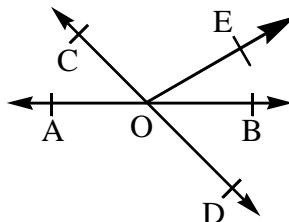


LINES AND ANGLES

EXERCISE 6.1

1. In Fig. lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^\circ$ and $\angle BOD = 40^\circ$, find $\angle BOE$ and reflex $\angle COE$.



Sol.

$$\angle AOC = \angle BOD \quad [\text{Vertically opposite angles}]$$

$$\angle AOC = 40^\circ \quad \dots(1)$$

$\therefore \angle BOD = 40^\circ$, given

$$\angle AOC + \angle BOE = 70^\circ$$

$$40^\circ + \angle BOE = 70^\circ$$

$$\angle BOE = 70^\circ - 40^\circ = 30^\circ$$

$$\angle AOC + \angle COB = 180^\circ$$

$$\text{So, } \angle AOC + \angle COE + \angle BOE = 180^\circ$$

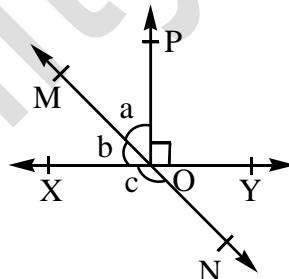
$$\text{or } 40^\circ + \angle COE + 30^\circ = 180^\circ$$

[From (1) and (2)]

$$\text{So, } \angle COE = 180^\circ - 40^\circ - 30^\circ = 110^\circ$$

$$\text{Therefore, } \text{Reflex } \angle COE = 360^\circ - 110^\circ = 250^\circ$$

2. In Fig. lines XY and MN intersect at O. If $\angle POY = 90^\circ$ and $a:b = 2:3$, find c.



Sol. Here, $a:b = 2:3$ and $a + b = \angle POX = \angle POY - 90^\circ$

and sum of the ratios = $2 + 3 = 5$.

$$a = \frac{2}{5} \times 90^\circ = 2 \times 18^\circ = 36^\circ$$

$$\text{and } b = \frac{3}{5} \times 90^\circ = 3 \times 18^\circ = 54^\circ$$

Also, MN is a line.

Since, ray OX stands on MN, therefore $\angle MOX + \angle XON = 180^\circ$

[Linear pair]

$$\text{or } b + c = 180^\circ$$

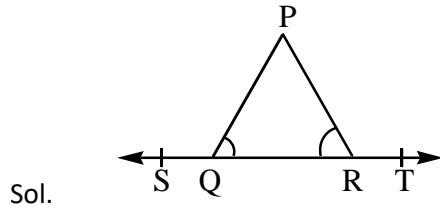
$$\Rightarrow c + 54^\circ = 180^\circ$$

$$\Rightarrow c = 180^\circ - 54^\circ = 126^\circ$$

Hence,

$$c = 126^\circ.$$

3. In Fig. $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.



SRT is a line.

Since QP stands on the line SRT, therefore $\angle PQS + \angle PQR = 180^\circ$ [Linear Pair]

... (1)

Since RP stands on the line SRT, therefore $\angle PRQ + \angle PRT = 180^\circ$ [Linear pair]

... (2)

From (1) and (2), we have

$\angle PQS + \angle PQR = \angle PRQ + \angle PRT$ \therefore Each side $= 180^\circ$

... (3)

Also, $\angle PQR = \angle PRQ$ [Given] ... (4)

Subtracting (4) and (3), we have

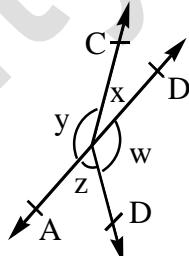
$$\angle PQS = \angle PRT$$

4. In Fig., if $x + y = w + z$, then prove that AOB is a line.

Sol. Since the sum of all the angles round a point is equal to 360° , therefore

$$(\angle BOC + \angle COA) + (\angle BOD + \angle AOD) = 360^\circ$$

$$\Rightarrow (x + y) + (w + z) = 360^\circ$$



But $x + y = w + z$ [Given]

$$(x + y) + (x + y) = 360^\circ$$

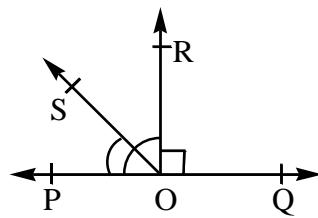
$$2(x + y) = 360^\circ$$

$$(x + y) = \frac{360^\circ}{2} = 180^\circ$$

Thus, $\angle BOC$ and $\angle COA$ as well as $\angle BOD$ and $\angle AOD$ form linear pairs. Consequently, OA and OB are two opposite rays. Therefore, AOB is a straight line.

5. In fig. POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays

$$OP \text{ and } OR. \text{ Prove that } \angle ROS = \frac{1}{2}(\angle QOS - \angle POS).$$

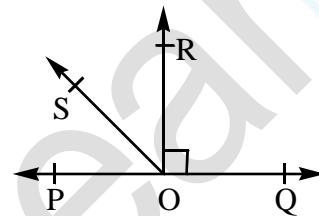


Sol. **Given.** Since, OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR.

To prove. $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$

Proof.

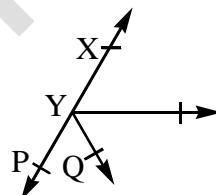
$$\angle QOS - \angle POS = (\angle QOR + \angle ROS) - \angle POS$$



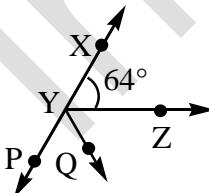
$$\begin{aligned} &= 90^\circ + \angle ROS - \angle POS \\ &= (90^\circ - \angle POS) + \angle ROS \\ &= (\angle ROP - \angle POS) + \angle ROS \quad [\because \angle ROP = 90^\circ] \\ &= \angle ROS + \angle ROS \\ &= 2\angle ROS \end{aligned}$$

6.

It is given that $\angle XYZ = 64^\circ$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.



Sol.



Since XY is produced to point P, therefore XP is a straight line.

Now ray YZ stands on XP.

$$\begin{aligned} \therefore \angle XYZ + \angle ZYP &= 180^\circ & [\text{Linear Pair}] \\ \Rightarrow 64^\circ + \angle ZYP &= 180^\circ \\ \Rightarrow \angle ZYP &= 180^\circ - 64^\circ = 116^\circ \end{aligned}$$

Since ray YQ bisects $\angle ZYP$,

Therefore

$$\angle QYP = \angle ZYQ = \frac{116^\circ}{2} = 58^\circ$$

Now,

\Rightarrow

and reflex

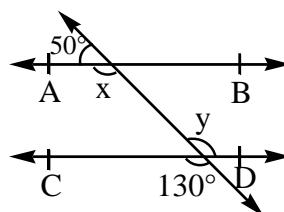
$$\angle XYQ = \angle XYZ + \angle ZYQ$$

$$\angle XYQ = 64^\circ + 58^\circ = 122^\circ$$

$$\angle QYP = 360^\circ - \angle QYP = 360^\circ - 58^\circ = 302^\circ$$

EXERCISE 6.2

1. In the figure below, find the values of x and y and then show that $AB \parallel CD$.



Sol.

$$y = 130^\circ$$

[Vertically opposite angles]

Further,

$$50^\circ + x = 180^\circ$$

[Linear pair]

\Rightarrow

$$x = 130^\circ$$

Hence,

$$x = y = 130^\circ$$

[From eqn. No. (1) and (2)]

Transversal intersects lines AB and CD .

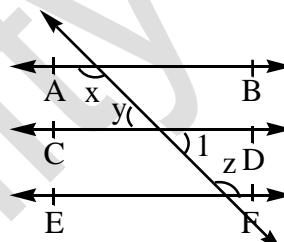
Such that

$$x = y.$$

[Alternate interior angles]

Hence, $AB \parallel CD$.

2. In figure, if $AB \parallel CD$, $CD \parallel EF$ and $y:z = 3:7$, find x .



Sol.

$AB \parallel CD$ and $CD \parallel EF$

... (1)

[Given]

$$\angle 1 = y \quad \text{[Vertically opposite angles]}$$

$$\angle 1 + \angle Z = 180$$

[$CD \parallel EF$ and $\angle 1, \angle Z$ are on the same side of the transversal]

$$\Rightarrow y + z = 180^\circ \quad \dots (2)$$

$$\text{Given: } y : z = 3 : 7 \Rightarrow \frac{y}{z} = \frac{3}{7} \Rightarrow y = \frac{3z}{7}$$

$$\Rightarrow \frac{3z}{7} + z = 180^\circ \Rightarrow \frac{10z}{7} = 180^\circ$$

[using equation (2)]

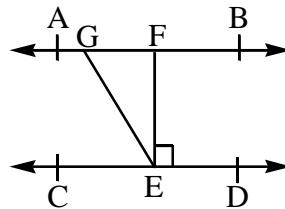
$$z = 126^\circ$$

$$\text{So, } y = 180^\circ - 126^\circ = 54^\circ$$

[Using equation (1)]

$$\rightarrow x + y = 180^\circ \Rightarrow x + 54^\circ = 180^\circ - 54^\circ = 126^\circ$$

3. In figure, $AB \parallel CD$, $EF \perp CD$ and $\angle GED = 126^\circ$, find $\angle AGE$, $\angle GEF$ and $\angle FGE$.



$AB \parallel CD$ and GE is transversal.

$$\text{So, } \angle FGE = \angle GED \quad [\text{Alternate angles}]$$

$$\Rightarrow \angle AGE = 126^\circ.$$

As we have, $\angle GED = \angle GEF + \angle FED$

$$\Rightarrow 126^\circ = \angle GEF + 90^\circ \quad [\text{EF} \perp \text{CD}]$$

$$\Rightarrow \angle GEF = 126^\circ - 90^\circ = 36^\circ.$$

Again, $AB \parallel CD$ and GE is transversal.

$$\therefore \angle FEG + \angle GED = 180^\circ$$

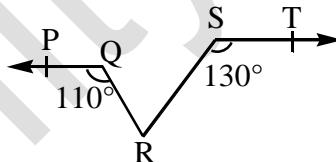
[sum of interior angles on the same side of transversal is 180°]

$$\Rightarrow \angle FGE + 126^\circ = 180^\circ$$

$$\Rightarrow \angle FGE = 180^\circ - 126^\circ = 54^\circ.$$

4. In figure, if $PQ \parallel ST$, $\angle PQR = 110^\circ$ and $\angle RST = 130^\circ$, find $\angle QRS$.

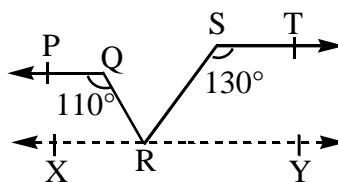
[Hint: Draw the parallel to ST through point R .]



Sol. Construction: Through R draw a line XRY parallel to PQ.

Proof: $PQ \parallel XRY$ and QR is transversal.

$$\therefore \angle PQR = \angle QRY = 110^\circ \quad \dots(1) \quad [\text{Alternative angles}]$$



Also, $PQ \parallel ST$

[Given]

and $PQ \parallel RY$

[Construction]

So, $ST \parallel XRY$ and SR is transversal.

Hence $\angle TSR + \angle SRY = 180^\circ$ [Sum of interior angles on the same side of transversal]

$$\Rightarrow 130^\circ + \angle SRY = 180^\circ$$

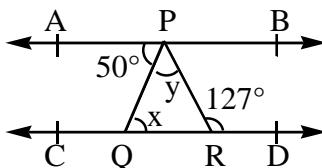
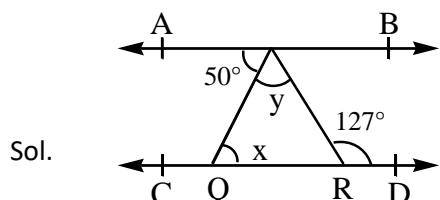
$$\Rightarrow \angle SRY = 180^\circ - 130^\circ = 50^\circ$$

$$\text{Also, } \angle QRY = \angle QRS + \angle SRY$$

$$\Rightarrow 110^\circ = \angle QRS + 50^\circ$$

$$\Rightarrow \angle QRS = 110^\circ - 50^\circ = 60^\circ.$$

5. In Fig, if $AB \parallel CD$, $\angle APQ = 50^\circ$ and $\angle PRD = 127^\circ$, find x and y .



Here, $AB \parallel CD$ and transversal PQ intersects them at P and Q respectively.

$$\angle PQR = \angle APQ$$

[Alternate angles]

$$\Rightarrow x = 50^\circ \quad [\because \angle APQ = 50^\circ \text{ (given)}]$$

Also, $AB \parallel CD$ and transversal PR intersects them at P and R respectively.

$$\angle APR = \angle PRD$$

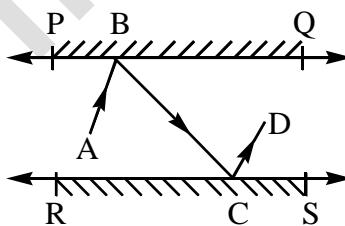
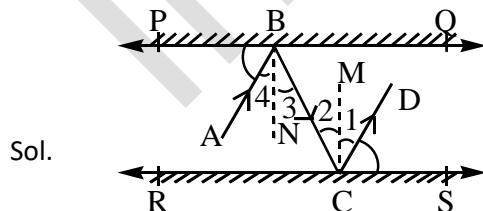
$$\Rightarrow \angle APQ + \angle QPR = 127^\circ$$

$$\Rightarrow 50^\circ + y = 127^\circ$$

$$\Rightarrow y = 127^\circ - 50^\circ = 77^\circ$$

Hence, $x = 50^\circ$ and $y = 77^\circ$.

6. In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD . Prove that $AB \parallel CD$.



Given. Mirror $PQ \parallel$ Mirrors RS .

An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD .

To prove. $AB \parallel CD$

Construction. Draw normal BN on PQ and CM on RS .

Proof.

$$\angle 1 + \angle 2 = \angle 3 + \angle 4 \quad (\text{BN} \perp \text{PQ})$$

∴

$$\angle 2 = \angle 3$$

(Angle of incidence = Angle of reflection)

⇒

$$\angle 1 + \angle 2 = \angle 2 + \angle 4 \Rightarrow \angle 1 = \angle 4$$

... (1)

Similarly,

$$\angle 5 = \angle 8.$$

... (2)

But

$$\angle 4 = \angle 5$$

(Alternate angles)

... (3)

From (1), (2) and (3), we have

$$\angle 1 = \angle 8$$

... (4)

Now,

$$\angle PBC = \angle BCS$$

(Alternate angles)

... (5)

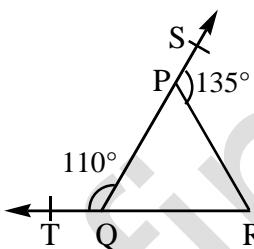
Subtracting (4) from (5), we have

$$\angle PBC - \angle 1 = \angle BCS - \angle 8 \Rightarrow \angle ABC = \angle BCD$$

EXERCISE 6.3

1. In figure, sides QP and RQ of $\triangle PQR$ are produced to points S and T respectively. If $\angle SPR = 135^\circ$ and $\angle PQT = 110^\circ$, find $\angle PRQ$.

Sol.



In $\triangle PQR$, $\angle PQT = \angle QPR + \angle PRQ$

[Exterior angle property]

$$\Rightarrow 110^\circ = \angle QPR + \angle PRQ$$

... (1)

Also, $\angle SPR + \angle QPR = 180^\circ$

[Linear pair]

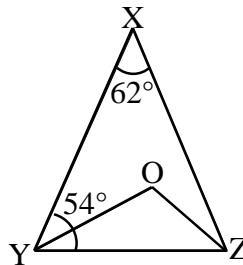
$$\Rightarrow 135^\circ + \angle QPR = 180^\circ \Rightarrow \angle QPR = 180^\circ - 135^\circ = 45^\circ.$$

Substituting the value of $\angle QPR$ in (1), we get

$$110^\circ = 45^\circ + \angle PRQ \Rightarrow \angle PRQ = 110^\circ - 45^\circ = 65^\circ$$

2. In figure, $X = 62^\circ$, $\angle XYZ = 54^\circ$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of $\triangle XYZ$, find $\angle OZY$ and $\angle YOZ$

Sol.



Consider $\triangle XYZ$ $\angle YXZ + \angle XYZ + \angle XZY = 180^\circ$ [Angle-sum property]

$$\Rightarrow 62^\circ + 54^\circ + \angle XZY = 180^\circ \quad [\therefore \angle YXZ = 62^\circ, \angle XYZ = 54^\circ]$$

$$\Rightarrow \angle XZY = 180^\circ - 62^\circ - 54^\circ = 64^\circ$$

Since YO and ZO are bisectors of $\angle XYZ$ and $\angle XZY$, therefore

$$\angle OYZ = \frac{1}{2} \times \angle XYZ = \frac{1}{2} \times 54^\circ = 27^\circ$$

$$\text{and, } \angle OZY = \frac{1}{2} \times \angle XZY = \frac{1}{2} \times 64^\circ = 32^\circ$$

Now, in $\triangle OYZ$, we have:

$$\angle YOZ + \angle OYZ + \angle OZY = 180^\circ$$

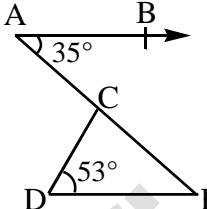
[Angle-sum property]

$$\angle YOZ + 27^\circ + 32^\circ = 180^\circ$$

$$\Rightarrow \angle YOZ = 180^\circ - 27^\circ - 32^\circ = 121^\circ$$

Hence, $\angle OZY = 32^\circ$ and $\angle YOZ = 121^\circ$.

3. In figure, if $AB \parallel DE$, $\angle BAC = 35^\circ$ and $\angle CDE = 53^\circ$, find $\angle DCE$.



Sol.

Since $AB \parallel DE$ and transversal AE intersects them at A and E respectively, therefore

$$\angle DEA = \angle BAE$$

[Alternate angles]

$$\Rightarrow \angle DEC = 35^\circ$$

$$[\therefore \angle DEA = \angle DEC \text{ and } \angle BAE = 35^\circ]$$

In $\triangle DEC$, we have:

$$\angle DCE + \angle DEC + \angle CDE = 180^\circ$$

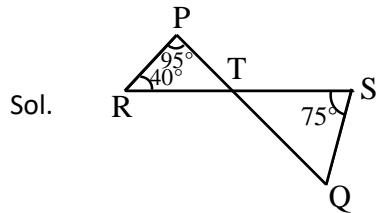
[Angle-sum property]

$$\Rightarrow \angle DCE + 35^\circ + 53^\circ = 180^\circ$$

$$\Rightarrow \angle DCE = 180^\circ - 35^\circ - 53^\circ = 92^\circ$$

$$\text{Hence, } \angle DCE = 92^\circ.$$

4. In figure, if lines PQ and RS intersect at point T, such that $\angle PRT = 40^\circ$, $\angle RPT = 95^\circ$ and $\angle TSQ = 75^\circ$, find $\angle SQT$.



In $\triangle PRT$, $\angle P + \angle R + \angle PTR = 180^\circ$

[Sum of angles of a triangle is 180° .]

$$\Rightarrow 95^\circ + 40^\circ + \angle PTR = 180^\circ$$

$$\Rightarrow \angle PTR = 180^\circ - 135^\circ = 45^\circ$$

...(1)

Also, $\angle STQ = \angle PTR$

[Vertically opposite angles]

$$\Rightarrow \angle STQ = 45^\circ$$

...(2)

[using eqn. (1)]

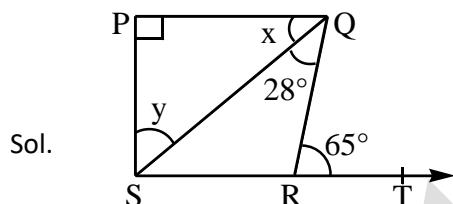
In $\triangle TSO$, $\angle AST + \angle S + \angle TQS = 180^\circ$

[ASP of \triangle]

$$\Rightarrow 45^\circ + 75^\circ + \angle TQS = 180^\circ$$

$$\Rightarrow \angle TQS = 180^\circ - 120^\circ = 60^\circ$$

5. In figure, if $PQ \perp PS$, $PQ \parallel SR$, $\angle SQR = 28^\circ$ and $\angle QRT = 65^\circ$, then find the values of x and y .



Using exterior angle property in $\triangle SRQ$, we have:

$$\angle QRT = \angle RQS + \angle QSR$$

$$\Rightarrow 65^\circ = 28^\circ + \angle QSR \quad [\because \angle QRT = 65^\circ, \angle RQS = 28^\circ]$$

$$\Rightarrow \angle QSR = 65^\circ - 28^\circ = 37^\circ$$

Now, $PQ \parallel SR$ and the transversal PS intersects them at P and S respectively.

$\therefore \angle PSR + \angle SPQ = 180^\circ$ [Sum of the interior angles on the same side of the transversal is 180°]

$$\Rightarrow (\angle PSQ + \angle QSR) + 90^\circ = 180^\circ$$

$$\Rightarrow y + 37^\circ + 90^\circ = 180^\circ$$

$$\Rightarrow y = 180^\circ - 90^\circ - 37^\circ = 53^\circ$$

In the right triangles SPQ, we have:

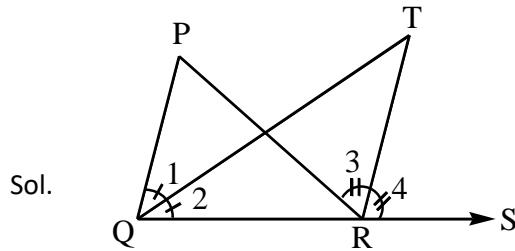
$$\angle PQS + \angle PSQ = 90^\circ$$

$$\Rightarrow x + 53^\circ = 90^\circ$$

$$\Rightarrow x = 90^\circ - 53^\circ = 37^\circ$$

Hence, $x = 37^\circ$ and $y = 53^\circ$.

6. In figure, the side QR of $\triangle PQR$ is produced to a point S. If the bisectors of $\angle PQR$ and $\angle PRS$ meet at the point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.



Let

$$\angle PQT = \angle 1$$

$$\angle TQR = \angle 2$$

$$\angle PRT = \angle 3$$

$$\angle TRS = \angle 4$$

Also, note that: $2 \times \angle 3 = 2 \times \angle 4 = \angle PRS \quad \therefore \text{RT bisects } \angle PRS \dots (1)$

and $2 \times \angle 1 = 2 \times \angle 2 = \angle PQR \quad \therefore \text{QT bisects } \angle PQR \dots (2)$

$\angle PRS = \angle P + \angle PQR$ [By exterior angle property] ... (3)

Now, from equation (1) we can put either $2 \times \angle 3$ or $2 \times \angle 4$ or $2 \times \angle 2$ in place of $\angle PRS$ and also

$2 \times \angle 1$ or $2 \times \angle 2$ in place of $\angle PQR$ in equation (3).

Hence, by suitable replacement, we get

$$2 \times \angle 4 = \angle P + 2 \times \angle 2$$

... (4)

Now, in

$$\triangle TQR, \angle 4 = \angle 2 + \angle T$$

... (5)

Value of $\angle 4 = \angle 2 + \angle T$ from equation (5) to equation (3).

$$2 \times [\angle 2 + \angle T] = \angle P + 2 \times \angle 2$$

$$\Rightarrow 2 \times \angle 2 + 2 \times \angle T = \angle P + 2 \times \angle 2$$

On cancelling $2 \times \angle 2$ from both sides, we get

$$2 \times \angle T = \angle P$$

or,

$$2 \times \angle QTR = \angle QPR$$

$$\Rightarrow \angle QTR = \frac{1}{2} \angle QPR$$

