Kinetic Energy (Word Problem)

Table of Contents

- Numerical - Kinetic Energy
- Summary
- What's Next?

In the last segment, we learnt about kinetic energy. In this segment we are going to solve a numerical based on kinetic energy.

Numerical - Kinetic Energy

Calculate the work required to be done to increase the velocity of an object from $20 \mathrm{~km} / \mathrm{hr}$ to $\mathbf{4 0} \mathbf{~ k m} / \mathrm{hr}$, if the mass of the object is $\mathbf{4 0} \mathbf{~ k g}$.

We know that the S.I. unit of velocity is \mathbf{m} / \mathbf{s}, hence we need to convert the given velocities into m / s.

Initial Velocity,

$$
\begin{gathered}
u=20 \times\left(\frac{1000}{60 \times 60}\right) \\
\mathbf{u}=5.55 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Final Velocity,

$$
v=40 \times\left(\frac{1000}{60 \times 60}\right)
$$

$$
\mathrm{v}=11.1 \mathrm{~m} / \mathrm{s}
$$

Initial Kinetic Energy
K.E. $($ initial $)=\frac{m u^{2}}{2}$
K.E. (initial) = 616 Joules

Infinit
 Learn

Final Kinetic Energy
K.E. $($ final $)=\frac{m v^{2}}{2}$

K.E. (final) $=2469$ Joules

Work Done = Final Kinetic Energy - Initial kinetic energy
Work Done $=1853$ joule

Summary

Kinetic Energy	- The kinetic energy (KE) of an object is the energy that it possesses due to its motion
K.E. $=\frac{\mathrm{mv}^{2}}{2}$	

What's next?

In our next Class 9 Science segment, we shall learn about the potential energy with the help of a few examples.

