

Grade 10 Andhra Pradesh Mathematics 2019

- Q1. Write $A = \{2,4,8,16\}$ in set-builder form. Solution: $A = \left\{\frac{2^n}{n} \in N, \text{ and } n < 5\right\}$
- Q2. Find the value of $\log_5 \sqrt{625}$.

Solution:

 $log_5 \sqrt{625}$ $= log_5 25$ $= log_5 5^2$ $= 2log_5 5$ $= 2 \times 1$ = 2

Q3. The larger of two supplementary angles exceeds the smaller by 58°, then find the angles.

Solution:

Let the required supplementary angles be *x* and *y*.

 $x + y = 180^{\circ} - - - - (1)$ The larger angle exceeds the smaller by 58°. $x - y = 58^{\circ} - - - - (2)$ Solve (1) and (2), $2x = 238^{\circ}$ $x = \frac{238^{\circ}}{2}$ $x = 119^{\circ}$ Then using the value of x $y = 61^{\circ}$

Q4. Find the curved surface area of the cylinder, whose radius is 7 cm and height is 10 cm.

Solution: Radius if the cylinder (r) = 7 cm Height of the cylinder (h) = 10 cm The curved surface area of the cylinder $= 2\pi rh$ $= 2 \times \frac{22}{7} \times 7 \times 10 = 440$ cm²

SECTION - II

Q5. Rohan's mother is 26 years older than him. The product of their ages after 3 years will be 360. Then write the required quadratic equation to find Rohan's present age. **Solution:**

Let Rohan's present age be x years. His mother's age at present is (x + 26) years. After 3 years, Rohan's age = (x + 3) years After 3 years, his mother's age = (x + 26) + 3 = (x + 29) years The product of their ages = (x + 3)(x + 29)= $x \times x + x \times 29 + 3 \times x + 3 \times 29$ = $x^2 + 29x + 3x + 87$ = $x^2 + 32x + 87$ By the sum, the product of their ages is 360 $x^2 + 32x + 87 = 360$ $x^2 + 32x + 87 = 360$ $x^2 + 32x + 87 = 360 = 0$ $x^2 + 32x - 273 = 0$ is the required quadratic equation.

Q6. Find the zeroes of the quadratic polynomial $x^2 - x - 30$ and verify the relation between the zeroes and its coefficients.

```
Solution:
Given the polynomial x^2 - x - 30,
To find the zeros, x^2 - x - 30 = 0 [say]
= x^2 - 6x + 5x - 30
= x(x-6) + 5(x-6)
= (x+5)(x-6)
x = -5 and x = 6
Sum of the zeroes = 6 + (-5)
= 1
=\frac{-1}{1}
= <u>coefficient</u> of x
     coefficient of x^2
Product of the zeroes = 6(-5)
= -30
=\left(-\frac{30}{1}\right)
= \frac{\text{constant term}}{\text{coefficient of } x^2}
```


Q7. A joker's cap is in the form of a right circular cone, whose base radius is 7 cm and height is 24 cm. Find the area of the sheet required to make 10 such caps. **Solution:**

Base radius of the conical cap (r) = 7 cm Height (h) = 24 cm Slant height $(l) = \sqrt{r^2 + h^2}$ $= \sqrt{7^2 + 24^2}$ $= \sqrt{49 + 576}$ $= \sqrt{625}$ = 25 cm Area of sheet required to make a cap = Lateral surface area of the cap $= \pi r l$ $= \left(\frac{22}{7}\right) \times 7 \times 25$ = 550 sq. cm Area of sheet required to 10 such caps $= 10 \times 550$

- = 5500 sq. cm
- Q8. Find the HCF of 1260 and 1440 by using Euclid's division lemma.

Solution:

The given numbers are 1260 and 1440. $1440 = 1260 \times 1 + 180$ $1260 = 180 \times 7 + 0$ HCF of 1440 and 1260 is 180.

Q9. If the sum of the first 15 terms of an AP is 675 and its first term is 10, then find 25th term.

Solution:

First-term of an AP = a = 10Let the common difference be d. Sum of the first 15 terms is $S_{15} = 675$

$$\binom{15}{2} [2a+14d] = 675 [2 \times 10] + 14d = \frac{675 \times 2}{15} 14 d = 90 - 20 = 70 d = \frac{70}{14} d = 5$$

 25^{th} term of an AP is $a_{25} = a + 24 d$ = 10 + 24 × 5 = 10 + 120 = 130

Q10. [a] Show that $2 + 5\sqrt{3}$ is irrational. **Solution:**

[a] Let us assume the contrary that $2 + 5\sqrt{3}$ is rational that is coprime can be found for ' *a* ' and ' *b* ' and $b \neq 0$ such that

$$2 + 5\sqrt{3} = \left(\frac{a}{b}\right)$$

$$5\sqrt{3} = \left(\frac{a}{b}\right) - 2$$

$$\sqrt{3} = \left(\frac{a}{5b}\right) - \left(\frac{2}{5}\right)$$

Since $\left(\frac{a}{5b}\right)$ and $\left(\frac{2}{5}\right) \in Q$,
 $\left(\frac{a}{5b}\right) - \left(\frac{2}{5}\right) \in Q$.

So, $\sqrt{3}$ is rational.

But this contradicts the fact that $\sqrt{3}$ is irrational.

So, our assumption that $2 + 5\sqrt{3}$ is rational is wrong.

So, $2 + 5\sqrt{3}$ is irrational.

OR [b] Check whether -221 is a term of the AP 22, 5, 8, 1.... **Solution:** From the given AP, 22, 15, 8, 1.... a = 22, d = -7 n^{th} term of an AP = $a_n = a + (n - 1)d$ In this AP, let the n^{th} term be -321 a + (n - 1)d = -321 22 + (n - 1)(-7) = -321 (n - 1)(-7) = -343 $n - 1 = \frac{-343}{-7}$ n = 49 + 1 n = 50Hence, -321 will be the 50th term in the given AP.

Q11. [a] In a class test, the sum of Moulika's marks in mathematics and English is 30. If she got 2 marks more in mathematics and 3 marks less in English, the product of her marks would have been 210. Find her marks in the two subjects. Solution:

[a] Given that the sum of Moulika's marks in Mathematics and English is 30. Let the marks of Moulika in Mathematics be x and that of in English be 30 - x. If she got 2 marks more in mathematics then marks in maths = x + 2And she got 3 marks less in English then the marks in English = 30 - x - 3 = 27 - xProduct of these two = (x + 2)(27 - x) = 210 $x^2 - 25x + 156 = 0$ (x - 12)(x - 13) = 0x = 12,13Case (i) If x = 12, the marks of Moulika in Mathematics = 12 English = 30 - 12 = 18Case (ii) If x = 13, the marks of Moulika in Mathematics = 13 English = 30 - 13 = 17

OR

[b] An oil drum is in the shape of the cylinder, whose diameter is 2 m and height is 7 m. The painter charges Rs. 5 per m² to paint the drum. Find the total charges to be paid to the painter for 10 drums.

Solution:

The diameter of the oil drum which is in the shape of cylinder = d = 2 m The radius of the drum = $r = \frac{d}{2} = \frac{2}{2} = 1$ m

Height = h = 7 cm

Total surface area of the drum which is in the shape of cylinder = $2\pi r(r + h)$

$$= 2 \times \left(\frac{22}{7}\right) \times (1) \times (1+7)$$
$$= 2 \times \left(\frac{22}{7}\right) \times 8$$

= 50.28 sq. m

Charges to paint the drum per sq. m = Rs. 5

The total cost of painting 10 such type of drums = $50.28 \times 5 \times 10 = \text{Rs}.2514$

- Q12. (i) [a] If $A = \{x : x \text{ is a natural number less than is 6}\}.$
 - $B = \{x: x \text{ is a prime number which is a divisor of } 60\}.$
 - $C = \{x: x \text{ is an odd natural number less than } 10\}.$
 - $D = \{x: x \text{ is an even natural number which is a divisor of 48}\}.$

Then write the roster form for all the above sets and find

[a] $A \cup B$ [b] $B \cap C$ [c] A - D[d] D - BSolution: (i) [a] $A = \{1, 2, 3, 4, 5\}$ $B = \{2, 3, 5\}$ $C = \{1, 3, 5, 7, 9\}$ $D = \{2, 4, 6, 8, 12, 14, 16, 24, 48\}$ [a] $A \cup B = \{1, 2, 3, 4, 5\} \cup \{2, 3, 5\} = \{1, 2, 3, 4, 5\}$ [b] $B \cap C = \{2, 3, 5\} \cap \{1, 3, 5, 7, 9\} = \{3, 5\}$ [c] $A - D = \{1, 2, 3, 4, 5\} - \{2, 4, 6, 8, 12, 14, 16, 24, 48\} = \{1, 3, 5\}$ [d] $D - B = \{2, 4, 6, 8, 12, 14, 16, 24, 48\} - \{2, 3, 5\} = \{4, 6, 8, 12, 16, 24, 48\}$

OR

(ii) 6 pencils and 4 notebooks together cost Rs. 90 whereas 8 pencils and 3 notebooks together cost Rs. 85. Find the cost of one pencil and that of one notebook. **Solution:**

Let the cost of one pencil be Rs. *x*.

Cost of one notebook = Rs. *y*.

The total cost of 6 pencils and 4 notebooks = Rs. 90

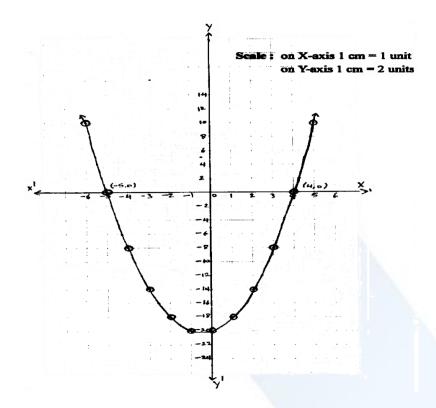
6x + 4y = 90 - - - (1)

The total cost of 8 pencils and 3 notebooks = Rs. 85

8x + 3y = 85 - - - (2)

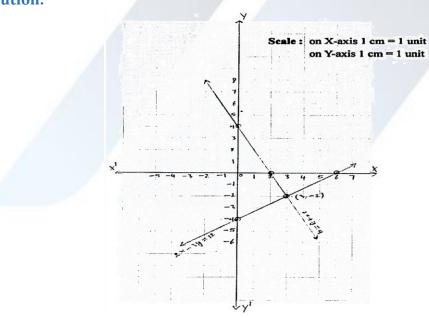
On solving the above two equations, x = 5, y = 15.

The cost of one pencil = Rs.5


The cost of one notebook = Rs. 15

Q13. [a] Find the zeroes of the quadratic polynomial $p(x) = x^2 + x - 20$ using the graph. Solution:

[a] Let $y = x^2 + x - 20$


Zeroes are those values of *x* where graph touches the x-axis.

OR

[b] Solve the following pair of linear equations graphically. 2x + y + 4 and 2x - 3y = 12. Solution:

x = 3, y = -2

Q14. If n(A) = 8, n(B) = 3, $n(A \cap B) = 2$, then $n(A \cup B) = 3$ (A) 5 (B) 7 (C) 9 (D) 13 **Solution:** C $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 8 + 3 - 2 = 9$ Q15. The discriminant of $6x^2 - 5x + 1 = 0$ is (A) 1 (B) 2 (C) 6 (D) $-\frac{5}{6}$

- Solution: A

Discriminant= $b^2 - 4ac = (-5)^2 - 4 \times 6 \times 1 = 1$

Q16. Sum of the zeroes of the polynomial $x^2 + 5x + 6 = 0$ is

- (A) 5
- (B) -5
- (C) 6
- (D) $\frac{5}{6}$

Solution: B

Sum of the zeroes = $-\frac{\text{coefficient of } x}{\text{coefficient of } x^2} = -\frac{5}{1} = -5$

- Q17. Which of the following is not irrational?
 - (A) $\sqrt{2}$ (B) √3 (C) $\sqrt{4}$ (D) √5 **Solution:** C
 - $\sqrt{4} = 2$

Q18. One root of the equation $x - \frac{3}{x} = 2$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

Solution: C $3 - \frac{3}{3} = 3 - 1 = 2 = \text{RHS}$

Q19. If 4, a, 9 are in GP, then a =

(A) 6

(B) ±6

(C) 7

(D) <u>+</u>7

Solution: B

Common ratios will be equal.

 $\frac{a}{4} = \frac{9}{a}$ $a^2 = 36$ $a = \pm 6$

Q20. If the total surface area of a cube is 96 cm^2 , then its volume is

- (A) 32 cm³
- (B) 64 cm^3
- (C) 128 cm³
- (D) 256 cm³

Solution: B

The total surface area of a cube = $6a^2 = 96$ cm²

```
a = 4 \text{ cm}
```

```
Volume = a^3 = 4^3 = 64 \text{ cm}^3.
```

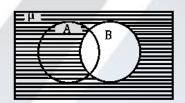
Q21. log₁₀ 0.001 = (A) 2 (B) 3 (C) -2 (D) -3 Solution: D

 $\log_{10} 0.001 = \log_{10} 10^{-3} = -3$

Q22. Match the following.

If *a*, *b*, *c* are the zeroes of a cubic polynomial $ax^3 + b^2 + cx + d = 0$, then

[i] $a + b + c$	$[a] - \frac{d}{a}$
[ii] $ab + bc + ca$	[b] $\frac{c}{a}$
[iii] abc	$[c] - \frac{b}{a}$


(A) [i] - c, [ii] - b, [iii] - a
(B) [i] - a, [ii] - b, [iii] - c
(C) [i] - b, [ii] - a, [iii] - c
(D) [i] - c, [ii] - a, [iii] - b
Solution: A

Q23. The next term in AP $\sqrt{3}$, $\sqrt{12}$, $\sqrt{27}$,

(A) $\sqrt{32}$ (B) $\sqrt{36}$ (C) $\sqrt{42}$ (D) $\sqrt{48}$ **Solution:** D Common difference will be equal.

 $d = \sqrt{12} - \sqrt{3} = \sqrt{27} - \sqrt{12} = \sqrt{3}$ So, next term= $4\sqrt{3} = \sqrt{48}$

Q24. The shaded region in the figure shows

(A) A - B(B) B - A(C) $\mu - B$ (D) $A \cup B$ **Solution:** C

Q25. 5x - 3 represents polynomial.

- (A) Linear
- (B) Quadratic
- (C) Cubic
- (D) Fourth degree
- **Solution:** A

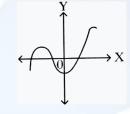
Since the degree of the polynomial is one.

Q26. The common difference in AP $\log_2 2$, $\log_2 4$, $\log_2 8$ is

- (A) 1 (B) 2
- (C) 3
- (D) 4
- Solution: A

 $d = \log_2 4 - \log_2 2 = 2 - 1 = 1$

Q27. The sum of the first 'n ' odd natural numbers is


(A) n(B) n^2 (C) n(n + 1)(D) n(n + 2)Solution: B

The sum of the first ' n ' odd natural numbers is n^2 .

- Q28. The quadratic polynomial, whose zeroes are $\sqrt{2}$ and $-\sqrt{2}$ is
 - (A) $x^2 2$ (B) $x^2 + 2$ (C) $x^2 + \sqrt{2}$ (D) x - 2Solution: A Quadratic polynomial= $x^2 - (sum \text{ of the zeroes})x + \text{ product of the zeroes}$

$$= x^2 - 2$$

Q29. The number of zeroes of the polynomial in the graph is

(A) 0

- (B) 1
- (C) 2
- (D) 3

Solution: D

Since the graph touches the x-axis at three points.

Q30. The line 2x - 3y = 8 intersects x -axis at (A) (2, -3)

(B) (0, -3)(C) (2, 0)(D) (4, 0)**Solution:** D $2 \times 4 - 3 \times 0 = 8 = RHS$

Q31. The volume of the cone, whose radius is 3 cm and height is 8 cm, is _____ cm³.

- (A) 6π
- (B) 12π
- (C) 18π
- (D) 24π
- Solution: D

Volume of cone = $\frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \times 3^2 \times 8 = 24\pi \text{ cm}^3$

Q32. If 6x + 2y + 9 = 0 and kx + y - 7 = 0 has no solution, then k =

- (A) 3
- (B) 2
- (C) -3
- (D) -2
- Solution: A

Condition for no solution:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
$$\frac{6}{k} = \frac{2}{1}$$
$$k = 3$$

Q33. If the equation $x^2 + 5x + k = 0$ has real and distinct roots, then

(A) k = 6(B) k < 6.25(C) k > 6(D) k > 25 **Solution:** B Discriminant will be greater than zero. $b^2 - 4ac > 0$ $5^2 - 4 \times 1 \times k > 0$

k < 6.25