

Grade 10 Math Paper 1 Andhra Pradesh 2015

SECTION-I

Q1. Find L.C.M and H.C.F of 72 and 108 by the prime factorisation method. Solution: H.C.F of 72 and 108 2|72, 108 2|36, 54 3|18, 27 3|6.9 |2, 3 H.C.F. of 72 and $108 = 2 \times 2 \times 3 \times 3$ = 36 L.C.M. of 72 and $108 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$ = 216 So, H.C.F. of 72 and 108 is 36 and L.C.M of 72 and 108 is 216

- Q2. If $V = \{a, e, i, o, u\}$ and $B = \{a, i, k, u\}$, then find V B and B V. Are they equal? Solution: $V - B = \{e, o\}$ $B - V = \{k\}$ No, they are not equal.
- Q3. Find a quadratic polynomial, the sum and product of whose zeroes are $\frac{1}{4}$, -1

respectively. **Solution:** Let the roots be *a,b*. Then the equation of polynomial is given by $x^2 - (a + b)x + ab$ The sum of roots $= \frac{1}{4}$ $a + b = \frac{1}{4}$ product of roots = -1 ab = -1Substituting above values in (1) \therefore Equation of the required polynomial is $x^2 - (\frac{1}{4})x - 1 = 0$ or $4x^2 - x - 4 = 0$. Q4. Find two numbers, whose sum is 27 and product is 182.

Solution: Let the first number be x and the second number is 27 - x.

Therefore, their product = x(27 - x)

It is given that the product of these numbers is 182.

Therefore, x(27 - x) = 182 $\Rightarrow x^2 - 27x + 182 = 0$ $\Rightarrow x^2 - 13x - 14x + 182 = 0$ $\Rightarrow x(x - 13) - 14(x - 13) = 0$ $\Rightarrow (x - 13)(x - 14) = 0$ Either x - 13 = 0 or x - 14 = 0 $\Rightarrow x = 13$ or x = 14If first number = 13, then the other number = 27 - 13 = 14If first number = 14, then the other number = 27 - 14 = 13Therefore, the numbers are 13 and 14.

GROUP - B

Q5. For what value of 'k', the pair equations 3x + 4y + 2 = 0 and 9x + 12y + k = 0 represent coincident lines.

Solution:

The coincident lines are 3x + 4y + 2 = 0 and 9x + 12y + k = 0.

Comparing the equations with the general equations

$$a_{1}x + b_{1}y + c_{1} = 0$$

$$a_{2}x + b_{2}y + c_{2} = 0$$

Then,

$$a_{1} = 3, b_{1} = 4, c_{1} = 2, a_{2} = 9, b_{2} = 12, c_{2} = k$$

Since, the lines are coincident, then,

$$\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}$$

$$\frac{3}{9} = \frac{4}{12} = \frac{2}{k}$$

- $\frac{1}{3} = \frac{1}{3} = \frac{2}{k}$ $\frac{1}{3} = \frac{2}{k}$
- 3κ k = 6
- Q6. In a flower bed, there are 23 rose plants in the first row, 21 in the second row, 19 in the third row, and so on. There are 5 rose plants in the last row. How many rows are there in the flower bed?

Solution:

 $a_1 = 23, a_2 = 21, a_3 = 19 \text{ and } a_n = 5 = 1; S_n = ?$ $a_n = a + (n - 1)d$ $\Rightarrow 5 = 23 + (n - 1)(-2)$ $\Rightarrow 5 = 23 - 2n + 2$ $\Rightarrow 5 = 25 - 2n$ $\Rightarrow 2n = 25 - 5$ $\Rightarrow n = \frac{20}{2}$ $\Rightarrow n = 10$

 $S_n = \left(\frac{n}{2}\right) (2a + [n-1]d)$ $S_{10} = \left(\frac{10}{2}\right) (2 \times 23 + 9 \times (-2))$ $S_{10} = 5 \times 28$ = 140So, there are 140 race plants in the flower

So, there are 140 rose plants in the flower bed.

Q7. Find the coordinates of a point *A*, where *AB* is the diameter of a circle, whose centre is (2, −3) and *B* is (1,4).
Solution:

B(1, 4)

A(x, y) $2 = \frac{(x + 1)}{2}$ 4 - x = 1 x = 3 $-3 = \frac{(y+4)}{2}$ -6 - y = 4 y = -10The coordinates of A are (3, -10).

Q8. Find the area of the triangle, whose vertices are (-5, -1), (3, -5), (5, 2). **Solution:**

Area =
$$\left(\frac{1}{2}\right) [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

= $\left(\frac{1}{2}\right) [-5(-5-2) + 3(2+1) + 5(-1+5)]$
= $\left(\frac{1}{2}\right) [35 + 9 + 20]$
= $\left(\frac{1}{2}\right) \times 64$
= 32 cm^2

SECTION - II

- Q9. Expand log15. Solution: $log15 = log (5 \times 3)$ $= log5 \times log3$
- Q10. Write roster and set builder form of "The set of all-natural numbers, which divide 42". Solution:

(i) x = {1,2,3,6,7,14,21,42}
(ii) x = {x: x ∈ N | x divides 42}

- Q11. If $p(t) = t^3 1$, find the values of p(1), p(-2). **Solution:** $p(1) = 1^3 - 1 = 0$ $p(-2) = (-2)^3 - 1 = -8 - 1 = -9$
- Q12. Formulate a pair of linear equations in two variables " 5 pencils and 7 pens together cost Rs. 50, whereas 7 pencils and 5 pens together cost Rs. 46".

```
Solution:
Let pencil = x
       pen = y
5x + 7y = 50 \dots \times 5
25x + 35y = 250
                              .... (i)
7x + 5y = 46 \dots \times 7
                              ....(ii)
49x + 35y = 322
From (i) and (ii)
24x = 72
x = \frac{42}{24}
x = 3
Pencil = 3
y = \frac{(46-7x)}{5}
=\frac{(46-7\times3)}{5}
=\frac{25}{5}
= 5
v = 5
Pen = 5
```

Q13. If $b^2 - 4ac \ge 0$, then write the roots of a quadratic equation $ax^2 + bx + c = 0$. **Solution:**

Real, equal and distinct.

Q14. Write the formula for the sum of first ' *n* ' positive integers.

Solution: $\frac{n[n+1]}{2}$

SECTION - III

Answer any 4 questions, choosing atleast two from each of t he following groups. **GROUP - A**

Q15. Prove that $\sqrt{5}$ is irrational by the method of Contradiction.

Solution:

Say, $\sqrt{5}$ is a rational number.

: It can be expressed in the form $\frac{p}{q}$ where p, q are coprime integers.

 $\Rightarrow \sqrt{5} = \frac{p}{q}$ $\Rightarrow 5 = \frac{p^2}{q^2}$ {Squaring both the sides} $\Rightarrow 5q^2 = p^2$ $\Rightarrow p^2$ is a multiple of 5. {Euclid's Division Lemma} $\Rightarrow p$ is also a multiple of 5. {Fundamental Theorem of arithmetic} $\Rightarrow p = 5 m$ $\Rightarrow p^2 = 25 m^2$ From equations (1) and (2), we get, $5q^2 = 25 m^2$ $\Rightarrow q^2 = 5 m^2$ $\Rightarrow q^2$ is a multiple of 5. {Euclid's Division Lemma} \Rightarrow *q* is a multiple of 5. {Fundamental Theorem of Arithmetic} Hence, *p*, *q* have a common factor 5. This contradicts that they are co-primes. Therefore, $\frac{p}{q}$ is not a rational number. So, $\sqrt{5}$ is an irrational number. Q16. If A = $\{3,6,9,12,15,18,21\}$; B = $\{4,8,12,16,20\}$; C = $\{2,4,6,8,10,12,14,16\}$; $D = \{5, 10, 15, 20\};$ find (i) A - B

(ii) B – A (iii) C – A (iv) D – A (v) B - C(vi) B – D (vii) C – B (viii) D – B **Solution:** (i) $A - B = \{3, 6, 9, 15, 18, 21\}$ (ii) $B - A = \{4, 8, 16, 20\}$ (iii) $C - A = \{2,4,8,10,14,16\}$ (iv) $D - A = \{5, 10, 20\}$ (v) $B - C = \{20\}$ (vi) $B - D = \{4, 8, 12, 16\}$ (vii) $C - B = \{2, 6, 10, 14\}$ (viii) $D - B = \{5, 10, 15\}$

Q17. Verify that 1, -1 and -3 are the zeroes of the cubic polynomial $x^3 + 3x^2 - x - 3$ and check the relationship between zeroes and the coefficient. **Solution:**

To verify roots, put root inside equations $x^3 + 3x^2 - x - 3$ Root (1) = $1^3 + 3(1)^2 - 1 - 3 = 1 + 3 - 1 - 3 = 0$ Root (-1) = $-1^3 + 3(-1)^2 + 1 - 3 = -1 + 3 + 1 - 3 = 0$

Root $(-3) = (-3)^3 + 3(-3)^2 - (-3) - 3 = -27 + 27 + 3 - 3 = 0$ Sum of root $= -\frac{b}{a} = -\frac{3}{1} = -3$ From roots = (1 - 1 - 3) = -3Product of roots $= -\frac{d}{a} = \frac{3}{1} = 3$ From roots $= 1 \times -1 \times -3 = 3$ Product of roots $= pq + qr + rp = \frac{c}{a} = -\frac{1}{1} = -1$ From roots $= (1 \times -1) + (-1 \times -3) + (-3 \times 1) = -1 + 3 - 3 = -1$ Hence verified.

Q18. Find the root of equation $2x^2 - x - 4 = 0$ by the method of completing the square. Solution:

$$2x^{2} - 1x - 4 = 0$$

 $a \neq 1$ so divide through by 2

$$\binom{2}{2}x^{2} - \binom{1}{2}x - \binom{4}{2} = \frac{0}{2}$$

$$x^{2} - \binom{1}{2}x - 2 = 0$$

Keep *x* terms on the left and move the constant to the right side by adding it on both sides

$$x^2 - \left(\frac{1}{2}\right)x = 2$$

Take half of the *x* term and square it

$$\left\{ \left(-\frac{1}{2}\right) \times \left(\frac{1}{2}\right) \right\}^2 = \frac{1}{16}$$

Add the result to both sides

$$x^{2} - \left(\frac{1}{2}\right)x + \left(\frac{1}{16}\right) = 2 + \left(\frac{1}{16}\right)$$

Rewrite the perfect square on the left

$$\left[x - \left(\frac{1}{4}\right)\right]^2 = 2 + \left(\frac{1}{16}\right)$$

Combine terms on the right

$$\left[x - \left(\frac{1}{4}\right)\right]^2 = \frac{33}{16}$$

Take the square root of both sides

$$x - \left(\frac{1}{4}\right) = \pm \sqrt{\frac{33}{16}}$$

Simplify the Radical term (0):

$$x - \left(\frac{1}{4}\right) = \pm \frac{\sqrt{33}}{4}$$

Isolate the *x* on the left side and solve for x (1)

$$x = \left(\frac{1}{4}\right) \pm \frac{\sqrt{33}}{4}$$

$$x = \left(\frac{1}{4}\right) + \frac{\sqrt{33}}{4}$$
$$x = \left(\frac{1}{4}\right) - \frac{\sqrt{33}}{4}$$

GROUP - B

Q19. Solve the equations $\frac{5}{x-1} + \frac{1}{y-2} = 2$ and $\frac{6}{x-1} - \frac{3}{y-2} = 1$.

Solution:

 $\frac{5}{x-1} + \frac{1}{y-2} = 2$ $\frac{6}{x-1} - \frac{3}{y-2} = 1$ Let assume, $\frac{1}{x-1} = u$, $\frac{1}{y-2} = v$ $5u + 1v = 2 \dots \times 3$ $15u + 3v = 6 \dots \dots (i)$ $6u - 3v = 1 \dots \dots (ii)$ Add equations (i) and (ii) 21u = 7 $u = \left(\frac{1}{3}\right)$ x - 1 = 3 x = 4 $v = \frac{1}{3}$ y - 2 = 3

- y = 5
- Q20. A fraction becomes $\frac{4}{5}$ if 1 is added to both numerator and denominator. If, however, 5 is subtracted from both numerator and denominator, the fraction becomes $\frac{1}{2}$. What is the fraction?

Solution:

Let the fraction be $\frac{p}{q}$.

The fraction will become $\frac{4}{5}$ if 1 is added to numerator and denominator

So,

 $\frac{4}{5} = \frac{p+1}{q+1}$ 4q + 4 = 5p + 5 $\frac{p-5}{q-5} = \frac{1}{2}$ 2p - 10 = q - 5 q = 2p - 5 4(2p - 5) + 4 = 5p + 5 8p - 20 + 4 = 5p + 5

3p = 21 p = 7Therefore $q = 2 \times 7 - 5$ q = 9So the fraction is $\frac{7}{2}$.

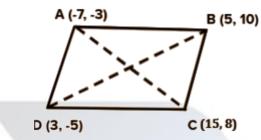
Q21. The sum of the 4th and 8th terms of an A.P is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the A.P.

Solution:

Let the first term of an AP = a and the common difference of the given AP = d.

```
a_n = a + (n - l)d
a_4 = a + (4 - 1)d
a_4 = a + 3d
Similarly,
a_8 = a + 7d
a_6 = a + 5d
a_{10} = a + 9d
The sum of 4^{th} and 8^{th} term = 24
a_4 + a_8 = 24
a + 3d + a + 7d = 24
2a + 10d = 24
                      .....(i)
a + 5 d = 12.
The sum of 6^{th} and 10t^{h} term = 44
a_6 + a_{10} = 44
a + 5d + a + 9d = 44
2a + 14d = 44
a + 7d = 22
                      .....(ii)
Solving (i) and (ii),
a + 7d = 22
a + 5d = 12
2d = 10
d = \frac{10}{2}
d = 5
From equation (i), we get,
a + 5d = 12
a + 5(5) = 12
a + 25 = 12
a = -13
a_2 = a + d = -13 + 5 = -8
a_3 = a_2 + d = -8 + 5 = -3
```


Q22. Prove that the points (−7, −3), (5,10), (15,8) and (3, −5) taken in order are the vertices of a parallelogram.
Solution:



Let say ABCD be the points of the parallelogram.

To prove: Correct order of vertices, diagonals bisect each other in the parallelogram. Hence point O must be some from A and C.

$$C = \frac{(-7+25)}{2}, \frac{(-3+8)}{2}$$
$$= \left[4, \left(\frac{5}{2}\right)\right]$$
From B and D
$$C = \frac{(-5+3)}{2}, \frac{(10-5)}{2}$$
$$= \left[4, \left(\frac{5}{2}\right)\right]$$
Hence, both are correct.

SECTION - IV

Answer any one question from the following.

Q23. Draw the graph of $y = x^2 - x - 6$ and find zeroes. Justify the answer.

Solution:

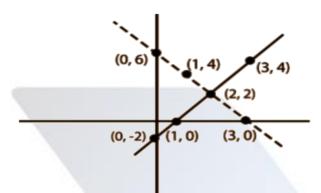
Clearly the graph of $y = x^2 - x - 6$ cut the x – axis at x = -2,3. $\Rightarrow x = -2,3$ are zeros of $y = x^2 - x - 6$. Justification: when x = -2; y = 4 + 2 - 6 = 0when x = 3; y = 9 - 3 - 6 = 0

(-2,0

(3,0)

Q24. Solve the pair linear equations graphically.

2x + y - 6 = 04x - 2y - 4 = 0Solution:



Hence, the graph solution is (2,2).