First slide
Binomial theorem for positive integral Index
Question

If 1+x+x220=a0+a1x+a2x2+a40x40, then answer the following questions.

Moderate
Question

The value of a0+a1+a2++a19 is

Solution

 Let, 1+x+x220=r=040arxr  ………(1)

Replacing x by 1/x, we get

    1+1x+1x220=r=040ar1xror  1+x+x220=r=040arx40r       ........(2)

Since (1) and (2) are same series, coefficient of xr in (1) : coefficient of xr in (2) 

 ar=a40r

In (1), putting x = 1, we get

320=a0+a1+a2++a40=a0+a1+a2++a19+a20+a21+an+2++a40=2a0+a1+a2++a19+a20  ar=a40ror  a0+a1+a2++a19=12320a20=12910a20

Also, 

       a0+3a1+5a2++81a40 =a0+81a40+3a1+79a39++39a19+43a21+41a20

          =82a0+a1+a2++a19+41a20=41910a20+41a20=41×320

a02a12+a22a32+ suggests that we have to multiply the two expansions.

Replacing r by - 1/x in (1), we get

11x+1x220=a0a1x+a2x2+a40x40 1x+x220=a0x40a1x39+a2x38+a40     ......(3)

Clearly, 

          a02a12+a22++a402 is the coefficient of x40 in 1+x+x2201x+x220

= Coefficient of x40in1+x2+x420

In 1+x2+x420, replace  x2 by y, then the coefficient of y20 in 1+y+y220 is a20.

 Hence, a02a12+a22+a402=a20

or  a02a12+a22a192+a202+a212++a402=a20or  2a02a12+a22a192+a202=a20or  a02a12+a22a192=a2021a20

Question

The value of a02a12+a22a192 is

Solution

 Let, 1+x+x220=r=040arxr  ………(1)

Replacing x by 1/x, we get

    1+1x+1x220=r=040ar1xror  1+x+x220=r=040arx40r       ........(2)

Since (1) and (2) are same series, coefficient of xr in (1) : coefficient of xr in (2) 

 ar=a40r

In (1), putting x = 1, we get

320=a0+a1+a2++a40=a0+a1+a2++a19+a20+a21+an+2++a40=2a0+a1+a2++a19+a20  ar=a40ror  a0+a1+a2++a19=12320a20=12910a20

Also, 

       a0+3a1+5a2++81a40 =a0+81a40+3a1+79a39++39a19+43a21+41a20

          =82a0+a1+a2++a19+41a20=41910a20+41a20=41×320

a02a12+a22a32+ suggests that we have to multiply the two expansions.

Replacing r by - 1/x in (1), we get

11x+1x220=a0a1x+a2x2+a40x40 1x+x220=a0x40a1x39+a2x38+a40     ......(3)

Clearly, 

          a02a12+a22++a402 is the coefficient of x40 in 1+x+x2201x+x220

= Coefficient of x40in1+x2+x420

In 1+x2+x420, replace  x2 by y, then the coefficient of y20 in 1+y+y220 is a20.

 Hence, a02a12+a22+a402=a20

or  a02a12+a22a192+a202+a212++a402=a20or  2a02a12+a22a192+a202=a20or  a02a12+a22a192=a2021a20

Question

The value of a0+3a1+5a2++81a40 is

Solution

 Let, 1+x+x220=r=040arxr  ………(1)

Replacing x by 1/x, we get

    1+1x+1x220=r=040ar1xror  1+x+x220=r=040arx40r       ........(2)

Since (1) and (2) are same series, coefficient of xr in (1) : coefficient of xr in (2) 

 ar=a40r

In (1), putting x = 1, we get

320=a0+a1+a2++a40=a0+a1+a2++a19+a20+a21+an+2++a40=2a0+a1+a2++a19+a20  ar=a40ror  a0+a1+a2++a19=12320a20=12910a20

Also, 

       a0+3a1+5a2++81a40 =a0+81a40+3a1+79a39++39a19+43a21+41a20

          =82a0+a1+a2++a19+41a20=41910a20+41a20=41×320

a02a12+a22a32+ suggests that we have to multiply the two expansions.

Replacing r by - 1/x in (1), we get

11x+1x220=a0a1x+a2x2+a40x40 1x+x220=a0x40a1x39+a2x38+a40     ......(3)

Clearly, 

          a02a12+a22++a402 is the coefficient of x40 in 1+x+x2201x+x220

= Coefficient of x40in1+x2+x420

In 1+x2+x420, replace  x2 by y, then the coefficient of y20 in 1+y+y220 is a20.

 Hence, a02a12+a22+a402=a20

or  a02a12+a22a192+a202+a212++a402=a20or  2a02a12+a22a192+a202=a20or  a02a12+a22a192=a2021a20

Get Instant Solutions
When in doubt download our app. Now available Google Play Store- Doubts App
Download Now
Doubts App