}+C$.
88. $\int_{0}^{\pi / 2}(\sqrt{\tan x}+\sqrt{\cot x}) d x=$
A. $\frac{\pi}{\sqrt{2}}$
B. $\pi \sqrt{2}$
C. $\frac{\pi}{2}$
D. $\frac{\sqrt{2}}{\pi}$

Key: B
Solution: Let $I=\int_{0}^{\pi / 2} \sqrt{\tan x}+\sqrt{\cot x} d x$
$=\int_{0}^{\pi / 2} \frac{\sin x+\cos x}{\sqrt{\sin x \cos x}} d x$
$=\int_{0}^{\pi / 2} \frac{\sqrt{2}(\sin x+\cos x)}{\sqrt{\sin 2 x}} d x$

Learn | Educational Institutions
$=\int_{0}^{\pi / 2} \frac{\sqrt{2}(\sin x+\cos x)}{\sqrt{1-(\sin x-\cos x)^{2}}} d x$

Put, $\sin \mathrm{x}-\cos \mathrm{x}:=\mathrm{t}$

$$
\begin{aligned}
& \Rightarrow(\cos x+\sin x) d x=d t \\
& =\int_{-1}^{1} \frac{\sqrt{2}}{\sqrt{1-t^{2}}} d t=\left.\sqrt{2} \sin ^{-1} \mathrm{t}\right|_{-1} ^{1} \\
& =\sqrt{2}\left[\frac{\pi}{2}+\frac{\pi}{2}\right]=\pi \sqrt{2}
\end{aligned}
$$

89. The area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ is
A. 12π
B. 3π
C. 24π
D. π

Key: A
Solution: The equation of the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$

The given ellipse is symmetrical to both axes as it contains only even powers of y and x

Now, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \Rightarrow \frac{y^{2}}{9}=1-\frac{x^{2}}{16}$
$\Rightarrow y^{2}=\frac{9}{16}\left(16-x^{2}\right)$
$\Rightarrow y= \pm \frac{3}{4}\left(\sqrt{16-x^{2}}\right)$

Now, area bounded by the ellipse $=4$ (area of ellipse in first quadrant)

$$
=4(\text { area } O A C)
$$

$=4 \int_{0}^{4} y d x=\int_{0}^{4} \frac{3}{4} \sqrt{16-x^{2}} d x$
$[\because y \geq 0$ in first quadrant $]$
Put $x=4 \sin \theta$ so that $d x=4 \cos \theta d \theta$,
Now when $x=0, \theta=0$ and when $x=4, \theta=\frac{\pi}{2}$
Req. area
$=\frac{4 \times 3}{4} \int_{0}^{\frac{\pi}{2}} \sqrt{16-16 \sin ^{2}} \theta \cdot 4 \cos \theta d \theta$
$=3 \int_{0}^{\frac{\pi}{2}} 4 \sqrt{1-\sin ^{2} \theta} \cdot 4 \cos \theta d \theta$
$=48 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta \mathrm{~d} \theta=48 \int_{0}^{\frac{\pi}{2}}\left(\frac{1+\cos 2 \theta}{2}\right) \mathrm{d} \theta$
$=24 \int_{0}^{\frac{\pi}{2}}(1+\cos 2 \theta) d \theta=24\left[\theta+\frac{\sin 2 \theta}{2}\right]_{0}^{\frac{\pi}{2}}$
$=24\left[\left(\frac{\pi}{2}-0\right)+\frac{1}{2}(0-0)\right]=12 \pi$ sq. units.
90. If vertex of a parabola is $(2,-1)$ and the equation of its directrix is $4 x-3 y=21$ then the length of its latus rectum is
A. 2
B. 8
C. 12
D. 16
| Educational Institutions
Key: B
Solution:

We are given that the direction of the parabola is
$4 x-3 y=21$
and vertex ofthe parabola is $(2,-1)$

Now $a=\frac{|8+3-21|}{5}=\frac{10}{5}=2$
\therefore latus rectum of the parabola $=4 \mathrm{a}=8$
91. Eccentricity of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if it passes through point $(9,5)$ and $(12,4)$ is
A. $\sqrt{3 / 4}$
B. $\sqrt{4 / 5}$
C. $\sqrt{5 / 6}$
D. $\sqrt{6 / 7}$

Key: B
Solution: $\mathrm{e}=\sqrt{1-\frac{1}{7}}=\sqrt{\frac{6}{7}}$
92. In $\sqcup A B C$ the mid-point of the sides AB, BC and CA are respectively $(l, 0,0),(0, m, 0)$ and $(0,0, n)$

Then, $\frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{2}+n^{2}}$ is equal to
A. 8
B. 16
| Educational Institutions
C. 9
D. 25

Key: A
Solution: From the figure

$x_{1}+x_{2}=2 l, y_{1}+y_{2}=0, z_{1}+z_{2}=0$
$x_{2}+x_{3}=0, y_{2}+y_{3}=2 m, z_{1}+z_{3}=0$
$x_{1}+x_{3}=0, y_{1}+y_{3}=0, z_{1}+z_{3}=2 n$

On Solving, we get $x_{1}=l, x_{2}=l, x_{3}=-1$
$y_{1}=-m, y_{2}=m, y_{3}=m \mathrm{and} z_{1}=n, z_{2}=-n, z_{3}=n$
\therefore Coordinates areA $(l,-m, n), \mathrm{B}(l, m,-n)$ and $\mathrm{C}(-l, m, n)$
$\therefore \frac{A B^{2}+B C^{2}+C A^{2}}{l^{2}+m^{2}+n^{2}}$
$=\frac{\left(4 m^{2}+4 n^{2}\right)+\left(4 l^{2}+4 n^{2}\right)+\left(4 l^{2}+4 m^{2}\right)}{l^{2}+m^{2}+n^{2}}=8$
93. If $f(x)=\frac{x+|x|}{x}$, then the value of $\lim _{x \rightarrow 0} f(x)$ is
A. 0
B. 2
C. does not exist.
D. None of these

Solution: LHL $=\lim _{h \rightarrow 0} \frac{-h+|h|}{-h}=\lim _{h \rightarrow 0}(0)=0$
$R H L=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h}+|\mathrm{h}|}{\mathrm{h}}=2$
$L H L \neq R H L \Rightarrow$ limit does not exist
94. Negation of the Boolean expression $p \Leftrightarrow(q \Rightarrow p)$ is
A. $(\sim p) \wedge q$
B. $(\mathrm{p}) \wedge(\sim \mathrm{q})$
C. $(\sim p) \vee(\sim q)$
D. $(\sim p) \wedge(\sim q)$

Key: D
Solution: Given expression is $p \Leftrightarrow(q \Rightarrow p)$

$$
\begin{aligned}
& \sim(\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})) \\
& \sim(\mathrm{p} \leftrightarrow \mathrm{q})=(\mathrm{p} \wedge \sim \mathrm{q}) \vee(\mathrm{q} \wedge \sim \mathrm{p}) \\
& \sim(\mathrm{p} \leftrightarrow(\mathrm{q} \rightarrow \mathrm{p})) \\
& =(\mathrm{p} \wedge \sim(\mathrm{q} \rightarrow \mathrm{p})) \vee((\mathrm{q} \rightarrow \mathrm{p}) \wedge \sim \mathrm{p}) \\
& (\mathrm{p} \wedge \sim(\mathrm{q} \rightarrow \mathrm{p}))=\mathrm{p} \wedge(\mathrm{q} \wedge \sim \mathrm{p}) \\
& =(\mathrm{p} \wedge \sim \mathrm{p}) \wedge \mathrm{q}=\mathrm{c} \\
& (q \rightarrow p) \wedge \sim p=(\sim q \vee p) \wedge \sim p \\
& =\sim p \wedge(\sim q \vee p) \\
& =(\sim \mathrm{p} \wedge \sim \mathrm{q}) \vee(\sim \mathrm{p} \wedge \mathrm{p})=\sim \mathrm{p} \wedge \sim \mathrm{q}
\end{aligned}
$$

95. If $R=\{(x, y): x$ is exactly 7 cm taller than y$\}$, then R is
A. not symmetric
B. reflexive
C. symmetric but not transitive
D. an equivalence relation

Key: D
Solution: Here, R is not reflexive as x is not 7 cm taller than x . R is not symmetric as if x is exactly 7 cm taller than y , then y cannot be 7 cm taller than x and R is not transitive as if x is exactly 7 c cm taller than y and y is exactly 7 cm taller than z , then x is exactly 14 cm taller than z .
96. The particular solution of $\log \frac{d y}{d x}=3 x+4 y, y(0)=0$ is
A. $e^{3 x}+3 e^{-4 y}=4$
B. $4 e^{3 x}-3^{-4 y}=3$
c. $\quad 3 e^{3 x}+4 e^{4 y}=7$
D. $4 e^{3 x}+3 e^{-4 y}=7$

Key: D
Solution: $\frac{d y}{d x}=e^{3 x+4 y}=e^{3 x} \cdot e^{4 y}$
$\Rightarrow \quad e^{-4 y} d y=e^{3 x} d x \Rightarrow \frac{e^{-4 y}}{-4}=\frac{e^{3 x}}{3}+c$
put $x=0$

We have $-\frac{1}{4}-\frac{1}{3}=\mathrm{c} \Rightarrow \mathrm{c}=-\frac{7}{12}$,
$\therefore \quad \frac{\mathrm{e}^{-4 y}}{-4}=\frac{\mathrm{e}^{3 x}}{3}-\frac{7}{12} \Rightarrow 7=3 \mathrm{e}^{-4 y}+4 \mathrm{e}^{3 x}$
97. $\tan ^{-1} x+\tan ^{-1} y=c$ is the general solution of the differential equation

Learn: | Educational Institutions
A. $\frac{d y}{d x}=\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}$
B. $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$
C. $\left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x=0$
D. $\left(1+x^{2}\right) d x+\left(1+y^{2}\right) d y=0$

Key: C
Solution: $\tan ^{-1} x+\tan ^{-1} y=c$
differentiating w.r.t.x
$\frac{1}{1+x^{2}}+\frac{1}{1+y^{2}} \frac{d y}{d x}=0$
$\Rightarrow \frac{d x}{1+x^{2}}+\frac{d y}{1+y^{2}}=0$
$\Rightarrow\left(1+y^{2}\right) d x+\left(1+x^{2}\right) d y=0$
98. If $|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{~b}}|=4$, then value of λ for which $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{a}-\lambda \vec{b}$ is
A. $\frac{9}{16}$
B. $\frac{3}{4}$
C. $\frac{3}{2}$
D. $\frac{4}{3}$

Key: C
Solution: If $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{a}-\lambda \vec{b}$, then
$(\vec{a}+\lambda \vec{b}) \cdot(\vec{a}-\lambda \vec{b})=|\vec{a}+\lambda \vec{b}||\vec{a}-\lambda \vec{b}| \cdot \cos 90^{\circ}$
$\Rightarrow(\vec{a}+\lambda \vec{b}) \cdot(\vec{a}-\lambda \vec{b})=0$
$\Rightarrow \vec{a} \cdot \vec{a}-\lambda \cdot \vec{a} \cdot \vec{b}+\lambda \cdot \vec{b} \cdot \vec{a}-\lambda^{2} \cdot \vec{b} \cdot \vec{b}=0$
$\Rightarrow a^{2}-\lambda^{2} b^{2}=0 \Rightarrow \lambda^{2}=\frac{a^{2}}{b^{2}} \Rightarrow \lambda^{2}=\frac{3^{2}}{4^{2}}$
$\Rightarrow \lambda=\frac{3}{4}$.
99. The area of the parallelogram whose diagonals are $\frac{3}{2} \hat{i}+\frac{1}{2} \hat{j}-k$ and $2 \hat{i}-6 \hat{j}+8 \hat{k}$ is
A. $5 \sqrt{3}$
B. $5 \sqrt{2}$
C. $25 \sqrt{3}$
D. $25 \sqrt{2}$

Key: C
Solution: Given diagonals of parallelogram are $d_{1}=\frac{3}{2} \hat{i}+\frac{1}{2} \hat{j}-\hat{k}$ and $d_{2}=2 \hat{i}-6 \hat{j}+8 \hat{k}$
\therefore Required areaA $=\frac{1}{2}\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ \frac{3}{2} & \frac{1}{2} & -1 \\ 2 & -6 & 8\end{array}\right|$
$=\frac{1}{2}[(4-6) \hat{i}-(12+2) \hat{j}+(-9-1) \hat{k}]$
$=-\hat{i}-7 \hat{j}-5 \hat{k}$
$\therefore A=\sqrt{49+25}=\sqrt{75}=5 \sqrt{3}$ sq. unit
100. Bag P contains 6 red and 4 blue balls and bag Q contains 5 red and 6 blue balls. A ball is transferred from bag P to bag Q and then a ball is drawn from bag Q . What is the probability that the ball drawn is blue?
A. $\frac{7}{15}$
B. $\frac{8}{15}$
C. $\frac{4}{19}$
D. $\frac{8}{19}$

Key: C
Solution: Let E_{1}, E_{2} and A be the events defined as follows:
$E_{1}=$ red ball is transferred from bag P to bag Q
$E_{2}=$ blue ball is transferred from bag P to bag Q
$\mathrm{A}=$ the ball drawn from bag Q is blue
As the bag P contains 6 red and 4 blue balls,

$$
P\left(E_{1}\right)=\frac{6}{10}=\frac{3}{5} \operatorname{and} P\left(E_{2}\right)=\frac{4}{10}=\frac{2}{5}
$$

Note that E_{1} and E_{2} are mutually exclusive and exhaustive events.

When E_{1} has occurred i.e., a red ball has already been transferred from bag P to Q , then bag Q will contain 6 red and 6 blue balls, So, $P\left(A \mid E_{1}\right)=\frac{6}{12}=\frac{1}{2}$

When E_{2} has occurred i.e., a blue ball has already been transferred from bag P to Q , then bag Q will contain 5 red and 7 blue balls, $\operatorname{So}, \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)=\frac{7}{12}$

By using law of total probability, we get
$\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{E}_{1}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{1}\right)+\mathrm{P}\left(\mathrm{E}_{2}\right) \mathrm{P}\left(\mathrm{A} \mid \mathrm{E}_{2}\right)$
$=\frac{3}{5} \times \frac{1}{2}+\frac{2}{5} \times \frac{7}{12}=\frac{8}{15}$
101. The mean and variance of a random variable X having binomial distribution are 4 and 2 respectively, then $P(X=1)$ is

Learn
A. $\frac{1}{4}$
B. $\frac{1}{32}$
C. $\frac{1}{16}$
D. $\frac{1}{8}$

Key: B
Solution: $\left.\begin{array}{l}n p=4 \\ n p q=2\end{array}\right\} \Rightarrow q=\frac{1}{2}, p=\frac{1}{2}, n=8$
$P(X=1)={ }^{8} C_{1}\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{7}=8 \cdot \frac{1}{2^{8}}=\frac{1}{2^{5}}=\frac{1}{32}$
102. The value of $\tan \left(\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{2}{3}\right)=$
A. $\frac{6}{17}$
B. $\frac{7}{16}$
C. $\frac{16}{7}$
D. None of these

Key: D
Solution: $\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)$
$=\tan \left[\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \times \frac{2}{3}}\right)\right]=\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}=\frac{17}{6}$
103. If the function $f(x)=\left\{\begin{array}{cc}1, & x \leq 2 \\ a x+b & 2<x<4 \\ 7, & x \geq 4\end{array}\right.$ is continuous at $\mathrm{x}=2$ and 4 , then the values of a and b are
A. $\quad a=3, b=-5$
B. $a=-5, b=3$
C. $a=-3, b=5$
D. $a=5, b=-3$

Key: A
Solution: Since $f(x)$ is continuous at $x=2$
$\therefore f(2)=\lim _{x \rightarrow 2^{+}} f(x)=1=\lim _{x \rightarrow 2^{+}}(a x+b)$
$\therefore 1=2 a+b$.

Again $f(x)$ is continuous at $x=4$,
$\therefore f(4)=\lim _{x \rightarrow 4^{-}} f(x)=7=\lim _{x \rightarrow 4^{-}}(a x+b)$
$\therefore 7=4 a+b$.
Solving (i) and (ii), we get $a=3, b=-5$
104. The derivative of $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ with respect to $\cos ^{-1}\left[\frac{1-x^{2}}{1+x^{2}}\right]$ is equal to :
A. 1
B. -1
C. 2
D. None of these

Key: A
Solution: Lets $=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and $t=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
We have to find out $\frac{d s}{d t}$
Putting $x=\tan \theta$, we get

$$
s=\sin ^{-1}\left[\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right]=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x
$$

$\therefore \frac{d s}{d x}=\frac{2}{1+\mathrm{x}^{2}}$ and $t=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$=\cos ^{-1}(\cos 2 \theta)=2 \theta=2 \tan ^{-1} x$
$\therefore \quad \frac{d t}{d x}=\frac{2}{1+\mathrm{x}^{2}}$
$\therefore \quad \frac{d s}{d t}=\frac{d s / d x}{d t / d x}=\frac{2}{1+\mathrm{x}^{2}} \times \frac{1+\mathrm{x}^{2}}{2}=1$
105. The number of distinct real roots of the equation $x^{7}-7 x-2=0$ is
A. 5
B. 7
C. 1
D. 3

Key: D
Solution: Given equation is $x^{7}-7 x-2=0$
$x^{7}-7 x=2$
$f(x)=x^{7}-7 x$ and $y=2$
Differentiate w.r.t. x.
$f^{\prime}(x)=7\left(x^{6}-1\right)=7\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)$
$f^{\prime}(x)=0 \Rightarrow x= \pm 1$
A function $f(x)$ is strictly decreasing at $[-1,1]$ and increasing at some points of $x<-1$ and $x>1$.
$y=2$ intersects at 3 points.
$f(x)=2$ has 3 real distinct Solution:ution.
106. The minimum value of the function $y=x^{4}-2 x^{2}+1$ in the interval $\left[\frac{1}{2}, 2\right]$ is
A. 0
B. 2
C. 8
D. 9

Key: A

Solution: $\frac{d y}{d x}=\frac{d}{d x}\left(x^{4}-2 x^{2}+1\right)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)$
For max. or min, $\frac{d y}{d x}=0 \Rightarrow 4 x\left(x^{2}-1\right)=0$
either $x=0$ or $x= \pm 1$
$\mathrm{x}=0$ and $\mathrm{x}=-1$ does not belong to $\left[\frac{1}{2}, 2\right]$
$\frac{d^{2} y}{d x^{2}}=12 x^{2}-4$
$\Rightarrow\left(\frac{d^{2} y}{d x^{2}}\right)_{x=1}=12(1)^{2}-4=8>0$
\therefore there is minimum value of function at $\mathrm{x}=1$
\therefore minimum value is
$y(1)=1^{4}-2(1)^{2}+1=1-2+1=0$
107. $\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x=$
A. $\tan x+\cot x+c$
B. $\operatorname{cosec} x+\sec x+c$
C. $\tan x+\sec x+c$
D. $\tan x+\operatorname{cosec} x+c$

Key: A
Solution: Consider $\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$
$=\int \frac{\sin ^{2} x d x}{\sin ^{2} x \cos ^{2} x}-\int \frac{\cos ^{2} x d x}{\sin ^{2} x \cos ^{2} x}$
$=\int \sec ^{2} x d x-\int \operatorname{cosec}^{2} x d x$
Let $I=\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x$
$=\tan x-(-\cot x)+c=\tan x+\cot x+c$.
108. Consider a curve $y=y(x)$ in the first quadrant as shown in the figure. Let the area A_{1} is twice the area A_{2} Then the normal to the curve perpendicular to the line $2 x-12 y=15$ does NOT pass through the point.

A. $(6,21)$
B. $(8,9)$
C. $(10,-4)$
D. $(12,-15)$

Key: C
Solution: Given condition is $\mathrm{A}_{1}=2 \mathrm{~A}_{2}$
Given graph is a rectangle then the required area Given graph is a rectangle then the required area $A_{1}+A_{2}=x y-8$

Now, Put $A_{1}=2 A_{2}$ in the above eq.

$$
\Rightarrow \frac{3}{2} A_{1}=x y-8 \Rightarrow A_{1}=\frac{2}{3} x y-\frac{16}{3}
$$

Now, take $\int_{4}^{x} f(x) d x=\frac{2}{3} x y-\frac{16}{3}$
$\Rightarrow f(x)=\frac{2}{3}\left(x \frac{d y}{d x}+y\right) \Rightarrow \frac{2}{3} \times \frac{d y}{d x}=\frac{y}{3}$
Take integral both sides.
$\Rightarrow 2 \int \frac{d y}{y}=\int \frac{d x}{x}$
$\Rightarrow 2 \ln y=\ln x+\ln c$
$\Rightarrow y^{2}=c x$
From given graph $f(4)=2$
$\Rightarrow c=1$
from(i)
so $y^{2}=x$
slope of normal $=-6$

$$
\begin{aligned}
& y=-6(x)-\frac{1}{2}(-6)-\frac{1}{4}(-6)^{3} \\
& \Rightarrow y=-6 x+3+54 \Rightarrow y+6 x=57
\end{aligned}
$$

Put coordinate ($10,-4$) in above equation
$\Rightarrow-4+60=56 \neq 57$
109. The shortest distance between the lines $x=y+2=6 z-6$ and $x+1=2 y=-12 z$ is
A. $\frac{1}{2}$
B. 2
C. 1
D. $\frac{3}{2}$

Key: A
Solution: The lines are $\frac{x}{6}=\frac{y+2}{6}=\frac{z-1}{1}$ and $\frac{x+1}{12}=\frac{y}{6}=\frac{z}{-1}$
Here, $\quad \vec{a}_{1}=-2 \hat{j}+\hat{k}, b_{1}+6 \hat{i}+6 \hat{j}+\hat{k}, \vec{a}_{2}=-\hat{i}$,
Here, $\quad \vec{a}_{1}=-2 \hat{j}+\hat{k}, b_{1}+6 \hat{i}+6 \hat{j}+\hat{k}, \vec{a}_{2}=-\hat{i}$,

Learn
$\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \mathrm{k} \\ 6 & 6 & 1 \\ 12 & 6 & -1\end{array}\right|=-12 \hat{\mathrm{i}}+18 \hat{\mathrm{j}}-36 \hat{\mathrm{k}}$
Shortest distance $=\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1}-\vec{b}_{2}\right)\right|}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}$
$=\frac{|(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}) \cdot(-12 \mathrm{i}+18 \hat{\mathrm{j}}-36 \hat{\mathrm{k}})|}{\sqrt{(-12)^{2}+(18)^{2}+(-36)^{2}}}$
$=\frac{|+12+36+36|}{\sqrt{1764}}=\frac{84}{42}=2$
110. The angle between two lines $\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}$ and $\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}$
A. $\cos ^{-1}\left(\frac{1}{9}\right)$
B. $\cos ^{-1}\left(\frac{4}{9}\right)$
C. $\cos ^{-1}\left(\frac{2}{9}\right)$
D. $\cos ^{-1}\left(\frac{3}{9}\right)$

Key: B
Solution: The angle θ between the two lines
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{a_{2}}=\frac{z-z_{1}}{a_{3}}$ and $\frac{x-x_{2}}{b_{1}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{b_{3}}$ is given by:
$\cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}$
Now in the given equation: $a_{1}=2, a_{2}=2, a_{3}=-1$
$\mathrm{b}_{1}=1, \mathrm{~b}_{2}=2, \mathrm{~b}_{3}=2$
$\therefore \cos \theta=\frac{2 \times 2+2 \times 2+(-2) \times 1}{\sqrt{4+4+1} \sqrt{4+4+1}}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{4}{9}\right)$.

PART IV : APTITUDE TEST

DIRECTIONS (Qs. 111to 113): The following table gives the annual production (in thousands) of 5 products of a famous toy company. Study the table and then answer the questions that follow:

Year	Ludo	Scrabble	Chess	Monopoly	Carrom
1992	200	150	78	90	65
1993	150	180	100	105	70
1994	180	175	92	110	85
1995	195	160	120	125	75
1996	220	185	130	135	80

111. What is the approximate percentage increase in the production of Monopoly form 1993 to 1995?
A. 10
B. 20
C. 30
D. 25

Key: B
Solution: Percentage increase in the production of monopoly

$$
\begin{aligned}
& =\frac{(125-105)}{105} \times 100=\frac{20}{105} \times 100 \\
& =19.05 \% \approx 20 \%
\end{aligned}
$$

112. For which toy category there has been a continuous increase in the production over the years?
A. Ludo
B. Chess
C. Monopoly
D. Carrom

Key: C
Solution: Production of monopoly has shown continuous increase over the years.
113. What is the percentage drop in the production of Ludo from 1992 to 1994 ?
A. 30
B. 50
C. 20
D. 10

Key: D
Solution: $\%$ drop $=\frac{200-180}{200} \times 100=10 \%$

DIRECTION (Qs. 114-117): In question, a series is given, with one term missing. Choose the correct alternative from the given ones that will complete the series.
114. 285, 253, 221, 189,?
A. 150
B. 182
C. 157
D. 156

Key: C

Solution:

115. In a certain code language PRESENTATION is written as ENESTAITPRON. How would INTELLIGENCE be written in that code language?

A. TETGLLTNENCE

B. LLKKTGTEEBTB
C. LLENLLTNTETG
D. LLTEIGENINCE

Key: D
Solution: $\frac{\text { PR }}{1} \frac{\text { ES }}{2} \frac{\text { EN TA }}{3} \frac{\text { TI }}{4} \frac{O N}{6} \rightarrow \frac{\text { EN }}{3} \frac{\text { ES TA }}{2} \frac{\text { IT }}{4} \frac{\text { PR }}{1} \frac{\text { ON }}{6}$
Similarly, $\frac{\text { IN TE }}{1} \frac{L L}{2} \frac{I G}{3} \frac{E N}{5} \frac{C E}{6} \rightarrow \frac{\text { LL }}{3} \frac{\text { TE }}{2} \frac{\text { IG }}{4} \frac{E N}{5} \frac{\text { IN }}{1} \frac{C E}{6}$
116. Ram moves from a point X to 20 metres towards North. Then he moves 40 metres towards West. Then he moves 20 metres North. Then he moves 40 metres towards East and then 10 metres towards right and he reaches to a point Y. Find the distance and direction of Y from X ?
A. 30 metres, North
B. 30 metres, South
C. 40 metres, North
D. 40 metres, South

Key: A

Required distance
$=X Y=A X+A Y$
$=20+10$
$=30 \mathrm{~m}$, North
A. 17
B. 22
C. 19
D. 18

Key: D
Solution: $5^{\text {th }}$ date of a month is Tuesday Friday will be on $=5+3$ $=8^{\text {th }}$ of a month
$1^{\text {st }}$ Friday is on $1^{\text {st }}$ of a month
$2^{\text {nd }}$ Friday is on $8^{\text {th }}$ of a month
$3^{\text {rd }}$ Friday will be on $15^{\text {th }}$ of a month
3 days after $15^{\text {th }}=15+3=18$

DIRECTION (Q. 118): In the following question, two statements are given followed by four conclusions I, II, III and IV. You have to consider the statements to be true even if they seem to be at variance from commonly known facts. You have to decide which of the given conclusions, if any follow from the given statements.
118. Statements:
I. Some cats are dogs.
II. No dog is a toy.

Conclusions:

I. Some dogs are cats.
II. Some toys are cats.
III. Some cats are not toys.
IV. All toys are cats.
A. Only Conclusions I and either II or III.
B. Only Conclusions II and III follow
C. Only Conclusions I and II follow
D. Only Conclusion I follow

Key: A

OR

Solution:
Toy

Dogs

Conclusion II: Complementary pair

Conclusion I : True

III : Complementary Pair

IV : False

So, only conclusion I and either II or III.

DIRECTION (Qs. 119-120): Each of the questions below consists of a question and two statements numbered I and II given below it. You have to decide whether the data provided in the statements are sufficient to answer the question. Read both the statements and

Give answer (a) if the data in Statement I alone are sufficient to answer the question, while the data in Statement II alone are not sufficient to answer the question.

Give answer (b) if the data in Statement II alone are sufficient to answer the question, while the data in Statement I alone are not sufficient to answer the question

Give answer (c) if the data in Statement I alone or in Statement II alone are sufficient to answer the question.

Give answer (d) if the data in both the Statements I and II together are not sufficient to answer the question.

Give answer (e) if the data in both the Statements I and II together are necessary to answer the question.
119. How is H related to B ?
I. H is married to P. P is the mother of T. T is married to D. D is the father of B.
II. B is the daughter of T. T Is the sister of N. H is the father of N.

Key: C

Solution: From statement I
$\mathrm{H} \Leftrightarrow \mathrm{P}$
(+) (-)
$\mathrm{T} \Leftrightarrow \mathrm{D}$
(-) $(+)$
\downarrow

Hence, His the grandfather of B From statement II

Hence H is the grandfather of B
So data in statement I alone or in statement II alone are sufficient to answer the question.
120. Among five persons $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ and H each of whom having different height, who is the second tallest?
I. D is taller than only G and E. F is not the tallest.
II. H is taller than F.G is taller than E but shorter than D.

Key: A

Solution: From statement I

$$
\mathrm{H}>\mathrm{F}>\mathrm{D}>\mathrm{G}, \mathrm{E}
$$

Clearly, H is the tallest and F is the second tallest.
From statement II

No answer.
So data in statement I alone are sufficient to answer the question.

PART V : ENGLISH

PASSAGE

(Question Nos. 121-125)

If an opinion contrary to your own makes you angry, that is a sign that you are subconsciously aware of having no good reason for thinking, as you do. If someone maintains that two and two are five, or that Iceland is on the Equator, you feel pity rather than anger, unless you know so little of arithmetic or geography that his opinion shakes your own contrary conviction.
121. If someone else's opinion makes us angry, it means that
A. we are subconsciously aware of having no good reason for becoming angry
B. there may be good reasons for his opinion, but we are not consciously aware of them
C. our own opinion is not based on good reason, and we know this subconsciously
D. we are not consciously aware of any reason for our own opinion

Key; C

Solution: The very first line of the passage reveals that we can become angry on someone's opinion contrary to ours only when our own opinion is not based on good reason and we are aware of this subconsciously.
122. "Your own contrary conviction" refers to
A. the fact that you feel pity rather than anger
B. the opinion that two and two are four and that Iceland is a long way from the Equator
C. the opinion that two and two are five and that Iceland is on the Equator
D. the fact that you know so little about arithmetic or geography

Key: A

Solution: 'Your own contrary conviction' refers to the fact that you feel pity rather than anger.
123. Conviction means
A. persuasion
B. disbelief
C. strong belief
D. ignorance

Key: C

Solution: Conviction means a firmly held belief or opinion.
124. The writer says if someone maintains that two and two are five you feel pity because you

A. have sympathy

earn
B. don't agree with him
C. want to help the person
D. feel sorry for his ignorance

Key: D

Solution: If someone maintains that two and two are five, you feel pity because you feel sorry for his ignorance of the subject i.e. Arithmetic.
125. The second sentence in the passage
A. builds up the argument of the first sentence by restating it from the opposite point of view
B. makes the main point which has only been introduced by the first sentence
C. simply adds, a further point to the argument already stated in the first sentence.
D. illustrates the point made in the first sentence

Key: D

Solution: The second sentence in the passage elaborates the hidden i.e. the main point in the first sentence.

