

How do we know if a Polynomial is a Factor of Another Polynomial? Part 2

Table of Contents

- Example
- What's Next?

In the previous segment, we learnt how to find if a **polynomial is a factor of another.** In this segment, we will look at one more example.

Example

Q. Find out if 1+2m is a factor of $4m+3+m^2+2m^3$.

Solution:

Arranging the terms of the dividend in descending order of the power of its variables gives

$$\frac{2m^3 + m^2 + 4m + 3}{2m + 1}$$

Degree of the divisor (1) < Degree of the dividend (3).

Thus, the division can be carried out as follows:

$2m+1)2m^{3}+m^{2}+4m+3$

Divide the first term of the polynomial with the first term of the divisor and write the result on top. This is the first term of the quotient.	$2m+1)2m^{3}+m^{2}+4m+3$
Using the distributive property, multiply the quotient's first term with the terms of the divisor and write it under the first two terms of the dividend. Subtract the two expressions.	$ \begin{array}{r} m^{2} \\ 2m+1) 2m^{3}+m^{2}+4m+3 \\ 2m^{3}+m^{2} \\ \underline{(-)} (-) \\ 0 \\ \end{array} $

Since the remainder is not zero, $\{2m+1\}$ is not a factor of $2m^3 + m^2 + 4m + 3$.

What's next?

In the next segment of Class 8 Maths, we will learn about **Graphs.**