LINES AND ANGLES

EXERCISE 6.1

1. In Fig. lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle \mathrm{BOE}$ and reflex $\angle \mathrm{COE}$.

Sol.

$$
\begin{align*}
& \angle \mathrm{AOC}=\angle \mathrm{BOD} \quad[\text { Vertically opposite angles }] \\
& \angle \mathrm{AOC}=40^{\circ} \tag{1}
\end{align*}
$$

$\left[\therefore \angle \mathrm{BOD}=40^{\circ}\right.$, given $]$
$\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$

$$
40^{\circ}+\angle \mathrm{BOE}=70^{\circ}
$$

$$
\angle \mathrm{BOE}=70^{\circ}-40^{\circ}=30^{\circ}
$$

$\angle \mathrm{AOC}+\angle \mathrm{COB}=180^{\circ}$
So, $\quad \angle \mathrm{AOC}+\angle \mathrm{COE}+\angle \mathrm{BOE}=180^{\circ}$
or $\quad 40^{\circ}+\angle \mathrm{COE}+30^{\circ}=180^{\circ}$
[From (1) and (2)]
So,
$\angle \mathrm{COE}=180^{\circ}-40^{\circ}-30^{\circ}=110^{\circ}$
Therefore,

$$
\text { Reflex } \angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}
$$

2. In Fig. lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Sol. Here, $\mathrm{a}: \mathrm{b}=2: 3$ and $\mathrm{a}+\mathrm{b}=\angle \mathrm{POX}=\angle \mathrm{POY}-90^{\circ}$

$$
\text { and sum of the ratios }=2+3=5 .
$$

$\mathrm{a}=\frac{2}{5} \times 90^{\circ}=2 \times 18^{\circ}=36^{\circ}$
$\mathrm{b}=\frac{3}{5} \times 90^{\circ}=3 \times 18^{\circ}=54^{\circ}$
Also, MN is a line.
Since, ray OX stands on MN , therefore $\angle \mathrm{MOX}+\angle \mathrm{XON}=180^{\circ}$
[Linear pair]
or

$$
\mathrm{b}+\mathrm{c}=180^{\circ}
$$

$\Rightarrow \mathrm{c}+54^{\circ}=180^{\circ}$

$$
\Rightarrow \quad \mathrm{c}=180^{\circ}-54^{\circ}=126^{\circ}
$$

Hence,

$$
\mathrm{c}=126^{\circ}
$$

Infinity

Learn

3. In Fig. $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Sol.

SRT is a line.
Since QP stands on the line SRT , therefore $\angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}$
[Linear Pair]

Since RP stands on the line SRT, therefore $\quad \angle \mathrm{PRQ}+\angle \mathrm{PRT}=180^{\circ}$
[Linear pair]

From (1) and (2), we have
$\angle \mathrm{PQS}+\angle \mathrm{PQR}=\angle \mathrm{PRQ}+\angle \mathrm{PRT}$

Also, $\quad \angle \mathrm{PQR}=\angle \mathrm{PRQ}$
[Given] ...(4)
Subtracting (4) and (3), we have

$$
\angle \mathrm{PQS}=\angle \mathrm{PRT}
$$

4. In Fig., if $\mathrm{x}+\mathrm{y}=\mathrm{w}+\mathrm{z}$, then prove that AOB is a line.

Sol. Since the sum of all the angles round a point is equal to 360°, therefore
$(\angle \mathrm{BOC}+\angle \mathrm{COA})+(\angle \mathrm{BOD}+\angle \mathrm{AOD})=360^{\circ}$
$\Rightarrow \quad(\mathrm{x}+\mathrm{y})+(\mathrm{w}+\mathrm{z})=360^{\circ}$

But

$$
\mathrm{x}+\mathrm{y}=\mathrm{w}+\mathrm{z} \text { [Given] }
$$

$$
(x+y)+(x+y)=360^{\circ}
$$

$$
2(x+y)=360^{\circ}
$$

$$
(x+y)=\frac{360^{\circ}}{2}=180^{\circ}
$$

Thus, $\angle \mathrm{BOC}$ and $\angle \mathrm{COA}$ as well as $\angle \mathrm{BOD}$ and $\angle \mathrm{AOD}$ form linear pairs. Consequently, OA and OB are two opposite rays. Therefore, AOB is a straight line.
5. In fig. POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP OR. Prove that $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$.

Sol. Given. Since, OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR.
To prove. $\angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS})$
Proof.

$$
\angle \mathrm{QOS}-\angle \mathrm{POS}=(\angle \mathrm{QOR}+\angle \mathrm{ROS})-\angle \mathrm{POS}
$$

$$
\begin{aligned}
& =90^{\circ}+\angle \mathrm{ROS}-\angle \mathrm{POS} \\
& =\left(90^{\circ}-\angle \mathrm{POS}\right)+\angle \mathrm{ROS} \\
& =(\angle \mathrm{ROP}-\angle \mathrm{POS})+\angle \mathrm{ROS}\left[\because \angle R O P=90^{\circ}\right] \\
& =\angle \mathrm{ROS}+\angle \mathrm{ROS} \\
& =2 \angle \mathrm{ROS}
\end{aligned}
$$

6.

It is given that $\angle \mathrm{XYZ}=64^{\circ}$ and XY is produced to point P . Draw a figure from the given Information. If ray YQ bisects $\angle \mathrm{ZYP}$, find $\angle \mathrm{XYQ}$ and reflex $\angle \mathrm{QYP}$.

Sol.

Since $X Y$ is produced to point P, therefore $X P$ is a straight line.
Now ray YZ stands on XP.
$\therefore \quad \angle \mathrm{XYZ}+\angle \mathrm{ZYP}=180^{\circ}$
[Linear Pari]
$\Rightarrow \quad 64^{\circ}+\angle \mathrm{ZYP}=180^{\circ}$
$\left[\therefore \angle \mathrm{XYZ}=64^{\circ}\right.$]
$\Rightarrow \quad \angle Z Y P=180^{\circ}-64^{\circ}=116^{\circ}$
Since ray YQ bisects $\angle \mathrm{ZYP}$,

Therefore

$$
\angle \mathrm{QYP}=\angle \mathrm{ZYQ}=\frac{116^{\circ}}{2}=58^{\circ}
$$

Now,
$\angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}$
\Rightarrow
$\angle \mathrm{XYQ}=64^{\circ}+58^{\circ}=122^{\circ}$
and reflex
$\angle \mathrm{QYP}=360^{\circ}-\angle \mathrm{QYP}=360^{\circ}-58^{\circ}=302^{\circ}$

EXERCISE 6.2

1. In the figure below, find the values of x and y and then show that $A B \| C D$.

Sol.

$$
y=130^{\circ}
$$

[Vertically opposite angles]
Further,

$$
50^{\circ}+\mathrm{x}=180^{\circ}
$$

$\Rightarrow \quad \mathrm{x}=130^{\circ}$
Hence,

$$
x=y=130^{\circ}
$$

[Linear pair]
[From eqn. No. (1) and (2)]
Transversal intersects lines $A B$ and $C D$.
Such that

$$
\mathrm{x}=\mathrm{y}
$$

[Alternate interior angles]
Hence, $\mathrm{AB} \| \mathrm{CD}$.
2. In figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.

Sol. $\quad \mathrm{AB} \| \mathrm{CD}$ and $\mathrm{CD} \| \mathrm{EF}$
[Given]

$$
\begin{aligned}
& \angle 1=\mathrm{y} \quad \text { [Vertically opposite angels] } \\
& \angle 1+\angle Z=180
\end{aligned}
$$

[$\mathrm{CD} \| \mathrm{EF}$ and $\angle 1, \angle \mathrm{z}$ are on the same side of the transversal]
$\Rightarrow \quad \mathrm{y}+\mathrm{z}=180^{\circ}$
Given: $\mathrm{y}: \mathrm{z}=3: 7 \Rightarrow \frac{\mathrm{y}}{\mathrm{z}}=\frac{3}{7} \Rightarrow \mathrm{y}=\frac{3 \mathrm{z}}{7}$
$\Rightarrow \frac{3 \mathrm{z}}{7}+\mathrm{z}=180^{\circ} \Rightarrow \frac{10 \mathrm{z}}{7}=180^{\circ}$
[using equation (2)]
$\mathrm{z}=126^{\circ}$
So, $y=180^{\circ}-126^{\circ}=54^{\circ}$
[Using equation(1)]

$$
\rightarrow \quad x+y=180^{\circ} \Rightarrow x+54^{\circ}=180^{\circ}-54^{\circ}=126^{\circ}
$$

3. In figure, $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

$\mathrm{AB} \| \mathrm{CD}$ and GE is transversal.
So, $\quad \angle \mathrm{FGE}=\angle \mathrm{GED}$
[Alternate angles]
$\Rightarrow \quad \mathrm{AGE}=126^{\circ}$.
As we have, $\angle \mathrm{GED}=\angle \mathrm{GEF}+\angle \mathrm{FED}$
$\Rightarrow 126^{\circ}=\angle \mathrm{GEF}+90^{\circ}$
$[\mathrm{EF} \perp \mathrm{CD}]$
$\Rightarrow \quad \angle \mathrm{GEF}=126^{\circ}-90^{\circ}=36^{\circ}$.
Again, $\mathrm{AB} \| \mathrm{CD}$ and GE is transversal.
$\therefore \quad \angle \mathrm{FEG}+\angle \mathrm{GED}=180^{\circ}$
[sum of interior angles on the same side of transversal is $\left.180^{\circ}\right]$
$\Rightarrow \quad \angle \mathrm{FGE}+126^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{FGE}=180^{\circ}-126^{\circ}=54^{\circ}$.
4. In figure, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$, find $\angle \mathrm{QRS}$.
[Hint: Draw the parallel to ST through point R.]

Sol. Construction: Through R draw a line XRY parallel to $P Q$.
Proof: $\mathrm{PQ} \| \mathrm{XRY}$ and QR is transversal.

$$
\therefore \quad \angle \mathrm{PQR}=\angle \mathrm{QRY}=110^{\circ} \quad \ldots(1) \quad \text { [Alternative angles] }
$$

Also,
PQ $\|$ ST
and
PQ\|RY
[Given]
[Construction]

So, ST \|XRY and SR is transversal.
Hence $\angle \mathrm{TSR}+\angle \mathrm{SRY}=180^{\circ} \quad$ [Sum of interior angles on the same side of transversal]
$\Rightarrow \quad 130^{\circ}+\angle \mathrm{SRY}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{SRY}=180^{\circ}-130^{\circ}=50^{\circ}$
Also, $\quad \angle \mathrm{QRY}=\angle \mathrm{QRS}+\angle \mathrm{SRY}$

$$
\begin{array}{lr}
\Rightarrow & 110^{\circ}=\angle \mathrm{QRS}+50^{\circ} \\
\Rightarrow & \angle \mathrm{QRS}=110^{\circ}-50^{\circ}=60^{\circ} .
\end{array}
$$

5. In Fig, if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y .

Sol.

Here, $A B \| C D$ and transversal $P Q$ intersects them at P and Q respectively.

$$
\begin{aligned}
& & \angle \mathrm{PQR} & =\angle \mathrm{APQ} \\
\Rightarrow \quad & \mathrm{x} & =50^{\circ} & {\left[\therefore \angle \mathrm{APQ}=50^{\circ} \text { (given) }\right] }
\end{aligned}
$$

Also, $A B \| C D$ and transversal $P R$ intersects them at P and R respectively.

$$
\angle \mathrm{APR}=\angle \mathrm{PRD}
$$

$\Rightarrow \quad \angle \mathrm{APQ}+\angle \mathrm{QPR}=127^{\circ}$
$\Rightarrow \quad 50^{\circ}+\mathrm{y}=127^{\circ}$
$\Rightarrow \quad y=127^{\circ}-50^{\circ}=77^{\circ}$
Hence, $\mathrm{x}=50^{\circ}$ and $\mathrm{y}=77^{\circ}$.
6.

In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along $C D$. Prove that $A B \| C D$.

Sol.

Given. Mirror PQ || Mirrors RS.
An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path C ad strikes
the mirror RS at C and again reflects back along CD .
To prove.
$A B \| C D$
Construction. Draw normal BN on PQ and CM on RS.

Proof.

$$
\begin{gathered}
\angle 1+\angle 2=\angle 3+\angle 4(\mathrm{BN} \perp \mathrm{PQ}) \\
\angle 2=\angle 3
\end{gathered}
$$

(Angle of incidents $=$ Angle of reflection)
$\Rightarrow \quad \angle 1+\angle 2=\angle 2+\angle 4 \Rightarrow \angle 1=\angle 4$

Similarly, $\quad \angle 5=\angle 8$.

But $\quad \angle 4=\angle 5$
(Alternate angles)

From (1), (2) and (3), we have

$$
\angle 1=\angle 8
$$

Now,

$$
\begin{equation*}
\angle \mathrm{PBC}=\angle \mathrm{BCS} \tag{4}
\end{equation*}
$$

(Alternate angels)

Subtracting (4) from (5), we have

$$
\angle \mathrm{PBC}-\angle 1=\angle \mathrm{BCS}-\angle 8 \Rightarrow \angle \mathrm{ABC}=\angle \mathrm{BCD}
$$

EXERCISE 6.3

1. In figure, sides QP and RQ of $\triangle \mathrm{PQR}$ are produced to points S and T respectively. If $\angle \mathrm{SPR}=135^{\circ}$ and $\angle \mathrm{PQT}=110^{\circ}$, find $\angle \mathrm{PRQ}$.

Sol.

In $\triangle \mathrm{PQR}, \angle \mathrm{PQT}=\angle \mathrm{QPR}+\angle \mathrm{PRQ}$
[Exterior angle property]
$\Rightarrow \quad 110^{\circ}=\angle \mathrm{QPR}+\angle \mathrm{PRQ}$
Also, $\angle \mathrm{SPR}+\angle \mathrm{QPR}=180^{\circ}$
[Linear pair]
$\Rightarrow 135^{\circ}+\angle \mathrm{QPR}=180^{\circ} \Rightarrow \angle \mathrm{QPR}=180^{\circ}-135^{\circ}=45^{\circ}$.
Substituting the value of $\angle \mathrm{QPR}$ in (1), we get

$$
110^{\circ}=45^{\circ}+\angle \mathrm{PRQ} \Rightarrow \angle \mathrm{PRQ}=110^{\circ}-45^{\circ}=65^{\circ}
$$

2. In figure, $\mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ}$. If YO and ZO are the bisectors of $\angle \mathrm{XYZ}$ and $\angle \mathrm{XZY}$ respectively of $\triangle \mathrm{XYZ}$, find $\angle \mathrm{OZY}$ and $\angle \mathrm{YOZ}$

Sol.

Consider $\triangle \mathrm{XYZ} \quad \angle \mathrm{YXZ}+\angle \mathrm{XYZ}+\angle \mathrm{XZY}=180^{\circ}$ [Angle-sum property]
$\Rightarrow \quad 62^{\circ}+54^{\circ}+\angle \mathrm{XZY}=180^{\circ} \quad\left[\therefore \angle \mathrm{YXZ}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ}\right]$
$\Rightarrow \quad \angle X Z Y=180^{\circ}-62^{\circ}-54^{\circ}=64^{\circ}$
Since YO and ZO are bisectors of $\angle \mathrm{XYZ}$ and $\angle \mathrm{XZY}$, therefore

$$
\angle \mathrm{OYZ}=\frac{1}{2} \times \angle \mathrm{XYZ}=\frac{1}{2} \times 54^{\circ}=27^{\circ}
$$

and,

$$
\angle \mathrm{OZY}=\frac{1}{2} \times \angle \mathrm{XZY}=\frac{1}{2} \times 64^{\circ}=32^{\circ}
$$

Now, in $\triangle \mathrm{OYZ}$, we have:

$$
\angle \mathrm{YOZ}+\angle \mathrm{OYZ}+\angle \mathrm{OZY}=180^{\circ}
$$

[Angle-sum property]

$$
\angle \mathrm{YOZ}+27^{\circ}+32^{\circ}=180^{\circ}
$$

$\Rightarrow \quad \angle \mathrm{YOZ}=180^{\circ}-27^{\circ}-32^{\circ}=121^{\circ}$
Hence, $\quad \angle \mathrm{OZY}=32^{\circ}$ and $\angle \mathrm{YOZ}=121^{\circ}$
3. In figure, if $\mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ}$ and $\angle \mathrm{CDE}=53^{\circ}$, find $\angle \mathrm{DCE}$.

Sol.

Since $A B \| D E$ and transversal $A E$ intersects them at A and E respectively, therefore

$$
\angle \mathrm{DEA}=\angle \mathrm{BAE}
$$

[Alternate angles]

$$
\Rightarrow \quad \angle \mathrm{DEC}=35^{\circ}
$$

$\left[\therefore \angle \mathrm{DEA}=\angle \mathrm{DEC}\right.$ and $\left.\angle \mathrm{BAE}=35^{\circ}\right]$
In $\triangle \mathrm{DEC}$, we have:
$\angle \mathrm{DCE}+\angle \mathrm{DEC}+\angle \mathrm{CDE}=180^{\circ}$
[Angle-sum property]
$\Rightarrow \quad \angle \mathrm{DCE}+35^{\circ}+53^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{DCE}=180^{\circ}-35^{\circ}-53^{\circ}=92^{\circ}$
Hence, $\quad \angle \mathrm{DCE}=92^{\circ}$.
4. In figure, if lines PQ and Rs intersect at point T , such that $\angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ}$ and $\angle \mathrm{TSQ}=75^{\circ}$, find $\angle \mathrm{SQT}$.

Sol.

In $\triangle \mathrm{PRT}, \angle \mathrm{P}+\angle \mathrm{R}+\angle \mathrm{PTR}=180^{\circ}$
$\Rightarrow \quad 95^{\circ}+40^{\circ}+\angle \mathrm{PTR}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PTR}=180^{\circ}-135^{\circ}=45^{\circ}$
Also, $\quad \angle \mathrm{STQ}=\angle \mathrm{PTR}$
$\Rightarrow \quad \angle \mathrm{STQ}=45^{\circ}$
[Sum of angles of a triangle is 180°.]
[Vertically opposite angles]
[using eqn. (1)]
In $\triangle \mathrm{TSO}, \triangle \mathrm{STO}+\angle \mathrm{S}+\angle \mathrm{TQS}=180^{\circ}$
[ASP of Δ]
$\Rightarrow \quad 45^{\circ}+75^{\circ}+\angle \mathrm{TQS}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{TQS}=180^{\circ}-120^{\circ}=60^{\circ}$
5. In figure, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$, then find the values of x and y.

Sol.

Using exterior angle property in $\triangle \mathrm{SRQ}$, we have:

$$
\begin{array}{lll}
& \angle \mathrm{QRT}=\angle \mathrm{RQS}+\angle \mathrm{QSR} \\
\Rightarrow & 65^{\circ}=28^{\circ}+\angle \mathrm{QSR} & {\left[\therefore \angle \mathrm{QRT}=65^{\circ}, \angle \mathrm{RQS}=28^{\circ}\right]} \\
\Rightarrow & \angle \mathrm{QSR}=65^{\circ}-28^{\circ}=37^{\circ} &
\end{array}
$$

Now, $\mathrm{PQ} \| \mathrm{SR}$ and the transversal PS intersects them at P and S respectively.
$\therefore \angle \mathrm{PSR}+\angle \mathrm{SPQ}=180^{\circ}$ [Sum of the interior angles on the same side of the transversal is 180°]
$\Rightarrow(\angle \mathrm{PSQ}+\angle \mathrm{QSR})+90^{\circ}=180^{\circ}$
\Rightarrow

$$
\begin{aligned}
y+37^{\circ}+90^{\circ} & =180^{\circ} \\
y & =180^{\circ}-90^{\circ}-37^{\circ}=53^{\circ}
\end{aligned}
$$

\Rightarrow
In the right triangles $S P Q$, we have:

$$
\begin{array}{lc}
& \angle \mathrm{PQS}+\angle \mathrm{PSQ}=90^{\circ} \\
\Rightarrow & \mathrm{x}+53^{\circ}=90^{\circ} \\
\Rightarrow & \mathrm{x}=90^{\circ}-53^{\circ}=37^{\circ} \\
\text { Hence, } & \mathrm{x}=37^{\circ} \text { and } \mathrm{y}=53^{\circ} .
\end{array}
$$

6. In figure, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at the point T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

Sol.

Let

$$
\begin{aligned}
& \angle \mathrm{PQT}=\angle 1 \\
& \angle \mathrm{TQR}=\angle 2 \\
& \angle \mathrm{PRT}=\angle 3 \\
& \angle \mathrm{TRS}=\angle 4
\end{aligned}
$$

Also, not that: $2 \times \angle 3=2 \times \angle 4=\angle \mathrm{PRS}\{\therefore$ RT bisects $\angle \mathrm{PRS}\} \ldots$ (1)
and $\quad 2 \times \angle 1=2 \times \angle 2=\angle \mathrm{PQR} \quad\{\therefore \mathrm{QT}$ bisects $\angle \mathrm{PQR}\} \ldots$. (2)
$\angle \mathrm{PRS}=\angle \mathrm{P}+\angle \mathrm{PQR} \quad[\mathrm{By}$ exterior angle property] \ldots (3)
Now, from equation (1) we can put either $2 \times \angle 3$ or $2 \times \angle 3$ or $2 \times \angle 4$ in place of $\angle \mathrm{PRS}$
and also
$2 \times \angle 1$ or $2 \times \angle 2$ in place of $\angle \mathrm{PQR}$ in equation (3).
Hence, by suitable replacement, we get

$$
\begin{equation*}
2 \times \angle 4=\angle \mathrm{P}+2 \times \angle 2 \tag{4}
\end{equation*}
$$

Now, in

$$
\begin{equation*}
\Delta \mathrm{TQR}, \angle 4=\angle 2+\angle \mathrm{T} \tag{5}
\end{equation*}
$$

Value of $\angle 4=\angle 2+\angle \mathrm{T}$ from equation (5) to equation (3).

$$
\begin{aligned}
2 \times[\angle 2+\angle \mathrm{T}] & =\angle \mathrm{P}+2 \times \angle 2 \\
\Rightarrow 2 \times \angle 2+\angle 2 \times \angle \mathrm{T} & =\angle \mathrm{P}+2 \times \angle 2
\end{aligned}
$$

On cancelling $2 \times \angle 2$ from both sides, we get

$$
2 \times \angle \mathrm{T}=\angle \mathrm{P}
$$

or,

$$
2 \times \angle \mathrm{QTR}=\angle \mathrm{QPR}
$$

$\Rightarrow \quad \angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$
\square

