

Grade 10 Telangana Maths 2018

PART A

SECTION - I

Q1. Find the distance between the points (1,5) and (5,8).

Solution:

Let the given points be:

$$(x_1, y_1) = (1, 5)$$

$$(x_2, y_2) = (5, 8)$$

Distance between two points

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(5-1)^2 + (8-5)^2}$$

$$=\sqrt{4^2+3^2}$$

$$=\sqrt{16+9}$$

$$=\sqrt{25}$$

= 5 units

Q2. Expand log_{10} 385.

Solution:

$$\log_{10} 385$$

$$= \log_{10} (5 \times 7 \times 11)$$

We know that $\log abc = \log a + \log b + \log c$

$$= \log_{10} 5 + \log_{10} 7 + \log_{10} 11$$

Q3. Give one example each for a finite set and an infinite set.

Solution:

Finite set:
$$A = \{3, 5, 7, 9, 11, 13, 15, 17\}$$

$$n(A) = 8$$

Infinite set: Z = Set of all integers

$$= \{...., -4, -3, -2, -1, 0, 1, 2, 3, 4,\}$$

$$n(Z) = \infty$$

Q4. Find the sum and product of roots of the quadratic equation.

$$x^2 - 4\sqrt{3}x + 9 = 0$$

Solution:

Given quadratic equation is:

$$x^2 - 4\sqrt{3}x + 9 = 0$$

Comparing with the standard form $ax^2 + bx + c = 0$,

$$a = 1, b = -4\sqrt{3}$$
 and $c = 9$

Sum of the roots
$$= -\frac{b}{a} = -\frac{-4\sqrt{3}}{1} = 4\sqrt{3}$$

Product of the roots
$$=$$
 $\frac{c}{a}$ $=$ $\frac{9}{1}$ $=$ 9

Q5. Is the sequence $\sqrt{3}$, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, form an Arithmetic Progression? Give reason.

Solution:

Given,

$$\sqrt{3}$$
, $\sqrt{6}$, $\sqrt{9}$, $\sqrt{12}$, ...

First term =
$$a = \sqrt{3}$$

Second term - First term =
$$\sqrt{6} - \sqrt{3}$$

Third term - Second term =
$$\sqrt{9} - \sqrt{6} = 3 - \sqrt{6}$$

Since the common difference is not the same throughout the sequence, it is not an AP.

Q6. If x = a and y = b is the solution for the pair of equations x - y = 2 and x + y = 4, then find the values of a and b.

Solution:

Given pair of equations are:

$$x - y = 2$$
(i)

$$x + y = 4$$
ii)

Adding (i) and (ii),

$$x - y + x + y = 2 + 4$$

$$2x = 6$$

$$x = \frac{6}{2} = 3$$

Substituting x = 3 in (i),

$$3 - y = 2$$

$$y = 3 - 2$$

$$y = 1$$

Therefore, a = 3 and b = 1.

Q7. Verify the relation between zeroes and coefficients of the quadratic polynomial $x^2 - 4$.

Solution:

Let the given quadratic polynomial $p(x) = x^2 - 4$

Let
$$p(x) = 0$$

$$x^2 - 4 = 0$$

$$x^2 = 4$$

$$x = \sqrt{4}$$

$$x = \pm 2$$

Therefore, zeroes of the given polynomial are -2 and 2.

Sum of the zeroes = -2 + 2 = 0

$$= -\frac{0}{1} = -\frac{\text{Coefficient of } x}{(\text{Coefficient of } x^2)}$$

Product of the zeroes = (-2)(2) = -4

$$= -\frac{4}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Hence, verified the relationship between the zeroes and coefficients of the given quadratic polynomial.

SECTION - II

Q8. Complete the following table for the polynomial $y = p(x) = x^3 - 2x + 3$.

x	1	0	1	2
<i>x</i> ³				
-2x				
3				
у				
(x,y)				

Solution:

Given,

$$y = p(x) = x^3 - 2x + 3$$

x	-1	0	1	2
<i>x</i> ³	-1	0	1	8
-2x	2	0	-2	-4
3	3	3	3	3
у	4	3	2	7
(x,y)	(-1,4)	(0,3)	(1,2)	(2,7)

Q9. Show that
$$\log \left(\frac{162}{343}\right) + 2\log \left(\frac{7}{9}\right) - \log \left(\frac{1}{7}\right) = \log 2$$

LHS =
$$\log\left(\frac{162}{343}\right) + 2\log\left(\frac{7}{9}\right) - \log\left(\frac{1}{7}\right)$$

= $\log\left(\frac{162}{343}\right) + \log\left(\frac{7}{9}\right)^2 - \log\left(\frac{1}{7}\right)$
= $\log\left(\frac{162}{343}\right) + \log\left(\frac{49}{81}\right) - \log\left(\frac{1}{7}\right)$

$$= \log \left[\frac{162 \times 49}{343 \times 81} \right] - \log \left(\frac{1}{7} \right)$$

$$=\log\left(\frac{2}{7}\right) - \log\left(\frac{1}{7}\right)$$

$$= \log \left[\frac{\frac{2}{7}}{\frac{1}{7}} \right]$$

$$= \log 2$$

Therefore,
$$\log\left(\frac{162}{343}\right) + 2\log\left(\frac{7}{9}\right) - \log\left(\frac{1}{7}\right) = \log 2$$

Q10. If the equation $kx^2 - 2kx + 6 = 0$ has equal roots, then find the value of k.

Solution:

Given,

$$kx^2 - 2kx + 6 = 0$$

Comparing with the standard form $ax^2 + bx + c = 0$,

$$a = k, b = -2k, c = 6$$

Given that, the equation has equal roots.

$$\Rightarrow b^2 - 4ac = 0$$

$$\Rightarrow (-2k)^2 - 4(k)(6) = 0$$

$$\Rightarrow 4k^2 - 24k = 0$$

$$\Rightarrow 4k(k-6) = 0$$

$$\Rightarrow k(k-6) = 0$$

$$\Rightarrow k = 0, k = 6$$

k = 0 is not possible.

Hence, the value of k is 6.

Q11. Find the 7th term from the end of the arithmetic progression 7, 10, 13, ..., 184.

Solution:

Given AP is:

First term = a = 184 (Reverse the given AP)

Common difference = d = -3

nth term of AP from the last term be l_n

$$l_n = l + (n-1)d$$

$$l_7 = 184 + (7 - 1)(-3)$$

$$= 184 - (6)(3)$$

$$= 184 - 18$$

$$= 166$$

Therefore, the 7th term of the AP is 166.

Q12. In the diagram on a Lunar eclipse, if the positions of Sun, Earth and Moon are shown by (-4,6), (k,-2) and (5,-6) respectively, then find the value of k.

Solution:

Given that the diagram on a Lunar eclipse, if the positions of Sun, Earth and Moon are shown by (-4,6), (k,-2) and (5,-6) respectively.

That means the points lie on a straight line.

Hence, the area of the triangle formed by these points will be 0.

$$\Rightarrow \frac{1}{2}[-4(-2+6) + k(-6-6) + 5(6+2)] = 0$$

$$\Rightarrow$$
 -4(4) + k (-12) + 5(8) = 0

$$\Rightarrow -16 - 12k + 40 = 0$$

$$\Rightarrow 12k = 24$$

$$\Rightarrow k = \frac{24}{12}$$

$$\Rightarrow k = 2$$

Q13. Given the linear equation 3x + 4y = 11, write linear equations in two variables such that their geometrical representations form parallel lines and intersecting lines.

Given,

Equation of first line is 3x + 4y = 11

Let ax + by + c be the equation of the second line.

Condition for parallel lines:

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$\frac{3}{a} = \frac{4}{b} \neq \frac{11}{c}$$

Let us consider some values of a, b, c which satisfies the above condition.

$$a = 6, b = 8, c = 14$$

Therefore, the equation of line which is parallel to the given line is 6x + 8y + 14 = 0

Condition for intersecting lines:

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\frac{3}{a} \neq \frac{4}{b}$$

Let us consider some values of a, b, c which satisfies the above condition.

$$a = 8, b = 6, c = 11$$

$$8x + 6y + 11 = 0$$

Therefore, the equation of line which is perpendicular to the given line is 8x +

$$6y + 11 = 0$$

SECTION - III

Q14. Find the points of trisection of the line segment joining the points (-2,1) and (7,4).

Solution:

Let the given points be:

$$A = (x_1, y_1) = (-2, 1)$$

$$B = (x_2, y_2) = (7,4)$$

P divides AB in the ratio 1:2.

Here, m: n = 1:2

Using the section formula,

$$P(x,y) = \left[\frac{(mx_2 + nx_1)}{m+n}, \frac{(my_2 + ny_1)}{m+n} \right]$$

$$= \left[\frac{7-4}{1+2}, \frac{4+2}{1+2} \right]$$

$$= \left(\frac{3}{3}, \frac{6}{3} \right)$$

$$= (1,2)$$

Q is the midpoint of PB.

$$Q = \left[\frac{1+7}{2}, \frac{2+4}{3}\right]$$
$$= \left(\frac{8}{2}, \frac{6}{2}\right)$$
$$= (4,3)$$

Hence, the required points are (1,2) and (4,3).

OR

Sum of squares of two consecutive even numbers is 580. Find the numbers by writing a suitable quadratic equation.

Solution:

Let x and (x + 2) be the two consecutive even numbers.

According to the given,

$$x^{2} + (x + 2)^{2} = 580$$

$$x^{2} + x^{2} + 4x + 4 - 580 = 0$$

$$2x^{2} + 4x - 576 = 0$$

$$2(x^{2} + 2x - 288) = 0$$

$$x^{2} + 2x - 288 = 0$$

$$x^{2} + 18x - 16x - 288 = 0$$

$$x(x+18) - 16(x+18) = 0$$

$$(x-16)(x+18)=0$$

$$x = 16, x = -18$$

If
$$x = 16$$
, $x + 2 = 18$

If
$$x = -18$$
, $x + 2 = -18 + 2 = -16$

Hence, the two consecutive even numbers are 16 and 18 or -18 and -16.

Q15. Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.

Solution:

Let $\sqrt{3} + \sqrt{5}$ be a rational number.

$$\sqrt{3} + \sqrt{5} = a$$
, where a is an integer.

Squaring on both sides,

$$(\sqrt{3} + \sqrt{5})^2 = a^2$$

$$(\sqrt{3})^2 + (\sqrt{5})^2 + 2(\sqrt{3})(\sqrt{5}) = a^2$$

$$3 + 5 + 2\sqrt{15} = a^2$$

$$8 + 2\sqrt{15} = a^2$$

$$2\sqrt{15} = a^2 - 8$$

$$\sqrt{15} = \frac{(a^2 - 8)}{2}$$

 $\frac{(a^2-8)}{2}$ is a rational number since a is an integer.

Therefore, $\sqrt{15}$ is also an integer.

We know that $\sqrt{15}$ is not rational numbers.

Thus, our assumption that $\sqrt{3} + \sqrt{5}$ is a rational number is wrong.

Hence, $\sqrt{3} + \sqrt{5}$ is an irrational number.

OR

Show that cube of any positive integer will be in the form of 8m or 8m + 1 or 8m + 3 or 8m + 5 or 8m + 7, where m is a whole number.

Let a be the positive integer.

By Euclid's division lemma,

$$a = bq + r$$
 where $0 \le r < b$

Let
$$b = 8$$
 then $a = 8q + r$

Where,
$$r = 0, 1, 2, 3, 4, 5, 6, 7$$

When
$$r = 0$$

$$a = 8q$$

$$a^3 = (8q)^3$$

$$= 512q^3$$

$$= 8(64q^3)$$

$$= 8m \text{ where } m = 64q^3$$

When
$$r = 1$$
,

$$a = 8q + 1$$

$$a^3 = (8q + 1)^3$$

$$a^3 = 512q^3 + 1 + 3(8q)(8q + 1)$$

$$= 512q^3 + 1 + 24q(8q + 1)$$

$$= 512q^3 + 1 + 192q^2 + 24q$$

$$= 8(64q^3 + 24q^2 + 3q) + 1$$

$$= 8m + 1$$
 where $m = 64q^3 + 24q^2 + 3q$

When
$$r = 2$$
,

$$a = 8q + 2$$

$$a^3 = (8q + 2)^3$$

$$=512q^3+8+48q(8q+2)$$

$$= 512q^3 + 8 + 384q^2 + 96q$$

$$= 512q^3 + 384q^2 + 96q + 8$$

$$= 8(64q^3 + 48q^2 + 12q + 1)$$

$$= 8m$$
 where $m = 64q^3 + 48q^2 + 12q + 1$

When
$$r = 3$$
,

$$a = 8q + 3$$

$$a^3 = (8q+3)^3$$

$$= 512q^{3} + 27 + 72q(8q + 3)$$

$$= 8(64q^{3} + 3 + 72q^{2} + 27q) + 3$$

$$= 8m + 3 \text{ where } m = 64q^{3} + 72q^{2} + 27q + 3)$$
When $r = 4$,
$$a = 8q + 4$$

$$a^{3} = (8q + 4)^{3}$$

$$= 512q^{3} + 64 + 768q^{2} + 384q$$

$$a^{3} = 8(64q^{3} + 8 + 96q^{2} + 48q)$$

$$a^{3} = 8m \text{ where } m = 64q^{3} + 8 + 96q^{2} + 48q$$
when $r = 5$,
$$a = 8q + 5$$

$$a^{3} = (8q + 5)^{3}$$

$$= 512q^{3} + 960q^{2} + 600q + 125$$

$$= 8(64q^{3} + 120q^{2} + 75q + 15) + 5$$

$$= 8m + 5$$
When $r = 6$

$$a = 8q + 6$$

$$a^{3} = (8q + 6)^{3}$$

$$= 512q^{3} + 1152q^{2} + 864q + 216$$

$$= 8(64q^{3} + 144q^{2} + 108q + 27)$$

$$= 8m \text{ where } m = 64q^{3} + 144q^{2} + 108q + 27$$
When $r = 7$

$$a = 8q + 7$$

$$a^{3} = (8q + 7)^{3}$$

$$= 512q^{3} + 343 + 1344q^{2} + 1176q$$

$$= 8(64q^{3} + 168q^{2} + 147q + 42) + 7$$

$$= 8m + 7 \text{ where } m = 64q^{3} + 168q^{2} + 147q + 42$$
Therefore the whole of a numeric intersequal like in the

Therefore, the cube of any positive integer will be in the form of 8 m or 8 m + 1 or 8 m + 3 or 8 m + 5 or 8 m + 7, where m is a whole number.

Q16. Find the solution of x + 2y = 10 and 2x + 4y = 8 graphically.

Solution:

Given,

$$x + 2y = 10$$

$$2x + 4y = 8$$

Consider the first equation,

$$x + 2y = 10$$

$$2y = -x + 10$$

$$y = -\left(\frac{1}{2}\right)x + 5$$

х	-2	0	2	4
у	6	5	4	3

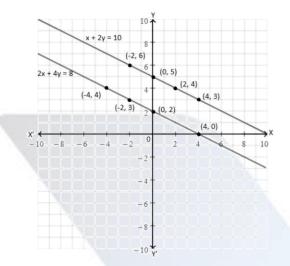
Now, consider the another equation,

$$2x + 4y = 8$$

$$4y = -2x + 8$$

$$y = -\left(\frac{1}{2}\right)x + 2$$

x	-4	-2	0	4
у	4	3	2	0



The lines representing the given pair of equations are parallel to each other.

Hence, there is no solution for the given pair of equations.

OR

$$A = \{x: x \text{ is a perfect square, } x < 50, x \in N\}$$

$$B = \{x: x = 8m + 1, \text{ where } m \in W, x < 50, x \in N\}$$

Find $A \cap B$ and display it with a Venn diagram.

Solution:

Given,

$$A = \{x: x \text{ is a perfect square, } x < 50, x \in N\}$$

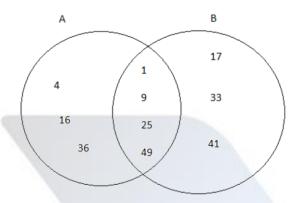
$$A = \{1, 4, 9, 16, 25, 36, 49\}$$

$$B = \{x: x = 8m + 1, \text{ where } m \in W, x < 50, x \in N\}$$

$$B = \{1, 9, 17, 25, 33, 41, 49\}$$

$$A\cap B=\{1,4,9,16,25,36,49\}\cap\{1,9,17,25,33,41,49\}$$

$$= \{1, 9, 25, 49\}$$



Q17. Find the sum of all two digit positive integers which are divisible by 3 but not by $2\,$.

Solution:

Two digit positive numbers which are divisible by 3 but not by 2 are

This is an AP with a = 15 and d = 6.

Last term =
$$l$$
 = 99

$$n = 15$$

$$S_n = \frac{n}{2}(a+l)$$

$$=\left(\frac{15}{2}\right) \times (15 + 99)$$

$$= \left(\frac{15}{2}\right) \times 114$$

$$= 15 \times 57$$

$$= 855$$

Hence, the required sum is 855.

OR

Total number of pencils required are given by $4x^4 + 2x^3 - 2x^2 + 62x - 66$. If each box contains $x^2 + 2x - 3$ pencils, then find the number of boxes to be purchased.

Given,

Total number of pencils =
$$4x^4 + 2x^3 - 2x^2 + 62x - 66$$

Number of pencils in each box =
$$x^2 + 2x - 3$$

Number of boxes required to be purchased

$$= 4x^4 + 2x^3 - 2x^2 + 62x - 66 \div x^2 + 2x - 3$$

$$= 4x^2 - 6x + 22$$

Hence, the total number of boxes required to be purchased = $4x^2 - 6x + 22$