

Grade 10 Andhra Pradesh Mathematics 2022

Q1. Express $\frac{7}{25}$ in decimal form.

Solution:

Decimal expansion = 0.28

Q2. Express the set $P = \{x: x \text{ is a prime, } x < 5\}$ in roaster form.

Solution:

 $P = \{2, 3\}$

Q3. Find the number of zeroes of the polynomial p(x), whose graph is given.

Solution:

There will be three zeroes as it touches the x-axis at three different points.

Q4. What is the common ratio of the G.P. 25,
$$-5, 1, \frac{-1}{5}, \dots$$
?

Solution: C

 $\text{Common ratio} = -\frac{5}{25} = -\frac{1}{5}$

Q5. Match the following :

	Equation		Solution	
(a)	x + y = 5	(p)	(3,3)	
(b)	2x - y = 9	(q)	(1,4)	
(c)	x - y = 0	(r)	(5,1)	

Choose the correct answer.

(A) $a \rightarrow r$, $b \rightarrow p$, $c \rightarrow q$ (B) $a \rightarrow p$, $b \rightarrow q$, $c \rightarrow r$ (C) $a \rightarrow q$, $b \rightarrow r$, $c \rightarrow p$ (D) $a \rightarrow r$, $b \rightarrow q$, $c \rightarrow p$ **Solution:** C x + y = 1 + 4 = 5 = RHS 2x - y = 2(5) - 1 = 9 = RHSx - y = 3 - 3 = 0 = RHS

Q6. Assertion : (0, 2) is a point on *Y*-axis.

Reason : Every point on Y -axis is at a distance of zero units from the Y -axis. Now, choose the correct answer.

- (A) Both Assertion and Reason are true. Reason is supporting the Assertion.
- (B) Both Assertion and Reason are true, but Reason is not supporting the Assertion.
- (C) Assertion is True, but Reason is False.
- (D) Assertion is False, but Reason is True.

Solution: A

Every point on Y -axis is at a distance of zero units from the Y -axis.

- Q7. Statement-1 : The lengths 3 cm, 4 cm, 5 cm form a right angled triangle. Statement-II : If ' *a* ' is the side of an equilateral triangle, then its height is $\sqrt{3}a$. Now, choose the correct answer.
 - (A) Statement-I and Statement-II both are True.
 - (B) Statement-I and Statement-II both are False.
 - (C) Statement-I is True. Statement-II is False.
 - (D) Statement-I is False. Statement-II is True.

Solution: C

Given, length of sides of a triangle are 3,4 and 5 respectively. Now, $(3)^2 + (4)^2 = 9 + 16 = 25 = (5)^2$ Hence, it is a right angled triangle.

Side= a

Height=
$$\sqrt{a^2 - \left(\frac{a}{2}\right)^2} = \frac{\sqrt{3}a}{2}$$

Q8. The tangents drawn at the end points of a diameter are **Solution:**

Parallel

Q9. Which of the following is not true ? (A) $\sin (90^\circ - \theta) = \csc \theta$ (B) $\sin^2 \theta + \cos^2 \theta = 1$ (C) $\csc \theta \cdot \sin \theta = 1$ (D) $\sin 90^\circ = 1$

Solution: A

 $\sin(90^\circ - \theta) = \cos \theta$ is correct not $\sin(90^\circ - \theta) = \csc \theta$

- Q10. At a particular time, if the angle of elevation of the sun is 45°, then the shadow of a 5 m high tree is
 - (A) 5√3 m
 (B) 10 m
 (C) 5 m
 - (D) $\frac{5}{\sqrt{3}}$ m

Solution: C

Let height of the tree be BC = 5 m and length of the shadow of tree be AB = x m. Given that angle of elevation of sum is 45° .

i.e, ∠CAB = 45°
∴ tan A =
$$\frac{BC}{AB}$$

= tan 45° = $\frac{5}{x}$
= $\frac{5}{x}$ = 1(∵ tan 45° = 1)
= x = 5

Hence, the length of the shadow of 12 m high tree is 5 m.

Q11. If P(E) = 0.3, then P(not E) = .(A) 0.3 (B) $\frac{1}{3}$ (C) 0 (D) 0.7

Solution: D

P(not E) = 1 - 0.3 = 0.7

Q12. In the classes $35 - 39, 40 - 44, 45 - 49, \dots$ of a frequency distribution, the upper boundary of the class 40 - 44 is

Solution:

40 is the upper limit.

SECTION - II

Q13. Evaluate: $\log_2(1 + \tan^2 45^\circ)$

Solution:

 $\log_2(1 + \tan^2 45^\circ) = \log_2(1+1) = \log_2 2 = 1$

Q14. Check whether -3 and 3 are the zeroes of the polynomial $x^2 - 9$ or not. **Solution**:

 $(-3)^2 - 9 = 9 - 9 = 0$ And $3^2 - 9 = 9 - 9 = 0$ So, -3 and 3 are the zeroes.

Q15. "Sum of the two numbers is 82 and their difference is 38.." Represent this information in the form of pair of linear equations with variables '*x*' and '*y*'. **Solution:**

Let the two numbers be *x* and *y*. Then, x + y = 82 and x - y = 38(x > y).

Q16. If the slope of the line passing through the points R(2, y) and S(x, 3) is 2, then find the relation between 'x' and 'y'.

Solution:

Slope= $\frac{y_2 - y_1}{x_2 - x_1}$ $2 = \frac{3 - y}{x - 2}$ 2x - 4 = 3 - y2x + y = 7

Q17. If ABC is an isosceles triangle, right angled at C, then prove that $AB^2 = 2AC^2$.

Solution:

By Pythagoras theorem, $\Rightarrow (AB)^2 = (AC)^2 + (BC)^2$ $\Rightarrow (AB)^2 = (AC)^2 + (AC)^2$ $\Rightarrow (AB)^2 = 2AC^2$

Hence, proved that $(AB)^2 = 2AC^2$.

Q18. The length of the tangent drawn from an external point *R* to a circle is 24 cm and the distance of *R* from the centre of the circle is 25 cm. Find the radius of that circle.

Solution:

A tangent at any point of a circle is perpendicular to the radius at the point of contact.

Therefore, OPQ is a right angled triangle.

By Pythagoras theorem,

$$OQ^{2} = OP^{2} + PQ^{2}$$

$$25^{2} = r^{2} + 24^{2}$$

$$r^{2} = 25^{2} - 24^{2}$$

$$r^{2} = 625 - 576$$

$$r^{2} = 49$$

$$r = \pm 7$$

Radius cannot be a negative value, hence, r = 7 cm.

Q19. A person is flying a kite at an angle of elevation α and the length of the thread from his hand to kite is '*l*'. Draw a rough diagram for the above situation.

Solution:

Q20. Median of the observations $\frac{x}{5}$, x, $\frac{x}{4}$, $\frac{x}{2}$, $\frac{x}{3}$ is 7. Find the value of x.

Solution:

Number of terms, n = 5. Given median = 8 $\Rightarrow \left(\frac{n+1}{2}\right)^{x} \text{ term } = 8$ $\Rightarrow \left(\frac{5^{+1}}{2}\right)^{x} \text{ term } = 8$ $\Rightarrow 3^{x} \text{ term } = 8$ $\Rightarrow \frac{x}{4} = 8$ $\Rightarrow x = 32$

SECTION - III

Q21. Show that the following sets are equal:
(i) A = {x: x is a letter in the word 'FOLLOW' }
(ii) B = {x: x is a letter in the word 'FLOW' }
(iii) C = {x: x is a letter in the word 'WOLF' }

Solution:

Q22. Which term of the A.P.: 3,8,13,18, ... is 78?

Solution:

First term: a = 3Second term: a + d = 8Common difference: d = 8 - 3 = 5 $a_n = a + (n - 1) d$ $a_n = 78, n = ?$ 3 + (n - 1) 5 = 785(n - 1) = 78 - 3n - 1 = 15n = 1678 is the 16th term of the given AP

Q23. If (1,2), (4, y), (x, 6) and (3,5) are the vertices of a parallelogram taken in order, find 'x' and 'y'.

Solution:

Let A(1, 2), B(4, y), C(x, 6), and D(3, 5) be the vertices of a parallelogram ABCD.

Since the diagonals of a parallelogram bisect each other. The intersection point 0 of diagonal AC and BD also divides these diagonals in the ratio 1:1.

Therefore, O is the mid-point of AC and BD. According to the mid point formula,

$$O(x,y) = \left[\frac{(x_1 + x_2)}{2}, \frac{(y_1 + y_2)}{2}\right]$$

If *O* is the mid-point of *AC*, then the coordinates of *O* are

$$\left[\frac{1+x}{2}, \frac{2+6}{2}\right]$$
$$\Rightarrow \left[\frac{x+1}{2}, 4\right] \dots (1)$$

If *O* is the mid-point of *BD*, then the coordinates of *O* are

$$\begin{bmatrix} \frac{4+3}{2}, \frac{5+y}{2} \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \frac{7}{2}, \frac{5+y}{2} \end{bmatrix} \dots (2)$$

Since both the coordinates are of the same point 0, so,

 $\frac{x+1}{2} = \frac{7}{2} \text{ and } 4 = \frac{5+y}{2} [\text{ From equation(1) and (2)}]$ $\Rightarrow x + 1 = 7 \text{ and } 5 + y = 8 (By \text{ cross multiplying & transposing)}$ $\Rightarrow x = 6 \text{ and } y = 3$

Q24. A ladder 25 m long reaches a window of building 24 m above the ground. Determine the distance of the foot of the ladder from the building.

Solution:

Suppose that AB is the ladder, B is the window and CB is the building. Then, triangle ABC is a right triangle with right-angle at C.

By Pythagoras theorem, we have $\therefore AB^2 = AC^2 + BC^2$ $\Rightarrow 25^2 = AC^2 + 20^2$

 $\Rightarrow AC^{2} = 625 - 400 = 225$ $\Rightarrow AC = \sqrt{225} \text{ m} = 15 \text{ m}$ Hence, the foot of the ladder is at a distance 15 m from the building.

Q25. If $\tan \theta = \frac{5}{12}$, then find sec θ and cosec θ .

Solution:

$$\tan \theta = \frac{5}{12}$$

$$\Rightarrow \tan^2 \theta = \frac{25}{144}$$

$$\Rightarrow \sec^2 \theta - 1 = \frac{25}{144} [\because 1 + \tan^2 \theta = \sec^2 \theta]$$

$$\Rightarrow \sec^2 \theta = \frac{25}{144} + 1 = \frac{25 + 144}{144}$$

$$\Rightarrow \sec^2 \theta = \frac{169}{144} = \frac{13}{12}$$

$$\Rightarrow \sec^2 \theta = \sqrt{\frac{169}{144}} = \frac{13}{12}$$

$$\Rightarrow \sec \theta = \sqrt{\frac{169}{144}} = \frac{13}{12}$$

$$\cos \theta = \frac{1}{\sec \theta} = \frac{12}{13}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\Rightarrow \frac{5}{12} = \frac{\sin \theta}{\frac{12}{13}}$$

$$\Rightarrow \sin \theta = \frac{5}{13}$$

Q26. A tower stands vertically on the ground. From a point which is 15 meters away from the foot of the tower, the angle of elevation of the top of the tower is 45°. What is the height of the tower?

Solution:

Let, the height of the tower be H meter. So, AB = H metre Distance of the point from the foot of the tower = 15 m Hence, CB = 15 m Angle of elevation = 60° $\angle ACB = 60^{\circ}$ Since tower is vertical to ground, So, $\angle ABC = 90^{\circ}$

Now,

 $\tan C = \frac{\text{Side opposite to angle } C}{\text{Side ad jacent to angle } C}$ $\tan C = \frac{AB}{CB}$ $\tan 60^{\circ} = \frac{AB}{CB}$ $\sqrt{3} = \frac{H}{13}$ $15\sqrt{3} = H$ $H = 15\sqrt{3}$ Hence, the height of the tower = $H = 15\sqrt{3}$ m

Q27. A die is thrown once. Find the probability of getting (i) a Prime number (ii) a number lying between 1 and 5.

Solution:

Number of outcomes on throwing a die is (1, 2, 3, 4, 5, 6) = 6Number of prime numbers on dice are 2, 3 and 5 = 3

i) Probability of getting a prime number $=\frac{\text{Number of prime number}}{\text{total number of outcomes}}$

$$=\frac{3}{6}=\frac{1}{2}$$

ii) Total number of odd numbers are 2, 3, and 4 = 3

Probability of getting a odd number = $\frac{\text{Number of number between 1 and 5}}{\text{total number of outcomes}}$

$$=\frac{3}{6}=\frac{1}{2}$$

Q28. Write the formula to find the 'mode' of a grouped data and explain the terms involved in it.

Solution:

Mode =
$$L + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right)h$$

where,

- *L* is the lower limit of the modal class
- *h* is the size of the class interval
- f_1 is the frequency of the modal class
- f_0 is the frequency of the class preceding the modal class
- f_2 is the frequency of the class succeeding the modal class

SECTION - IV

Q29. (a) Prove that $\sqrt{3}$ is irrational.

Solution:

Let us assume that $\sqrt{3}$ is rational. Then, there exist co-prime positive integers a and *b* such that

$$\sqrt{3} = \frac{a}{1}$$

 $b \Rightarrow a = b\sqrt{3}$

Squaring on both sides, we get

 $a^2 = 3 b^2$

Therefore, a^2 is divisible by 7 and hence, a is also divisible by 3

so, we can write a = 3p, for some integer p.

Substituting for *a*, we get

 $9p^2 = 3b^2 \Rightarrow b^2 = 3p^2.$

This means, b^2 is also divisible by 3 and so, *b* is also divisible by 3.

Therefore, *a* and *b* have at least one common factor, i.e., 3.

But, this contradicts the fact that a and b are co-prime.

Thus, our supposition is wrong.

Hence, $\sqrt{3}$ is irrational.

OR

(b) If sec θ + tan θ = p, then prove that sin $\theta = \frac{p^2 - 1}{p^2 + 1}$.

Solution:

$p^2 - 1$ (sec θ + tan θ) ² - 1
$\frac{1}{p^2+1} - \frac{1}{(\sec \theta + \tan \theta)^2 + 1}$
$\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta - 1$
$\sec^2 \theta + \tan^2 \theta + 2 \sec \theta \tan \theta + 1$
$-\frac{(\sec^2\theta - 1) + \tan^2\theta + 2\sec\theta\tan\theta}{1 + \tan^2\theta}$
$-\frac{1}{\sec^2\theta + (\tan^2\theta + 1) + 2\sec\theta\tan\theta}$
$\tan^2\theta + \tan^2\theta + 2\sec\theta\tan\theta$
$= \frac{1}{\sec^2 \theta + \sec^2 \theta + 2 \sec \theta \tan \theta}$
$2\tan^2\theta + 2\sec\theta\tan\theta$
$-\frac{1}{2 \sec^2 \theta + 2 \sec \theta \tan \theta}$
$-\frac{2\tan\theta(\tan\theta+\sec\theta)}{2}$
$2 \sec \theta (\sec \theta + \tan \theta)$
$-\frac{2 \tan \theta}{2}$
$-2 \sec \theta$
$= \tan \theta \times \cos \theta$

$$= \frac{\sin \theta}{\cos \theta} \times \cos \theta$$
$$= \sin \theta$$

Q30. (a) If $A = \{2, 3, 4, 5, 6\}, B = \{1, 3, 5, 7\}, C = \{2, 4, 6, 8\}, D = \{2, 3, 5, 7\}$, then find (i) $A \cup B$ (ii) $B \cap D$ (iii) $C \cap D$ (iv) D - A

Solution:

i) $A \cup B = \{3, 5\}$ ii) $B \cap D = \{3, 5, 7\}$ iii) $C \cap D = \{2\}$ iv) $D - A = \{7\}$

OR

(b) Find x so that x, x + 2, x + 6 are consecutive terms of a Geometric Progression. **Solution:**

Given x, x + 2 and x + 6 are in G.P. but read it as x, x + 2 and x + 6.

$$\therefore r = \frac{t_2}{t_1} = \frac{t_3}{t_2}$$

$$\Rightarrow \frac{x+2}{x} = \frac{x+6}{x+2}$$

$$\Rightarrow (x+2)^2 = x(x+6)$$

$$\Rightarrow x^2 + 4x + 4 = x^2 + 6x$$

$$\Rightarrow 4x - 6x = -4 = -2x = -4$$

$$\therefore x = 2$$

Q31. (a) Find the value of 'k' for which the points (7, -2), (5,1), (3, k) are collinear.

Solution:

Given coordinates are $(x_1, y_1) = (4, -1)$ and $(x_2, y_2) = (-2, -3)$ Means of trisection:- A line segment in three equal parts then ratio is 1: 2 and 2 : 1 internally.

Lase (1) If $m_1: m_2 = 1:2$
Then, using formula
$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$
$(x, y) = \left(\frac{1 \times (-2) + 2 \times 4}{1 + 2}, \frac{1 \times (-3) + 2 \times (-1)}{1 + 2}\right)$
$(x,y) = \left(\frac{-2+8}{3}, \frac{-3-2}{3}\right)$
$(x,y) = \left(2, -\frac{5}{3}\right)$
Case (2):-
If $m_1: m_2 = 2:1$
Then, using formula
$(x, y) = \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$
$(x,y) = \left(\frac{2 \times (-2) + 1 \times 4}{2+1}, \frac{2 \times (-3) + 1 \times (-1)}{1+2}\right)$
$(x,y) = \left(\frac{-4+4}{3}, \frac{-6-1}{3}\right)$
$(x,y) = \left(0, -\frac{7}{3}\right)$

Hence, this is the answer.

OR

(b) The table below shows the daily expenditure on food of 30 households in a locality:

Daily Expenditure	100	150	200	250	300
(in Rupees)	- 150	200	- 250	300	350
Number of households	4	5	12	6	3

Find the mean daily expenditure on food by a suitable method. **Solution:**

Daily Expense	Households (f_i)	Mid Point (x_i)	$f_i x_i$
100 - 150	4	125	500
150 - 200	5	175	875
200 - 250	12	225	2700
250 - 300	6	275	1650
300 - 350	3	325	975
	30		6700

Mean
$$= \frac{\sum f_i x_i}{\sum f_i} = \frac{6700}{30} = 223.34$$

Q32. (a) 5 pencils and 7 pens together cost ₹95. Whereas 7 pencils and 5 pens together cost ₹85. Find the cost of one pencil and that of one pen.

Solution:

Let the cost of 1 book = x And the cost of 1 pen = y $\Rightarrow 5x + 7y = 95$ $\Rightarrow 7x + 5y = 85$ Equation (1) × 7 : $35x + 49y = 95 \times 7$ Equation (2) × 5 : $35x + 25y = 85 \times 5$ Subtract two equations; $\Rightarrow 24y = 240$ $\Rightarrow y = 10$ $\Rightarrow x = 5$

OR

(b) One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting
(i) a king of black colour
(ii) a face card
(iii) a spade
(iv) a card not a heart

Solution:
The probability of an event E

 $P(E) = \frac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}} =$ i) Probability of getting a king of black colour: : Number of a king of black colour, n(E) = 2Also, total number of cards, n(S) = 52: Probability of getting a face card $=\frac{n(E)}{n(S)}=\frac{2}{52}=\frac{1}{26}$ Hence, the required probability is $\frac{1}{26}$. ii) Probability of getting a face card: : Number of a face card, n(E) = 12Also, total number of cards, n(S) = 52: Probability of getting a spade = $\frac{n(E)}{n(S)} = \frac{12}{52} = \frac{3}{13}$ Hence, the required probability is $\frac{3}{12}$. iii) Probability of getting a spade: We know that, there are 13 cards of spades. : Number of spades, n(E) = 13Also, total number of cards, n(S) = 52: Probability of getting a spade = $\frac{n(E)}{n(S)} = \frac{13}{52} = \frac{1}{4}$ Hence, the required probability is $\frac{1}{4}$. iv) Probability of getting a card not a heart: : Number of a card not a heart, n(E) = 39Also, total number of cards, n(S) = 52: Probability of getting the king of hearts $=\frac{n(E)}{n(S)}=\frac{39}{52}=\frac{3}{4}$ Hence, the required probability is $\frac{3}{4}$.

Q33. (a) Draw the graph of the polynomial $P(x) = x^2 - 3x - 4$ and find the zeroes. **Solution:**

The above graph cuts x-axis at x = -1 and 4. So they are zeroes.

OR

(b) Draw a pair of tangents to a circle of radius 4 cm which are inclined to each other at an angle 60° .

Solution:

