First slide
Introduction to limits
Question

Let f(x) be a polynomial satisfying (f(α))2+f(α)2=0. Then, limxαf(x)f(x)f(x)f(x) is equal to (Here [·] denotes the greatest integer function)

Moderate
Solution

It is given that the polynomial f (x) satisfies the relation (f(α))2+f(α)2=0.

 f(α)=0=f(α)

  x=a is a root of f (x) and f' (x)

   (x-a)2 is a factor of f (x)

Let f(x)=(xα)2ϕ(x). Then,

f(x)=2(xα)ϕ(x)+(xα)2ϕ(x) f(x)f(x)=(xα)ϕ(x)2ϕ(x)+(xα)ϕ(x)

Now,

      limxαf(x)f(x)f(x)f(x)

      =limxαf(x)f(x)f(x)f(x)f(x)f(x), where{·} denotes the

fractional part function

=limxαf(x)f(x)×f(x)f(x)limxαf(x)f(x)f(x)f(x)=1limxαxα2ϕ(x)+(xα)ϕ(x)2ϕ(x)+(xα)ϕ(x)(xα)ϕ(x)=10=1.

Get Instant Solutions
When in doubt download our app. Now available Google Play Store- Doubts App
Download Now
Doubts App