First slide
Binomial theorem for positive integral Index
Question

Let a and b be positive integers and b not a perfect square, then for every positive integer n, the number (a+b)n is irrational. Also,

 (a+b)n+(ab)n =2[nC0an+nC2an2(b)2+nC4an4(b)4+.]

Clearly, R.H.S. is an even integer say E.

Let (a+b)n=I+F where I is the integral part and 
F is the fractional part of (a+b)ni.e.,0<F<1

Let (ab)n=F,0<F<1

Then, I+F+F=E

As, I and E are integers, F + F′ , must be an integer.

But, 0<F+F<2F+F=1I=E1

Thus, integral part of (a+b)n is The fractional part of (a+b)n is 1(ab)n

Moderate
Question

Let R=(5+26)n and f = fractional part of R, then R (1 – f ) =

Solution

Let (5+26)n=I+f where I and f are the integral and the fractional parts of (5+26)n respectively.
Let 0<526<1 where g is a fraction.
Since 0<526<1, therefore0<(526)n<1
for every positive integer n. We have

 I+f+g =(5+26)n+(526)n =2[C05n+C2(26)2.5n2+.]

i.e.,I+f+g=2k,kI+---1

f+g=2k1= an integer ----2

Since 0 < f, g < 1, therefore we have 0 < f + g < 2 --------(3)

Thus, using (2) and (3), we have
f + g= 1
[since the only integral value in (0,2) is 1]
i.e., g =1– f .………..(4)
Therefore, we have,

 R(1f)=Rg=(5+26)n(526)n =(52(26)2)n=1

Question

[(3+5)2n]+1 where [x] denotes the integral part of x, is divisible by

Solution

Let (3+5)2n=I+f where I and f are the integral and the 
fractional parts of (3+5)2n  respectively.
Let ((3+5)2n=g where g is a fraction.
Since 0 < 3 – 5 < 1, therefore
0<(35)2n<1 for every positive integer n.
We have,
 I+f+g=(3+5)2n+(35)2n =(14+65)n+(1465)n =2n[(7+35)n+(735)n] =2n.2[C0.7n+C2(7)n2(35)2+.] i.e.,I+f+g=(2n +1)k,kI+----1
i.e.,f+g=(2n+1)kI= an integer ……..(2)
Since 0 < f, g < 1, therefore we have
0 < f + g < 2 ……....(3)
Thus, using (2) and (3), we have
f + g = 1 ……...(4)
[since the only integral value in (0,2) is1]
Putting (4) in equation (1), we have
I + 1 = (2n + 1)k
[(3+5)2n]+1 is divisible by 2n + 1.

Question

If nN such that (7+43)n=I+f ,where IN and 0 < f < 1. Then, the value of ( I + f ) (I – f) is

Solution

. Let g=(743)n . Then, 0 < g < 1 as 0<743<1
Now, I+f+g=(7+43)n+(743)n
=2(nC07n+nC27n2(43)2+)
= an integer

f+g=I g=If
thus,(I+f)(If)=(I+f)g=(7+43)n(743)n=1

Get Instant Solutions
When in doubt download our app. Now available Google Play Store- Doubts App
Download Now
Doubts App