SUBJECT: MATHEMATICS

26th MAY, 2024 (SUNDAY)

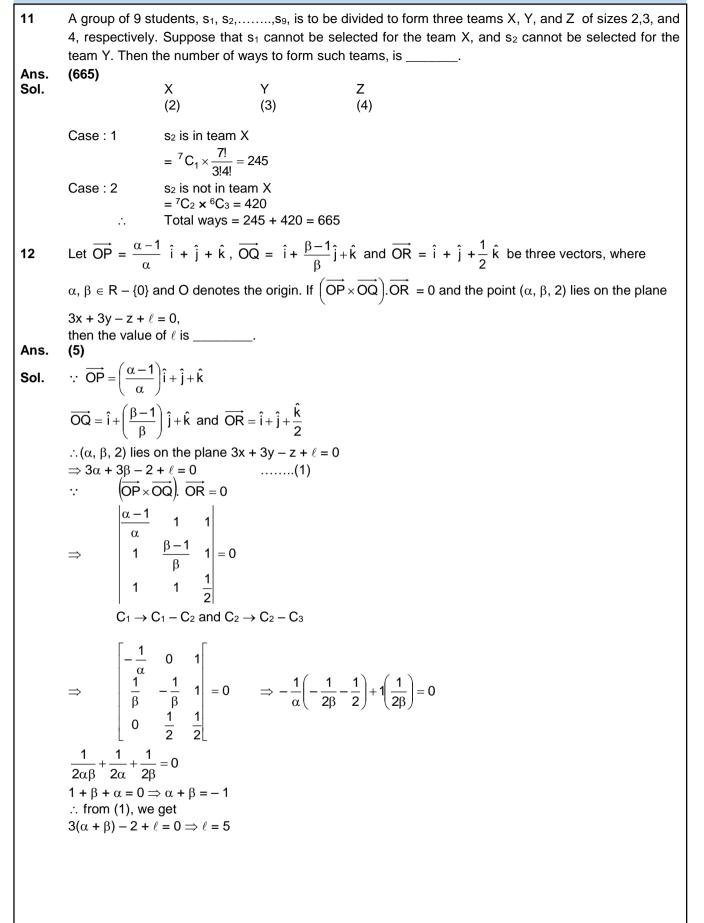
| JEE (ADVANCED) 2024 | DATE : 26-05-2024 | PAPER-1 | MATHEMATICS PART : MAHTEMATICS SECTION-1: 12 Marks This section contains FOUR (04) questions. Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer. For each question, choose the option corresponding to the correct answer. Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 If ONLY the correct option is chosen; : **0** If none of the options is chosen (i.e. the question is unanswered); Zero Marks Negative Marks : -1 In all other cases. 1. Let f(x) be a continuously differentiable function on the interval $(0,\infty)$ such that f(1)=2 and $\lim_{t\to x} \frac{t^{10}f(x) - x^{10}f(t)}{t^9 - x^9} = 1 \text{ for each } x > 0. \text{ Then, for all } x > 0, f(x) \text{ is equal to}$ (A) $\frac{31}{11x} - \frac{9}{11}x^{10}$ (B) $\frac{9}{11x} + \frac{13}{11}x^{10}$ (C) $\frac{-9}{11x} + \frac{31}{11}x^{10}$ (D) $\frac{13}{11x} + \frac{9}{11}x^{10}$ Ans. (B) :: $\lim_{t \to x} \frac{t^{10}f(x) - x^{10}f(t)}{t^9 - x^9} = 1$ Sol. $\Rightarrow \qquad \lim_{t \to x} \frac{10t^9 f(x) - x^{10} f'(t)}{9 t^8} = 1$ $\Rightarrow \qquad \frac{10.x^9 f(x) - x^{10} f'(x)}{9.x^8} = 1$ $\Rightarrow \qquad x^{10} f'(x) - 10.x^9 f(x) = -9.x^8$ $\Rightarrow f'(x) - \frac{10}{x}f(x) = -\frac{9}{x^2}$ I.F. = $e^{-10\int_{n}^{1} \frac{1}{x} dx} = e^{-10 \ln x} = \frac{1}{x^{10}}$ $\therefore \qquad y.\frac{1}{x^{10}} = \int -\frac{9}{x^2} \cdot \frac{1}{x^{10}} dx \implies \frac{y}{x^{10}} = \frac{9}{11} \cdot \frac{1}{x^{11}} + C$ $\Rightarrow \qquad y = \frac{9}{11} \cdot \frac{1}{x} + C \cdot x^{10} \qquad \qquad \because y(1) = 2$ $\Rightarrow \qquad 2 = \frac{9}{11} + C \qquad \Rightarrow C = 2 - \frac{9}{11} = \frac{13}{11}$ \therefore $y = \frac{9}{11x} + \frac{13}{11} \cdot x^{10}$

2. A student appears for a quiz consisting of only true-false type questions and answers all the questions. The student knows the answers of some questions and guesses the answers for the remaining questions. Whenever the student knows the answer of a question, he gives the correct answer. Assume that the probability of the student giving the correct answer for a question, given that he has guessed it, is Also assume that the probability of the answer for a question being quessed, given that the student's answer is correct, is $\frac{1}{6}$. Then the probability that the student knows the answer of a randomly chosen question is (A) $\frac{1}{12}$ (C) $\frac{5}{7}$ (D) $\frac{5}{12}$ (B) $\frac{1}{7}$ (C) Ans. Let total questions = T Sol. (T-x) number of questions x (No. of questions whose answer whose answer be don't know be knows) \therefore reqd = $\frac{x}{-}$ $\therefore \quad \frac{1}{6} = \frac{\left(\frac{T-x}{T}\right)\frac{1}{2}}{\frac{x}{\tau} + \left(\frac{T-x}{T}\right)\frac{1}{2}} \Rightarrow \frac{x}{T} = \frac{5}{7}$ Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x = \frac{-5}{\sqrt{11}}$. Then $\left(\sin\frac{11x}{2}\right)\left(\sin6x - \cos6x\right) + \left(\cos\frac{11x}{2}\right)\left(\sin6x + \cos6x\right)$ is 3. equal to (B) $\frac{\sqrt{11}+1}{2\sqrt{3}}$ (C) $\frac{\sqrt{11}+1}{3\sqrt{2}}$ (D) $\frac{\sqrt{11}-1}{3\sqrt{2}}$ (A) $\frac{\sqrt{11-1}}{2\sqrt{3}}$ Ans. Let $E = \left(\sin\frac{11x}{2}\right)(\sin6x - \cos6x) + \cos\left(\frac{11x}{2}\right)(\sin6x + \cos6x)$ Sol. $= \left(\sin 6x \sin \frac{11x}{2} + \cos 6x \cos \frac{11x}{2}\right) + \left(\sin 6x \cos \frac{11x}{2} - \cos 6x \sin \frac{11x}{2}\right) = \cos \left(6x - \frac{11x}{2}\right) + \sin \left(6x - \frac{11x}{2}\right)$ $E = \cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)$ (2) $\therefore \qquad \left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2 = 1 + \sin x \qquad \because \qquad x \in \left(\frac{\pi}{2}, \pi\right) \text{ and } \cot x = -\frac{5}{\sqrt{11}}$ $=1+\frac{\sqrt{11}}{2}$ \therefore sinx = $\frac{\sqrt{11}}{6}$ $=\frac{\sqrt{11+6}}{6}$ $\therefore \qquad \left(\cos\frac{x}{2} + \sin\frac{x}{2}\right) = \frac{\sqrt{6 + \sqrt{11}}}{\sqrt{2}\sqrt{3}} = \frac{\sqrt{12 + 2\sqrt{11}}}{2\sqrt{3}}$ $=\frac{\sqrt{(\sqrt{11}+1)^{2}}}{2\sqrt{2}}=\frac{\sqrt{11}+1}{2\sqrt{3}} \implies \qquad \mathsf{E}=\frac{\sqrt{11}+1}{2\sqrt{3}}$

| JEE (ADVANCED) 2024 | DATE : 26-05-2024 | PAPER-1 | MATHEMATICS

Consider the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let S(p, q) be a point in the first quadrant such that $\frac{p^2}{9} + \frac{q^2}{4} > 1$. Two 4. tangents are drawn from S to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point T in the fourth quadrant. Let R be the vertex of the ellipse with positive x-coordinate and O be the centre of the ellipse. If the area of the triangle $\triangle ORT$ is $\frac{3}{2}$, then which of the following options is correct? (A) $q = 2, p = 3\sqrt{3}$ (B) $q = 2, p = 4\sqrt{3}$ (C) $q = 1, p = 5\sqrt{3}$ (D) $q = 1, p = 6\sqrt{3}$ (A) Ans. $\frac{x^2}{q} + \frac{y^2}{4} = 1$ ____(1) Sol. (0,2) 7 S(p,q) R 0 Γκ q = 2 ... \therefore Area of $\triangle ORT = \frac{3}{2}$ $\Rightarrow \frac{1}{2}(OR)(K) = \frac{3}{2} \Rightarrow \frac{1}{2}(3)(K) = \frac{3}{2}$ ∴ T(h,–1) $\therefore \qquad T (h,-1) \text{ lies on } (1) \Rightarrow \frac{h^2}{9} + \frac{1}{4} = 1 \Rightarrow h^2 = \frac{3}{4} \times 9 \Rightarrow h = \frac{3\sqrt{3}}{2}$ $\therefore \qquad T\left(\frac{3\sqrt{3}}{2},-1\right)$ \therefore equation of tangent at $T\left(\frac{3\sqrt{3}}{2}, -1\right)$, is $\frac{x\left(\frac{3\sqrt{3}}{2}\right)}{2} + \frac{y(-1)}{4} = 1$ \because it is passes through S(p , 2) $\therefore \qquad \frac{p\left(\frac{3\sqrt{3}}{2}\right)}{2} + \frac{2(-1)}{4} = 1$ $\frac{p}{2\sqrt{3}} = 1 + \frac{1}{2} = \frac{3}{2}$ $p = 3\sqrt{3}$ $\therefore p = 3\sqrt{3}$, q = 2

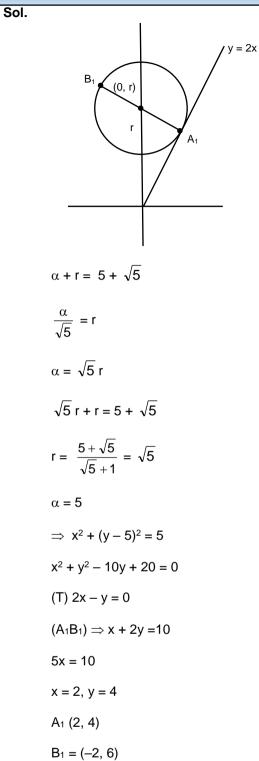
SECTION 2 : 12 Marks This section contains THREE (03) questions. Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s). For each question, choose the option(s) corresponding to (all) the correct answer(s). Answer to each question will be evaluated according to the following marking scheme: : +4 ONLY if (all) the correct option(s) is(are) chosen; Full Marks *Partial Marks* : +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct: Partial Marks :+1 If two or more options are correct but ONLY one option is chosen and it is a correct option; Zero Marks : **0** If none of the options is chosen (i.e. the question is unanswered): Negative Marks : -2 In all other cases. For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2marks; choosing ONLY (B) and (D) will get +2 marks; choosing ONLY (A) will get +1 mark; choosing ONLY (B) will get +1 mark; choosing ONLY (D) will get +1 mark; choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks. Let $S = \{a + b\sqrt{2} : a, b \in Z\}, T_1 = \{(-1 + \sqrt{2})^n : n \in N\}$, and $T_2 = \{(1 + \sqrt{2})^n : n \in N\}$. Then which of the 5. following statements is (are) TRUE ? (A) $Z \cup T_1 \cup T_2 \subset S$ (B) $T_1 \cap \left(0, \frac{1}{2024}\right) = \phi$, where ϕ denotes the empty set. (C) $T_2 \cap (2024, \infty) \neq \phi$ (D) For any given $a, b \in Z$, $\cos(\pi(a+b\sqrt{2})) + i\sin(\pi(a+b\sqrt{2})) \in Z$ if any only if b=0, where $i = \sqrt{-1}$. (ACD) Ans. Sol. Binomial expansion : $\left(-1+\sqrt{2}\right)^{n} = \left({}^{n}C_{0}\left(-1\right)^{n} + {}^{n}C_{2}\left(-1\right)^{n-2}\left(\sqrt{2}\right)^{2} + \dots \right) + \sqrt{2}\left({}^{n}C_{1}\left(-1\right)^{n-1} + {}^{n}C_{3}\left(-1\right)^{n-3}\left(\sqrt{2}\right)^{2} + \dots \right)$ = (integer) + $\sqrt{2}$ (integer) $(-1+\sqrt{2})^n$ belongs to S Similarly $(1 + \sqrt{2})^n$ belongs to S All integer belongs to S \Rightarrow Z \cup T₁ \cup T₂ \subset S \Rightarrow (A) is True $0 < (-1 + \sqrt{2}) < 0.414 \Rightarrow$ for sufficiently large n,


| JEE (ADVANCED) 2024 | DATE : 26-05-2024 | PAPER-1 | MATHEMATICS $\left(-1+\sqrt{2}\right)^n < \frac{1}{2024} \Rightarrow T_1 \cap \left(0, \frac{1}{2024}\right) \neq \phi \Rightarrow B$ is false $1+\sqrt{2}$ > 2.414 \Rightarrow for sufficiently large n (n \ge 9) $(1+\sqrt{2})^n > 2024 \Rightarrow T_2 \cap (2024, \infty) \neq \phi \Rightarrow C$ is True $e^{i(a+b\sqrt{2})\pi} \in Z \iff (a+b\sqrt{2})\pi = n\pi, n \in I$ \Leftrightarrow a = n ,b = 0 \Rightarrow D is true Let R^2 denote $R \times R$. Let $S = \{(a,b,c): a,b,c \in R \text{ and } ax^2 + 2bxy + cy^2 > 0 \text{ for all } (x,y) \in R^2 - \{(0,0)\}\}$ 6. for. Then which of the following statements is (are) TRUE ? (A) $\left(2,\frac{7}{2},6\right) \in S$ (B) If $(3,b,\frac{1}{12}) \in S$, then |2b| < 1. (C) For any given $(a,b,c) \in S$, the system of linear equations ax + by = 1bx + cy = -1has a unique solution. (D) For any given $(a,b,c) \in S$, the system of linear equations (a+1)x + by = 0 $b\mathbf{x} + (\mathbf{c} + 1)\mathbf{y} = 0$ has a unique solution. Ans. (BCD) $b^2 - ac < 0 \& a > 0 \& c > 0$ Sol. (A) $\frac{49}{4} - 12 > 0$ (B) $b^2 - \frac{1}{4} < 0 \implies |2b| < 1$ (C) $\begin{vmatrix} a & b \\ b & c \end{vmatrix} = ac - b^2 \neq 0$ (D) $\begin{vmatrix} a+1 & b \\ b & c+1 \end{vmatrix} \Rightarrow ac+a+c+1-b^2 > 0 \text{ but,} \quad \begin{aligned} x &= \frac{0}{+ive} = 0 \\ y &= \frac{0}{+ive} = 0 \end{aligned}$ Which gives unique solution of system of linear equations 7. Let R³ denote the three-dimensional space. Take two points P = (1,2,3) and Q = (4,2,7). Let dist (X,Y)denote the distance between two points X and Y in R³. Let $S = \{ X \in \mathbb{R}^3 : (dist(X, \mathbb{P}))^2 - (dist(X, \mathbb{Q}))^2 = 50 \}$ and $T = \{Y \in R^3 : (dist(Y,Q))^2 - (dist(Y,P))^2 = 50\}.$ Then which of the following statements is (are) TRUE ?

- (A) There is a triangle whose area is 1 and all of whose vertices are from S
- (B) There are two distinct points L and M in T such that each point on the line segment LM is also in T.
- (C) There are infinitely many rectangles of perimeter 48, two of whose vertices are from S and the other two vertices are from T.
- (D) There is a square of perimeter 48, two of whose vertices are from S and the other two vertices are from T

	JEE (ADVANCED) 2024 DATE : 26-05-2024 PAPER-1 MATHEMATICS
Ans. Sol.	(ABC) S : 6x ₁ + 8z ₁ = 105
301.	$T: 6x_2 + 8z_2 = 5$
	(A) Triangles can be formed by taking 3 points in the XZ plane, two of them lying on $6x_1 + 8z_1 = 105$ (B) Has elements of set T is also a line complete line in T.
	(C) Difference between parallel planes is $\frac{100}{10} = 10$. Infinite rectangles can be formed with sides 10, 14
	(D) Difference between parallel planes is $\frac{100}{10} = 10$. Squares of side 12 is not possible
	SECTION-3 : 24 Marks
•	This section contains SIX (06) questions.
•	The answer to each question is a NON-NEGATIVE INTEGER.
•	For each question, enter the correct integer corresponding to the answer using the mouse and the on screen virtual numeric keypad in the place designated to enter the answer.
•	Answer to each question will be evaluated according to the following marking scheme:
	<i>Full Marks</i> :+4 ONLY the correct integer value is entered;
	Zero Marks : 0 In all other cases.
8.	Let $a = 3\sqrt{2}$ and $b = \frac{1}{5^{1/6}\sqrt{6}}$. If $x, y \in R$ are such that $3x + 2y = \log_a(18)^{\frac{5}{4}}$ and $2x - y = \log_b(\sqrt{1080})$,
Ans.	then 4x + 5y is equal to (8)
Sol.	: $a=3\sqrt{2}$; $b=(5^{1/6}\sqrt{6})^{-1}$
	$\therefore \log_{a}(18)^{5/4} = \log_{3\sqrt{2}}^{(3\sqrt{2})^{5/2}} = 5/2$
	$\Rightarrow 3x+2y = \log_a(18)^{5/4} \Rightarrow 3x + 2y = 5/2 \dots(1)$
	$\therefore \sqrt{1080} = \sqrt{36 \times 3 \times 5 \times 2} = 6\sqrt{6}\sqrt{5} = (\sqrt{6}.5^{1/6})^3$
	$\therefore 2x - y = \log_{b} \sqrt{1080} = \log_{\sqrt{6.5^{1/6}}}^{\sqrt{6.5^{1/6}}^3} = -3 \qquad \dots (2)$
	\therefore solving (1) and (2)
	$x = -\frac{1}{2}, y = 2$
	So, $4x + 5y = -2 + 10 = 8$
9.	Let $f(x) = x^4 + ax^3 + bx^2 + c$ be a polynomial with real coefficients such that $f(1) = -9$. Suppose
	that i $\sqrt{3}$ is a root of the equation $4x^3 + 3ax^2 + 2bx = 0$, where $i = \sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and α_4 are
	all the roots of the equation $f(x) = 0$, then $ \alpha_1 ^2 + \alpha_2 ^2 + \alpha_3 ^2 + \alpha_4 ^2$ is equal to
Ans.	(20)

		-	-	ED) 2024	DATE:26	6-05-2024 PAPER-1 MATHEMATICS			
Sol.	. ,	$= x^4 + ax^3 + ax^3 + ax^4 +$							
		= –9 ⇒ 1+a							
				on x(4x ² +3a	ax+2b)=0				
	\Rightarrow 4(-3) +3a (i √3)+ 2b=0						
	⇒ $(2b-12)+i(3a\sqrt{3})=0+i(0)$ ∵ a, b ∈ R								
	\Rightarrow 2b–12 =0 and 3a $\sqrt{3}$ =0								
	\Rightarrow b=6		a=0						
		(1) $c = -10$							
		0 becomes x ² -16=0	5						
			\Rightarrow Roots c	of f(x) =0 are	$\Rightarrow \sqrt{2}$, $-\sqrt{2}$, $i(2\sqrt{2})$, $-i(2\sqrt{2})$			
				2+2+8+8=2					
	¤1	1	3 ' ~4 -	2121010-2	.0				
	ĺ	(0 1	c)]			
0	Let $S = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A = 1 a	d : a,b,c	, d, e $\in \{0, 1\}$	and $ A \in \{-1$	$, 1\}$, where $ A $ denotes the determinant of A. Then			
	l	(1 b	e)			J			
		per of elem	ents in S is	S					
Ans.									
Sol.	· A = ($:: A = (d-e) + c(b-a) :: a,b,c,d,e ∈ {0,1}$							
	d	е	С	b	a ←	7			
	1	0	0	1	1				
			0	1	0				
			0	0	1				
			0	0	0	\Rightarrow A = 1			
	1	0	1	1	1				
	1	1	1	01	0				
	0	0	1	1	0 0 ←				
		0		•	~ `	—			
	0	1	0	1	1				
			0	1	0				
			0	0	1	⇒ A =–1			
	0	4	01	0	0				
	U	1	1	0	0				
	1	1	1	0	1				
	~		4		4 —				
	0	0	1	0	1 —				
	∴ Total	16 elemen	ts will be th	nere is S					

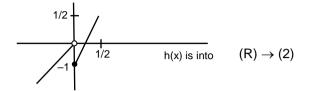

 $\therefore\,$ Total 16 elements will be there is S

13				-	bability that X takes the value x. I straight line in the xy-plane,		
	and P(X =	x) = 0 for all $x \in$	R - {0, 1, 2, 3, 4}	. If the mean of	X is $\frac{5}{2}$, and the variance of X is α ,	then the	
	value of 24				2		
Ans. Sol.	(42) Let P(x = 0))=a, P(x = 1)=	= b , P(x = 2) = c , P	(x = 3) = d , P(x =	• 4) = e		
	x	P(X)	X.P(X)	X ² .P(X)			
	0	а	0	0			
	1	b	b	b			
	2	С	2c	4c			
	3	d	3d	9d			
	4	е	4e	16e	_		
		traight line be y),(2,c),(3,d),(4,e)		(1)	-		
	$\Rightarrow \frac{b-a}{1} =$	$\frac{c-b}{1} = \frac{d-c}{1} = \frac{d-c}{1}$	$\frac{e-d}{1} = m = slope d$	of line			
	1	e are in A.P	1				
	$\therefore \sum p(x) =$						
	⇒a+b+o	$c + d + e = 1 \Longrightarrow (a$	(a + e) + (b + d) + c =	0			
		$=1 \implies c = 1/5$					
		d, e are AP and					
	$\frac{1}{5} - 2\beta, \frac{1}{5} - 2\beta$	$-\beta, \frac{1}{5}, \frac{1}{5}+\beta, \frac{1}{5}+\beta$	- 2β				
	Mean = 5/2	2					
	$\Rightarrow b + 2c + 3d + 4e = \frac{5}{2} \Rightarrow \frac{1}{5} - \beta + \frac{2}{5} + \frac{3}{5} + 3\beta + \frac{4}{5} + 8\beta = \frac{5}{2}$						
	$10\beta + 2 = \frac{5}{2}$	$\beta \Rightarrow \beta = \frac{1}{20}$					
	$\therefore \mathbf{b} = \frac{1}{5} - \frac{1}{2}$	$\frac{1}{20} = \frac{3}{20}$					
	$e = \frac{6}{20}$						
		$(\alpha) = \sum X^2.p(X)$					
		4c + 9d + 16e	4				
	$\Rightarrow \alpha = \frac{3}{20}$	$+4\left(\frac{4}{20}\right)+9\left(\frac{5}{20}\right)$	$+16\left(\frac{6}{20}\right)-\frac{25}{4}$				
	$\Rightarrow \alpha = \frac{3+1}{2}$	$\frac{16+45+96}{20} - \frac{25}{4}$	$\Rightarrow \alpha = 8 - \frac{25}{4} = \frac{7}{4}$				
	$\therefore 24\alpha = 24\alpha$	$4\left(\frac{7}{4}\right) = 42$					
		X · /					

JEE (ADVANCED) 2024 DATE : 26-05-2024 PAPER-1 MATHEMATICS								
•	SECTION 4 : 12 Marks This section contains FOUR (04) Matching List Sets. Each set has ONE Multiple Choice Question. Each set has ONE Multiple Choice Question. Each set has TWO lists: List-I and List-II. List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5). FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question. Answer to each question will be evaluated according to the following marking scheme: Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases.							
14		Let α and β be the distinct roots of the equation $x^2 + x - 1 = 0$. Consider the set T={1, α , β }. For a 3 × 3						
		k M = (a _{ij}) _{3×3} , defi n each entry in Li ∶			$h_1 + a_{2j} + a_{3j}$ for i =1,2,3 and j = 1, 2,3.			
		List-I			List-II			
	(P)	The number of		$(a_{ij})_{3\times3}$ with $C_j = 0$ for all i, j,	(1) 1 is			
	(Q)	The number of		(2) 12				
	(R)	$C_j = 0$ for all j, Let $M = (a_{ij})_{3\times 3}$ Matrix such that	oe a skew sym		(3) infinite			
	(S)	(S) Let $M = (a_{ij})_{3\times 3}$ be a matrix with all (4) 6						
		entries in T such that $R_i = 0$ for all i.						
		Then the absolute value of the determinant of						
		(5) 0						
	The correct option is							
		$(S) \rightarrow (1)$						
		(B) (P) \rightarrow (2)	$(Q) \to (4)$	$(R) \rightarrow (1)$	$(S) \rightarrow (5)$			
	(C) (P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (5)							
		(D) (P) \rightarrow (1)	$(Q) \rightarrow (5)$	$(R) \rightarrow (3)$	$(S) \rightarrow (4)$			

$\alpha + \beta = -1$ 1 + \alpha + \beta = 0							
$P = 3! \times 2 = 12$ $\begin{bmatrix} 1 & \alpha & \beta \end{bmatrix}$							
$P = 3! \times 2 = 12$ $Q = \begin{bmatrix} 1 & \alpha & \beta \\ \alpha & \\ \beta & \end{bmatrix} 3! \times 1 = 6$							
A1.							
Let the straight line $y = 2x$ touch a circle with center (0, α), $\alpha > 0$, and radius r at a point A ₁ . Let B ₁ be the point on the circle such that the line segment A ₁ B ₁ is a diameter of the circle. Let							
he. Lei							
$\alpha + \mathbf{r} = 5 + \sqrt{5} \ .$							
Match each entry in List-I to the correct entry in List-II.							
(A) (P) \rightarrow (4) (Q) \rightarrow (2) (R) \rightarrow (1) (S) \rightarrow (3)							
(B) (P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (3)							

16. Let $\gamma \in \mathbb{R}$ be such that the lines $L_1 : \frac{x+11}{1} = \frac{y+21}{2} = \frac{z+29}{3}$ and intersect. Let \mathbb{R}_1 be the point of intersection of L_1 and L_2 . Let $O =$ normal vector to the plane containing both the lines L_1 and L_2 . Match each entry in List-I to the correct entry in List-II. List-I (P) γ equals (1) (Q) A possible choice for \hat{n} is (2) (R) $\overrightarrow{OR_1}$ equals (3) (S) A possible value of $\overrightarrow{OR_1}$. \hat{n} is (4) (5) The correct option is (A) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (B) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (C) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) Ans. (C) Sol. Point on line $L_1 P(\lambda_1 - 11, 2\lambda_1, -21, 3\lambda_1 - 29)$ Point on line $L_2 Q(3\lambda_2 - 16, 2\lambda_2, -11, \gamma\lambda_2 - 4)$ $P = Q : \lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}, 2\lambda_1 - 21 = 2\lambda_2 - 11$	8 2 1
normal vector to the plane containing both the lines L ₁ and L ₂ . Match each entry in List-I to the correct entry in List-II. List-I (P) γ equals (1) (Q) A possible choice for \hat{n} is (2) (R) $\overrightarrow{OR_1}$ equals (3) (S) A possible value of $\overrightarrow{OR_1}$. \hat{n} is (4) (5) The correct option is (A) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (B) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (C) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (D) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) Ans. (C) Sol. Point on line L ₁ P($\lambda_1 - 11, 2 \lambda_1, -21, 3 \lambda_1 - 29$) Point on line L ₂ Q(3 $\lambda_2 - 16, 2 \lambda_2, -11, \gamma \lambda_2 - 4$) P = Q : $\lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}$, $2\lambda_1 - 21 = 2\lambda_2 - 11$	List-II $-\hat{i} - \hat{j} + \hat{k}$ $\sqrt{\frac{3}{2}}$ 1 $\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$
List-I (P) γ equals (1) (Q) A possible choice for \hat{n} is (2) (R) $\overrightarrow{OR_{1}}$ equals (3) (S) A possible value of $\overrightarrow{OR_{1}}$. \hat{n} is (4) (5) The correct option is (A) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (B) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (C) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (D) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) Ans. (C) Sol. Point on line L ₁ P($\lambda_1 - 11, 2\lambda_1, -21, 3\lambda_1 - 29$) Point on line L ₂ Q(3 $\lambda_2 - 16, 2\lambda_2, -11, \gamma\lambda_2 - 4$) P = Q : $\lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}$, $2\lambda_1 - 21 = 2\lambda_2 - 11$	$-\hat{i} - \hat{j} + \hat{k}$ $\sqrt{\frac{3}{2}}$ 1 $\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$
(Q) A possible choice for \hat{n} is (2) (R) $\overrightarrow{OR_{1}}$ equals (3) (S) A possible value of $\overrightarrow{OR_{1}}$. \hat{n} is (4) (5) The correct option is (A) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (B) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (C) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) Ans. (C) Sol. Point on line L ₁ P($\lambda_1 - 11, 2 \lambda_1, -21, 3 \lambda_1 - 29$) Point on line L ₂ Q($3\lambda_2 - 16, 2 \lambda_2, -11, \gamma\lambda_2 - 4$) P = Q : $\lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}$, $2\lambda_1 - 21 = 2\lambda_2 - 11$	$ \sqrt{\frac{3}{2}} $ 1 $ \frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$
(S) A possible value of \overrightarrow{OR}_{1} . \hat{n} is (4) (5) The correct option is (A) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (B) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (C) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) Ans. (C) Sol. Point on line L ₁ P($\lambda_1 - 11, 2 \lambda_1, -21, 3 \lambda_1 - 29$) Point on line L ₂ Q($3\lambda_2 - 16, 2 \lambda_2, -11, \gamma \lambda_2 - 4$) P = Q : $\lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}$, $2\lambda_1 - 21 = 2\lambda_2 - 11$	$\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$
(5) The correct option is $(A) (P) \to (3) (Q) \to (4) (R) \to (1) (S) \to (2)$ $(B) (P) \to (5) (Q) \to (4) (R) \to (1) (S) \to (2)$ $(C) (P) \to (3) (Q) \to (4) (R) \to (1) (S) \to (5)$ $(D) (P) \to (3) (Q) \to (1) (R) \to (4) (S) \to (5)$ Ans. (C) Sol. Point on line L ₁ P($\lambda_1 - 11, 2 \lambda_1, -21, 3 \lambda_1 - 29$) Point on line L ₂ Q($3\lambda_2 - 16, 2 \lambda_2, -11, \gamma\lambda_2 - 4$) P = Q : $\lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\frac{\lambda_1 - 3\lambda_2 = -5}{-2\lambda_2 = -10}, 2\lambda_1 - 21 = 2\lambda_2 - 11$	
The correct option is (A) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (B) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (2) (C) (P) \rightarrow (3) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (5) (D) (P) \rightarrow (3) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) Ans. (C) Sol. Point on line L ₁ P($\lambda_1 - 11, 2 \lambda_1, -21, 3 \lambda_1 - 29$) Point on line L ₂ Q($3\lambda_2 - 16, 2 \lambda_2, -11, \gamma\lambda_2 - 4$) P = Q : $\lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11$ $\lambda_1 - 3\lambda_2 = -5$, $2\lambda_1 - 21 = 2\lambda_2 - 11$ $\lambda_1 - \lambda_2 = 5$ $-2\lambda_2 = -10$	$\sqrt{\frac{2}{3}}$
$(A) (P) \to (3) (Q) \to (4) (R) \to (1) (S) \to (2) (B) (P) \to (5) (Q) \to (4) (R) \to (1) (S) \to (2) (C) (P) \to (3) (Q) \to (4) (R) \to (1) (S) \to (5) (D) (P) \to (3) (Q) \to (1) (R) \to (4) (S) \to (5) Ans. (C)Sol. Point on line L1 P(\lambda_1 - 11, 2 \lambda_1, -21, 3 \lambda_1 - 29)Point on line L2 Q(3\lambda_2 - 16, 2 \lambda_2, -11, \gamma\lambda_2 - 4)P = Q : \lambda_1 - 11 = 3\lambda_2 - 16, 2\lambda_1 - 21 = 2\lambda_2 - 11\lambda_1 - 3\lambda_2 = -5, 2\lambda_1 - 21 = 2\lambda_2 - 11\lambda_1 - \lambda_2 = 5, -\lambda_2 = -10$	
also $3\lambda_1 - 29 = \gamma\lambda_2 - 4$ $30 - 29 = 5\gamma - 4 \implies \gamma = 1$ Point of intersection P = Q = (-1, -1, 1) Plane contain L ₁ & L ₂ $\begin{vmatrix} x+11 & y+21 & z+29 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix}$ (x + 11) (2 - 6) - (y + 21) (1 - 9) + (z + 29) (2 - 6) = 0	


	JEE (ADVANCEI	D) 2024 DATI	E:26-05-2024 PAPER-1 N	IATHEMATICS					
	(x + 11) (-4) - (y + 21) (-8) + (z + 29) (-4) = 0								
	x + 11 - 2y - 42 + z + 29 = 0								
	x - 2y + z - 2 = 0								
	(P) y = 1	$(P) \rightarrow (3)$							
	(Q) $\hat{n} = \frac{\hat{i} - 2\hat{j} + \hat{k}}{\sqrt{6}}$	$(Q) \rightarrow (4)$							
	(R) $\overrightarrow{OR_1} = -\hat{i} - \hat{j} + \hat{k}$	$(R) \rightarrow (1)$							
	(S) $\overrightarrow{OR}.\hat{n} = \frac{-1+2+1}{\sqrt{6}} = \sqrt{2/3}$								
17.	Let f : R \rightarrow R and g: R \rightarrow R be functions defined by f(x) = $\begin{cases} x \mid x \mid sin(\frac{1}{x}), & x \neq 0, \\ 0, & x = 0 \end{cases}$ and								
	$g(x) = \begin{cases} 1-2x, & 0 \le x \le \frac{1}{2}, \\ 0, & \text{otherw ise} \end{cases}$. Let a, b, c, d \in R. Define the function h : R \rightarrow R by								
	$h(x) = a f(x) + b\left(g(x) + g\left(\frac{1}{2} - x\right)\right) + c(x - g(x)) + dg(x), x \in \mathbb{R}$.								
	Match each entry in List-I to the correct entry in List-II. List-I								
	(P) If $a = 0, b = 1, c = 0, and d =$	0, then	(1) h is one- one.						
	(Q) If $a = 1$, $b = 0$, $c = 0$, and $d = 0$		(2) h is onto.						
	(R) If a = 0, b =0, c = 1, and d = (S) If a = 0, b =0, c = 0, and d =		(3) h is differentiable on R.(4) the range of h is [0, 1].						
	(0) if $a = 0, b = 0, c = 0, and a = 0$	r, men	(5) the range of h is {0, 1}						
	The correct option is								
	$(A) \ (P) \rightarrow (4) \ (Q) \rightarrow (3)$								
	(B) (P) \rightarrow (5) (Q) \rightarrow (2) (R) \rightarrow (4) (S) \rightarrow (3)								
	$(C) \ (P) \rightarrow (5) \ (Q) \rightarrow (3)$	() () ()							
Ans.	(D) (P) \rightarrow (4) (Q) \rightarrow (2)	$(R) \to (1) \ (S) \to$	(3)						
Sol.	(C) (P) If a = 0, b = 1, c = 0, d = 0								
		C							
	$h(x) = g(x) + g(1/2 - x) : x \in R$	$g(1/2-x) = \begin{cases} 1-2 \\ 1-2 \end{cases}$	$2(1/2 - x) ; 0 \le x \le \frac{1}{2}$ 0 : otherwise	(P) → (5)					
	$\begin{split} h(x) &= g(x) + g(1/2 - x) : x \in R \\ &= \begin{cases} 1 \ ; \ 0 \leq x \leq 1/2 \\ 0 \ ; \ otherwise \end{cases} \end{split}$	$g(1/2 - x) = \langle$	$2x$; $0 \le x \le 1/2$ 0; otherwise	(1) - (3)					

This solution was download from Resonance JEE (ADVANCED) 2024 Solution portal

Somance JEC

(Q) a = 1, b = 0, c = 0, d = 0 = h(x) = f(x) =
$$\begin{cases} -x^2 \sin(1/x) ; x < 0 \\ 0 ; x = 0 \text{ cont. add dff. at } x \in R \quad (Q) \to (3) \\ +x^2 \sin(1/x) ; x > 0 \end{cases}$$

(R)
$$a = 0, b = 0, c = 1, d = 0$$
 $h(x) = x - g(x) = \begin{cases} x - 1 + 2x \ ; \ 0 \le x \le 1/2 \\ x \ ; \ otherwise \end{cases} = \begin{cases} 3x - 1 \ ; \ 0 \le x \le 1/2 \\ x \ ; \ otherwise \end{cases}$

h(x) = g(x)
0 1/2 Range [0,1] (S)
$$\rightarrow$$
 (4)

his solution was download from Resonance JEE (ADVANCED) 2024 Solution portal