Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If Δ1 is the area of the triangle formed by the centroid and two vertices of a triangle, Δ2 is the area of the triangle formed by the mid-points of the sides of the same triangle, then Δ1:Δ2=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

3:4

b

4:1

c

4:3

d

2:1

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let Ax1,y1,Bx2,y2 and Cx3,y3 be the vertices of a ∆ ABC, and let G be its centroid. Then,Δ1= Area of ΔGBC⇒Δ1=12x1+x2+x33y1+y2+y331x2y21x3y31⇒Δ1=16x1+x2+x3y1+y2+y33x2y21x3y31 Applying R1→R1(3)⇒Δ1=16x1    y1    1x2    y2    1x3    y3    1  Applying R1→R1−R2−R3⇒Δ1=Δ3 where ∆is the area of ∆ABCΔ2=Area of triangle formed by the mid-points of the sides⇒Δ2=x1+x22y1+y221x2+x32y2+y321x3+x12y3+y1211⇒Δ2=18x1+x2y1+y21x2+x3y2+y31x3+x1y3+y11 Applying C1→C1(2),C2→C2(2)⇒Δ2=182x1+x2+x32y1+y2+y33x2+x3y2+y31x3+x1y3+y11 Applying R1→R1+R2+R3⇒Δ2=28x1+x2+x3y1+y2+y332x2+x3y2+y31x3+x1y3+y11  Applying R1→R1(1/2)⇒Δ2=14x1+x2+x3y1+y2+y33/2−x1−1/1−1/2−x2−1/2−1/2 R2→R2−R1R3→R3−R1⇒ Δ2=18x1+x2+x3y1+y2+y33−x1−y1−1−x2−y2−1  Applying C3→C3⇒ Δ2=18x3    y3    1−x1    −y1    −1−x2    −y2    −1  Applying R1→R1+R2+R3⇒ Δ2=14Δ∴ Δ1:Δ2=4:3
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring