

UP Secondary Examination, 2019

Mathematics

Time: $3\frac{1}{4}$ Hours

M.M- 70

GENERAL INSTRUCTIONS TO THE EXAMINEES:

- 1. There are in all seven questions in this question paper.
- 2. All the questions are compulsory.
- 3. In the beginning of each, the number of parts to be attempted has been clearly mentioned.
- 4. Marks allotted to the questions are indicated against them.
- 5. Start with the first question and proceed to the last one.
- 6. Do not waste your time over a question you cannot solve
- Q1. a) Find the distance between the points are (5,0) and (-12,0).

Solution:

We know that,

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(-12 - 5)^2 + (0 - 0)^2}$
= $\sqrt{289} = 17$

Hence, the value is 17 units.

b) The common difference of AP is -4 and its 10^{th} terms is -8. Determine the first terms of AP.

Solution:

We know that,

Tn = a + (n - 1)d $T_{10} = a + (10 - 1) \times (-4)$ -8 = a - 36 -8 + 36 = a a = 28Hence, the value of a = 28.

c) Which of the following numbers cannot be the probability of an event?

- $(i)\frac{1}{3}$
- (ii) $\frac{2}{3}$
- (iii) $\frac{3}{2}$
- (iv) 15%

Solution:

The probability of an event must lie between 0 and 1.

i. 1/3 is valid (between 0 and 1).

ii. 2/3 is valid (between 0 and 1).

iii. 3/2 is not valid (greater than 1).

iv. 15% is valid (equals 0.15, between 0 and 1).

Therefore, the correct answer is $\frac{3}{2}$.

- d) Evaluate $\frac{2\tan 30^{\circ}}{1-\tan^2 30^{\circ}}$.
- (i) cos60°
- (ii) tan60°
- (iii) sin30°
- (iv) sin60°

Solution:

Simplify the expression:

$$\frac{2\tan 30^{\circ}}{1-\tan^2 30^{\circ}}$$
$$\frac{2 \times \frac{1}{\sqrt{3}}}{1-\left(\frac{1}{\sqrt{3}}\right)^2} = \frac{2}{\frac{\sqrt{3}}{1-\frac{1}{3}}} = \frac{2}{\frac{\sqrt{3}}{\frac{2}{3}}} = \frac{2 \times 3}{\sqrt{3} \times 2}$$
$$= \sqrt{3}$$
$$= \sqrt{3}$$

 $= tan60^{\circ}$

Hence, the correct option is tan60°.

e) In $\triangle ABC$, if AB = $6\sqrt{3}$ cm, AC = 12 cm and BC = 6 cm, find the value of $\angle B$.

So, from the Pythagoras theorem, $\angle B = 90^{\circ}$.

f) If the roots of the quadratic equation $3x^2 - 6x + k = 0$ are equal, then the value of k is:

(i)3

(ii)6

(iii)9

(iv)12

Solution:

We know that, in case equal roots:

$$D = 0$$

$$b^{2} - 4ac = 0$$

$$(-6)^{2} - 4 \times 3 \times k = 0$$

$$36 - 12k = 0$$

$$k = \frac{36}{12} = 3$$

Hence, the value of k is 3.

Q2. a) Determine the H.C.F of 130 and 280 using Euclid's division algorithm.

Solution:

a = bq + r where < r < b $280 = 130 \times 2 + 20$ $130 = 20 \times 6 + 10$ $20 = 10 \times 2 + 0$ H.C.F = 10Hence, H.C.F = 10.

b) Find the mode of the given distribution frequency.

Class interval	Frequency
10 - 20	14
20 - 30	13
30 - 40	12
40 - 50	20
50 - 60	11
60 - 70	15

Solution:

We know that:

$$Mode = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$
$$= 40 + \frac{20 - 12}{2 \times 20 - 12 - 11} \times 10$$
$$= 40 + \frac{8}{17} \times 10$$

= 40 + 4.70= 44.70Hence, the mode is 44.70. c) If $8\tan A = 15$, then find the value of sinA. **Solution:** $8 \tan A = 15$ $\tan A = \frac{15}{8}$ $AC^2 = AB^2 + BC^2$ $= 8^2 + 15^2$ = 64 + 225= 289 = 17 Therefore, С 17 cm 15 cm В 8 cm Α Then, $\sin A = \frac{15}{17}$ Hence, the value of sinA is $\frac{15}{17}$. d) The sides of two similar triangles are in the ratio of 4:9. Find the ratio of their areas. **Solution:** We know that:

 $\frac{Area \ of \ triangle \ 1}{Area \ of \ triangle \ 2} = \left(\frac{Side \ of \ triangle \ 1}{Side \ of \ triangle \ 2}\right)^2$ $\frac{Area \ of \ triangle \ 1}{Area \ of \ triangle \ 2} = \left(\frac{4}{9}\right)^2 = \frac{16}{81}$

Q3. a) Show that $5\sqrt{2}$ is an irrational number.

Solution:

Let the $5\sqrt{2}$ is a rational number.

If $5\sqrt{2}$ is rational, then it can be expressed as $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

$$5\sqrt{2} = \frac{p}{q}$$
$$\sqrt{2} = \frac{p}{5q}$$

 $\frac{p}{q}$ a rational number.

 $\frac{p}{5q}$ a rational number.

 $\sqrt{2}$ a rational number.

However, it is well known that $\sqrt{2}$ is an irrational number

The assumption that $5\sqrt{2}$ is rational leads to the conclusion that $\sqrt{2}$ is rational, which contradicts the fact that $\sqrt{2}$ is irrational.

Since the assumption that $5\sqrt{2}$ is rational leads to a contradiction, $5\sqrt{2}$ must be irrational.

b) If the points (1,2), (4, y), (x, 6), and (3,5) are taken in order as the vertices of a parallelogram, find the values of x and y.

Solution:

Let *A*(1,2), B(4, *y*), C(*x*, 6), and D(3,5)

Mid-point of BD =
$$\left\lfloor \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right\rfloor$$

$$= \left[\frac{3+4}{2}, \frac{5+y}{2}\right]$$
$$= \left[\frac{7}{2}, \frac{5+y}{2}\right]$$

Mid-point of AC = $\left\lfloor \frac{1+x}{2}, \frac{2+6}{2} \right\rfloor = \left\lfloor \frac{1+x}{2}, 4 \right\rfloor$

For the points (1,2), (4,y), (x,6), and (3,5) to form a parallelogram, the diagonals must bisect each other. Hence, the midpoints of the diagonals must be equal.

$$\frac{7}{2} = \frac{1+x}{2}$$
$$\frac{x=6}{5+y} = 4$$
$$5+y=8$$
$$y=3$$

Therefore, x = 6 and y = 3.

c) A box contains 90 discs, each marked with a number from 1 to 90. If one disc is randomly drawn from the box, the probability of the number on the disc being:

(i)A two-digit number

(ii)A number divisible by 5

Solution:

(i) Probability of a two-digit number:

Two-digit numbers are from 10 to 90, so there are 81 two-digit numbers (90 - 10 + 1).

Total numbers = 90

Probability = $\frac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}} = \frac{81}{90} = \frac{9}{10}$

(ii) Probability of a number divisible by 5:

Numbers divisible by 5 between 1 and 90 are 5, 10, 15, ..., 90. The count of such

numbers is $\frac{90}{5} = 18$.

Total numbers = 90

Probability = $\frac{\text{Number of favourable outcomes}}{\text{Total number of outcomes}} = \frac{18}{90} = \frac{1}{5}$

d) In $\triangle ABC$, prove that $\sec\left(\frac{B+C}{2}\right) = \csc \frac{A}{2}$.

Solution:

We know that:

$$A + B + C = 180$$
$$B + C = 180 - A$$
$$\frac{B + C}{2} = \left(90 - \frac{A}{2}\right)$$

Taking sec both sides, we get:

$$sec\left(\frac{B+C}{2}\right) = sec\left(90 - \frac{A}{2}\right)$$

 $sec\left(\frac{B+C}{2}\right) = cosec\frac{A}{2}$

Hence proved.

Q4. a) Without performing the long division process, state which of the following rational numbers will have terminating decimal expansions and which will have non-terminating recurring decimal expansions?

$$(i)\frac{13}{3125}$$
$$(ii)\frac{15}{7}$$
$$(iii)\frac{29}{2^3 \times 5^2}$$
$$(iv)\frac{77}{210}$$

Solution:

To determine whether a rational number has a terminating decimal expansion or a nonterminating recurring decimal expansion, we check the prime factorization of the denominator:

$$(i)\frac{13}{3125}$$
:

The denominator is $3125=5^5$, which is a power of 5. So, this has a **terminating decimal** expansion.

$$(ii)\frac{15}{7}$$
:

The denominator is 7, which is a prime number other than 2 or 5. So, this has a **non-terminating recurring decimal expansion**.

$$(iii)\frac{29}{2^3 \times 5^2}$$

The denominator is $2^3 \times 5^2$, which consists only of the prime factors 2 and 5. So, this has a **terminating decimal expansion**.

$$(iv)\frac{77}{210}$$
:

The denominator is $210=2\times3\times5\times7$, which includes a prime factor other than 2 or 5. So,

this has a **non-terminating recurring decimal expansion**.

(b). Find the value of k, if the points (8,1), (k, -4), and (2, -5) are collinear. Solution:

For collinear:

$$x_{1}(y_{2} - y_{3}) + x_{2}(y_{3} - y_{1}) + x_{3}(y_{1} - y_{2}) = 0$$

$$8(-4 + 5) + k(-5 - 1) + 2(1 + 4) = 0$$

$$8 \times 1 + k \times (-6) + 2 \times 5 = 0$$

$$8 - 6k + 10 = 0$$

$$-6k = 1 - 8$$

$$k = \frac{18}{6} = 3$$

$$k = 3$$

Hence, the value of k is 3.

(c) Find out whether the system of linear equations 2x - 3y = 8 and 4x - 6y = 9 is consistent or inconsistent.

Solution:

$$a_{1}x + b_{1}y = c_{1}$$

$$a_{2}x + b_{2}y = c_{2}$$

$$\frac{a_{1}}{a_{2}} = \frac{1}{2}, \frac{b_{1}}{b_{2}} = \frac{-3}{-6} = \frac{c_{1}}{c_{2}} = \frac{8}{9}$$

$$\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$$

$$\frac{1}{2} = \frac{1}{2} \neq \frac{8}{9}$$

We observe that the second equation is exactly twice the first equation, except for the constant term.

Thus, the system represents two parallel lines that never intersect, meaning the **system** is inconsistent.

(d) Find the median of the following distribution:

0 - 10	5
10 - 20	8
20 - 30	20
30 - 40	15
40 - 50	7
50 — 60	5

Solution:

Class Interval	Frequency	Cumulative frequency
0 - 10	5	5
10 - 20	8	13
20 - 30	20	33
30 - 40	15	48
40 - 50	7	55
50 - 60	5	60

The total frequency (N) is the sum of all the frequencies:

N = 5 + 8 + 20 + 15 + 7 + 5 = 60

The median class is the class where the cumulative frequency is greater than or equal to $\frac{N}{2}$.

Since N = 60, we calculate:

$$\frac{N}{2} = \frac{60}{2} = 30$$

Looking at the cumulative frequency, we see that the cumulative frequency first exceeds 30 in the class interval **20-30**. Therefore, the **median class** is 20-30.

The formula to find the median is:

$$M_e = l + \left\{ h \times \frac{\left(\frac{N}{2} - c\right)}{f} \right\}$$

= 20 + $\left\{ 10 \times \frac{(30 - 13)}{20} \right\}$
= 20 + $\left\{ 10 \times \frac{17}{20} \right\}$
= 20 + 8.5
= 28.5
Hence, median is 28.5.

Q5. a) Solve the following pair of linear equations.

 $\frac{5}{x+y} + \frac{1}{x-y} = 2$ $\frac{15}{x+y} - \frac{5}{x-y} = -2$ Solution: $\frac{5}{x+y} + \frac{1}{x-y} = 2...(i)$ $\frac{15}{x+y} - \frac{5}{x-y} = -2...(ii)$ Let, $\frac{1}{x+y} = u, \frac{1}{x-y} = v$ 5u + v = 2....(iii)15u - 5v = -2....(iv)Equation (iii) multiply by 3. 15u + 3v = 615u - 5v = -2 $\Rightarrow 8v = 8$ $\Rightarrow v = 1$ From equation (iii, 5u + 1 = 25u = 1

$$u = \frac{1}{5}$$

$$\frac{1}{x - y} = 1$$

$$x - y = 1....(A)$$

$$\frac{1}{x + y} = \frac{1}{5}$$

$$x + y = 5.....(B)$$

Adding equation (A) and equation (B), we get:

$$x - y = 1$$

$$x + y = 5$$

$$\Rightarrow 2x = 6$$

$$\Rightarrow x = 3$$

Substitute the value of x in equation (A).

$$3 - y = 1$$

$$3 - 1 = y$$

$$y = 2$$

 \Rightarrow

 \Rightarrow

Hence, the value of x and y are x = 3, y = 2.

b) Find the sum of the odd numbers between 0 and 100.

Solution:

We know that:

0 to 100 between odd numbers are 1,3,5,7,999

```
a = 1, d = 3 - 1 = 2, l = 99
```

```
l = a + (n-1)d
   99 = 1 + (n - 1)2
   \Rightarrow 99 - 1 = 2n - 2
    \Rightarrow 98 + 2 = 2n
    \Rightarrow 2n = 100
   \Rightarrow n = 50
Now,
S_n = \frac{n}{2} [2a + (n-1)d]
S_{50} = \frac{50}{2} [2 \times 1 + (50 - 1)2]
```


 $= 25[2+98] = 25 \times 100$

$$\Rightarrow S_{50} = 2500$$

Hence, the value of $S_{50} = 2500$.

c) A solid toy is in the shape of a hemisphere with a conical shape mounted on it. The height of the cone is 2 cm, and the diameter of its base is 4 cm. Find the volume of this toy.

Solution:

Given Dimensions:

Radius of the cone and hemisphere, $r = \frac{4}{2} = 2$ cm.

Height of the cone, h = 2 cm.

Volume of the cone:

$$V_{cone} = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi (2)^2 (2) = \frac{8\pi}{3} \text{ cm}^3$$

Volume of the hemisphere:

$$V_{hemisphere} = \frac{2}{3}\pi r^3 = \frac{2}{3}\pi (2)^3 = \frac{16\pi}{3} \text{ cm}^3$$

Total Volume of the Toy:

$$V_{toy} = V_{cone} + V_{hemisphere} = \frac{8\pi}{3} + \frac{16\pi}{3} = \frac{24\pi}{3} = 8\pi \text{ cm}^3$$

Final Answer:

 8π cm³ or approximately 25.13 cm³ (taking $\pi \approx 3.14$).

d) The angle of depression of two ships observed from the top of a lighthouse, which is 75 m above sea level, are 30° and 45°. If the ships are on the same side of the lighthouse and one ship is directly behind the other, calculate the distance between the two ships. **Solution:**

Let the lighthouse height be AB = 75 m. The ships are at C and D on the same side of the lighthouse.

From the right-angled triangle $\triangle ABC$:

$$tan45^{\circ} = \frac{AB}{BC}$$
$$\Rightarrow 1 = \frac{75}{BC}$$
$$\Rightarrow BC = 75 \text{ cm}$$

From the right-angled triangle $\triangle ABD$:

$$tan30^{0} = \frac{AB}{BD}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{75}{BD}$$

$$\Rightarrow BD = 75\sqrt{3} \text{ cm}$$

Distance between the ships:

$$CD = BD - BC = 75\sqrt{3} - 75 = 75(\sqrt{3} - 1) \text{ m.}$$

Thus, the distance between the two ships is $75(\sqrt{3} - 1) \text{ m.}$

Q6. a) The following distribution represents the daily pocket money of children in a neighbourhood. The mean pocket money is ₹18. Find the value of the frequency f:

Daily pocket money	Number of students
11 – 13	7
13 – 15	6
15 – 17	9
17 – 19	13
19 – 21	f
21 – 23	5
23 – 25	4

Solution:

Daily pocket money	Median value	Frequency	f _x
11 – 13	12	7	84
13 — 15	14	6	84

15 – 17	16	9	144
17 – 19	18	13	234
19 – 21	20	f	20 f
21 – 23	22	5	110
23 – 25	24	4	96
		Σf_i	$\sum (f_1 \times x_1) = 752$
		= 44 + f	+ 20 <i>f</i>

We know that:

Mean =
$$\sum \frac{(f_i \times x_i)}{f_i}$$

 $18 = \frac{20f + 752}{f + 44}$
 $18f + 792 = 20f + 752$
 $792 - 752 = 20f - 18f$
 $2f = 40$
 $f = 20$

Hence, the mean value of f = 20.

b) (i) To create a cuboid with dimensions $5.5 \text{ cm} \times 10 \text{ cm} \times 3.5 \text{ cm}$, how many silver coins, each with a diameter of 1.75 cm and a thickness of 2 mm, need to be melted?

Solution:

Given Data: Dimensions of the cuboid: Length (l) = 5.5 cm, Breadth (b) = 10 cm, Height (h) = 3.5 cm. Volume of the cuboid = $1 \times b \times h = 5.5 \times 10 \times 3.5 = 192.5$ cm³

Dimensions of each silver coin:

Diameter = 1.75 cm \rightarrow Radius (r) = 1.75/2 = 0.875 cm

Thickness = 2 mm = 2/10 = 0.2 cm

Volume of a coin = $\pi r^2 h = \pi (0.875)^2 (0.2) \text{ cm}^3$

Volume of a coin = $\pi (0.875)^2 (0.2)$

First, calculate $(0.875)^2$:

 $(0.875)^2 = 0.765625$

Now, multiply by 0.2:

 $0.765625 \times 0.2 = 0.153125$

Finally, multiply by $\pi \approx 3.1416$:

Volume of a coin = $3.1416 \times 0.153125 \approx 0.4809$ cm³.

Number of coins = $\frac{\text{Volume of the cuboid}}{\text{Volume of a coin}}$

Substitute the values:

Number of coins = $\frac{192.5}{0.4809} \approx 400.4$.

Approximately **400 coins** are required to create the cuboid.

b) (ii) In the figure, find the area of the shaded region if ABCD is a square with a side length of 14 cm, and APD and BPC are two semicircles.

Solution:

Given:

Side of square ABCD = 14 cm

Radius of each semicircle = 14/2 = 7 cm

Step 1: Calculate the area of the square

Area of square = $side^2 = 14^2 = 196 \text{ cm}^2$

Step 2: Calculate the area of the two semicircles

Total area of the semicircles = Area of a full circle

Area of a circle = $\pi r^2 = \pi (7)^2 = 49 \times 3.14 = 153.86 \text{ cm}^2$

Step 3: Calculate the area of the shaded region

Shaded area = Area of square - Area of semicircles

Shaded area = 196 - 153.86

Shaded area = 42.14 cm^2

Therefore, the area of the shaded region is approximately 42.14 cm².

c) Prove that $(\csc \theta - \sin \theta)(\sec \theta - \cos \theta) = \frac{1}{\tan \theta + \cot \theta}$

Solution:

First, let us consider LHS:

 $(\csc\theta - \sin\theta)(\sec\theta - \cos\theta)$

$$= \left(\csc \theta - \frac{1}{\csc \theta} \right) \left(\sec \theta - \frac{1}{\sec \theta} \right)$$
$$= \left(\frac{\csc^2 \theta - 1}{\csc \theta} \right) \left(\frac{\sec^2 - 1}{\sec \theta} \right)$$
$$= \left(\frac{\cot^2 \theta}{\csc \theta} \right) \left(\frac{\tan^2}{\sec \theta} \right)$$
$$= \cot^2 \theta \cdot \sin \theta \times \tan^2 \cdot \cos \theta$$
$$= \frac{\cos^2 \theta}{\sin^2 \theta} \cdot \sin \theta \times \frac{\sin^2 \theta}{\cos^2 \theta} \cdot \cos \theta$$
$$= \frac{\cos^2 \theta}{\sin \theta} \times \frac{\sin^2 \theta}{\cos \theta}$$
$$= \cos \theta \cdot \sin \theta$$

Now, R.H.S:

$$\frac{1}{\tan \theta + \cot \theta} = \frac{1}{\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}} = \frac{1}{\frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \cdot \sin \theta}}$$
[Since, $\sin^2 \theta + \cos^2 \theta = 1$]
= $\cos \theta \cdot \sin \theta$

Therefore, L.H.S. = R.H.S.

d) Prove that the lengths of tangents drawn from an external point to a circle are equal. **Solution:**

Let A be a point outside the circle with centre O. Two tangents, AB and AC, are drawn from A to the circle, touching the circle at points B and C, respectively. We need to prove that AB = AC.

Steps:

- 1. Join the centre O to the points A, B, and C:
- OB and OC are radii of the circle.
- OA is the distance from the external point A to the centre O.

2. Properties of tangents:

- The tangent to a circle is perpendicular to the radius at the point of contact.
- Therefore, $OB \perp AB$ and $OC \perp AC$.

3. Triangles $\triangle OAB$ and $\triangle OAC$:

- In $\triangle OAB$ and $\triangle OAC$:
- OB = OC (radii of the circle),
- OA (common side),
- $\angle OBA = \angle OCA = 90^{\circ}$ (tangent is perpendicular to the radius).
- By the RHS (Right angle-Hypotenuse-Side) congruence rule, $\triangle OAB \cong \triangle OAC$.
- 4. Conclusion:
- Since $\triangle OAB \cong \triangle OAC$, their corresponding sides are equal.
- Therefore, AB=AC.

Thus, the lengths of tangents drawn from an external point to a circle are equal.

Q7. a) Find all the other zeroes of $3x^2 + 6x^3 - 2x^2 - 10x - 5$, given that two of its zeros

are
$$-\sqrt{\frac{5}{3}}$$
 and $\sqrt{\frac{5}{3}}$.

Solution: Given that:

$$x = -\sqrt{\frac{5}{3}}$$
 and $x = \sqrt{\frac{5}{3}}$

Therefore,

$$\left(x + \sqrt{\frac{5}{2}}\right)\left(x - \sqrt{\frac{5}{3}}\right) = 0$$
$$x^2 - \frac{5}{2} = 0$$

Now,

$$\frac{3x^2 + 6x^2 - 2x^2 - 10x - 5}{x^2 - \frac{5}{3}} = 3x^2 + 6x + 3$$

Now, $3x^2 + 6x + 3$
 $3x^2 + 3x + 3x + 3 = 0$
 $3x(x + 1) + 3(x + 1) = 0$
 $(3x + 3)(x + 1) = 0$
 $\Rightarrow x + 1 = 0$
 $x = -1$
 $\Rightarrow (3x + 3) = 0$
 $\Rightarrow 3x = -3$
 $x = -1$

Hence, the other zeros are -1 and -1.

b) In an equilateral triangle ABC, a point D lies on the side BC such that $BD = \frac{1}{3}BC$.

Prove that $9AD^2 = 7AB^2$.

Solution:

We know that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

In $\triangle ABC$ as shown in the figure above,

 $AB = BC = CA \text{ and } BD = \frac{1}{3}BC$

Draw AE \perp BC

We know that in an equilateral triangle, a perpendicular drawn from the vertex to the opposite side bisects the side.

Thus, $BE = EC = \frac{1}{2}BC$

Now, in $\triangle ADE$,

 $AD^2 = AE^2 + DE^2$ (Pythagoras theorem) ...(1)

AE is the height of an equilateral triangle which is equal to side $\frac{\sqrt{3}}{2}$.

Thus, $AE = \frac{\sqrt{3}}{2}BC$

Also, DE = BE - BD [From the diagram]

Substituting these in equation (1) we get,

$$AD^{2} = \left(\frac{\sqrt{3}}{2}BC\right)^{2} + (BE - BD)^{2}$$

$$AD^{2} = \frac{3}{4}(BC)^{2} + \left(\frac{BC}{2} - \frac{BC}{3}\right)^{2}$$

$$AD^{2} = \frac{3}{4}BC^{2} + \left(\frac{BC}{6}\right)^{2}$$

$$AD^{2} = \frac{3}{4}BC^{2} + \frac{1}{36}BC^{2}$$

$$AD^{2} = \frac{27BC^{2} + BC^{2}}{36}$$

$$36AD^{2} = 28BC^{2}$$

$$9AD^{2} = 7BC^{2}$$

$$9AD^{2} = 7AB^{2} [Since, AB = BC = CA]$$
Hence proved.